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Background: Deploying safe and effective machine learning models is essential
to realize the promise of artificial intelligence for improved healthcare. Yet,
there remains a large gap between the number of high-performing ML
models trained on healthcare data and the actual deployment of these
models. Here, we describe the deployment of CHARTwatch, an artificial
intelligence-based early warning system designed to predict patient risk of
clinical deterioration.
Methods: We describe the end-to-end infrastructure that was developed to
deploy CHARTwatch and outline the process from data extraction to
communicating patient risk scores in real-time to physicians and nurses. We
then describe the various challenges that were faced in deployment,
including technical issues (e.g., unstable database connections), process-
related challenges (e.g., changes in how a critical lab is measured), and
challenges related to deploying a clinical system in the middle of a
pandemic. We report various measures to quantify the success of the
deployment: model performance, adherence to workflows, and
infrastructure uptime/downtime. Ultimately, success is driven by end-user
adoption and impact on relevant clinical outcomes. We assess our
deployment process by evaluating how closely we followed existing
guidance for good machine learning practice (GMLP) and identify gaps that
are not addressed in this guidance.
Results: The model demonstrated strong and consistent performance in real-
time in the first 19 months after deployment (AUC 0.76) as in the silent
deployment heldout test data (AUC 0.79). The infrastructure remained online
for >99% of time in the first year of deployment. Our deployment adhered to
all 10 aspects of GMLP guiding principles. Several steps were crucial for
deployment but are not mentioned or are missing details in the GMLP
principles, including the need for a silent testing period, the creation of
robust downtime protocols, and the importance of end-user engagement.
Evaluation for impacts on clinical outcomes and adherence to clinical
protocols is underway.
Conclusion: We deployed an artificial intelligence-based early warning system
to predict clinical deterioration in hospital. Careful attention to data
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TABLE 1 Example of measured labs
training dataset. For these vitals an
values, the 1st quantile (Q01), the 9
value (Min) and maximum value (Max
values often fall outside of the range
(e.g., a maximum body temperature va

Feature Mean

Vital—temperature 36.91

Vital—diastolic blood pressure 71.49

Vital—systolic blood pressure 129.89

Vital—respirations 20.53

Lab—troponin 0.28

Lab—HBA1 −2.73

Lab—glucose random 1.95

Lab—Hemoglobin 106.09

Lab—Basophils 0.03

Lab—Alanine Aminotransferease 3.38
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infrastructure, identifying problems in a silent testing period, close monitoring during
deployment, and strong engagement with end-users were critical for successful
deployment.
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Introduction

Despite advancements in machine learning algorithms for

solving healthcare problems, there still remains a gap between

the number of developed algorithms and the number of

successful deployments (1, 2).

Problems can arise at any stage of deployment (3). Prior to

model development, unclear problem definition is often cited as

a barrier to successful deployment (4). Then, during model

development, the training data can be biased, either due to

missingness of vulnerable populations, small sample size, or

erroneous data (5). When transitioning to production data,

there can be a drop in model performance from test data to

production data, which may result from changes in data

formats, timing, and context (3). Problems can also arise with

out-of-distribution generalization and incorrect feature

attribution (for example, if clinical protocols or target

populations change over time) (6). If a model makes it to the

deployment phase, end-user engagement is a crucial facilitator

of, or barrier to, successful uptake. Introducing a clinical team

to a ML model may require changes in workflow and change

management. Ensuring that end-users correctly use a

deployed product is difficult if there is no buy-in or trust (7).

Because of the issues listed above, there are few successful

deployments of ML in healthcare settings. The scarcity of

deployments means there are no widely accepted “best

practices” or standards by which to evaluate the success of a
and vitals in the CHARTwatch
d labs, we report their mean
9th quantile (Q99), minimum
). The minimum and maximum
of biologically possible values
lue of 6932 °C).

Q01 Q99 Min Max

34.8 38.3 0 6932

47 101 0 173

85 183 1 16,070

15 28 0 20,147

−1.9 5.58 −1.9 7.13

−3.14 −1.9 −3.3 2.29

1.22 3.29 0 4.51

63 160 1 214

0 0.13 0 2.69

1.61 7.08 1.61 8.78

02
deployment. Recent work has looked at assessing the quality

of the data that goes into model through the creation of

“Datasheets for Datasets” (8). In the past year, Health

Canada, the U.S. Food and Drug Administration (FDA), and

the United Kingdom’s Medicines and Healthcare products

Regulatory Agency (MHRA) have released the Good Machine

Learning Practice (GMLP) guiding principles, a document

providing 10 principles to address deployment of healthcare

algorithms (9). More recently, the DECIDE-AI steering

committee have released DECIDE-AI, a set of guidelines and

checklists meant for early live clinical evaluation.

In Fall 2020, we deployed CHARTwatch to the General

Internal Medicine (GIM) ward at St. Michael’s Hospital, an

inner city teaching hospital in Canada (2, 10). The GIM ward

currently holds 78 beds and receives approximately 4,000

admissions each year. Here, we describe in detail, the system’s

infrastructure and assess the success of our deployment

through quantitative metrics (such as model performance,

end-user engagement, and adherence to workflows) and by

comparing our deployment to the GMLP principles. The

purpose of this manuscript is to provide concrete insights into

the deployment of ML in a healthcare setting and highlight

opportunities to strengthen GMLP guidance.
Materials and methods

Model development

We developed a model to detect inpatient deterioration,

defined as in-hospital death or transfer to the intensive care

unit (ICU).

We obtained historical development data through the

hospital’s enterprise data warehouse. We used the following

data sources: demographic information (sex and age),

laboratory and vitals measurements. Our dataset consisted of

all complete inpatient admissions to the GIM service between

the dates of April 1, 2011 and December 11, 2019. We split

the data into training and validation based on calendar date.

Then, following silent deployment, we used data generated in

the production environment between January 1, 2020 to May

30, 2020 as our test dataset. In the training and validation

sets, we excluded any visits with length of stay less than 8 h

or more than 40. The exclusion criteria were not applied to

the test dataset. This was done to avoid biasing model
frontiersin.org
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development with outliers but to ensure accurate reporting of

expected performance in a production environment. During

training, death on the ward, transfer to the ICU, transfer to

the step-up unit (a 4-bed unit on the GIM ward for higher

acuity patients), and transfer to palliative care were used as

the outcomes. Model performance was ultimately evaluated on

the composite outcome of ICU transfer and in-hospital

mortality.

We processed the data into a timeseries of 6-hour windows

for each patient encounter, from admission timestamp to the

first of either discharge timestamp or outcome timestamp. We

took the mean value of numeric features (laboratory and

vitals measurements) when the data were recorded multiple

times within the same interval.

We observed a few data quality issues caused by data entry

errors. For example, we found a body temperature value of 700 °C

(see Table 1 for more examples of laboratory and vitals

measurements). To address this, we processed all of our

numeric features in the following way: we trimmed numeric

features that were less than the 1st percentile or greater than

the 99th percentile (as determined from the training data),

and normalized the values to be between 0 and 1, using the

1st and 99th percentile. We then created “[feature]_measured”

variables to indicate whether the feature was measured in the

6-hour window and “[feature]_time_since_last_measured”

variables to keep track of the number of hours since the

feature was previously measured. To address missingness, we

imputed data with the last observation carried forward,

followed by mean imputation. Details on data processing can

be found in (10).

Following numerous experiments with various machine

learning methods, including logistic regression, Lasso

regression, generalized additive models, and neural networks

(10), we trained a “time-aware MARS model” to predict

patient deterioration. This model consisted of two

components: (1) The Multivariate Adaptive Regression Spline

(MARS) used all processed input features to get a score of

patient deterioration for each 6-hour window. (2) Then,

additional features were created from the MARS scores (for

example, current MARS score, baseline MARS score, change

in score from previous time window, change since baseline)

and were given as input to a logistic regression model. We

selected this approach because it achieves similar performance

to the more complex ML models, intrinsically incorporates a

degree of feature selection, successfully models non-linear

interactions, and was computationally efficient for deployment.

The risk scores generated by the time-aware MARS model

were then categorized into “High risk”, “Medium risk”, and

“Low risk”. We used 10-fold cross-validation on the validation

set to pick the thresholds that would yield a visit-level positive

predictive value (PPV) of 40% and a negative predictive value

(NPV) of 99%. This threshold was selected because clinicians

expressed the need to minimize false alerts, and they
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recommended a ratio of 2 false alerts to a single true positive

(10). Models were not selected or adjusted after assessing

performance in the validation dataset.
Description of system

CHARTwatch was developed using the open source

programming language R and the codebase was deployed to a

local server with access to the hospital source systems.

Various automated scripts are scheduled to run at different

intervals. A summary of the scripts is provided in Appendix

Table 1. The main CHARTwatch pipeline script runs hourly.

It connects to the hospital databases, extracts the current

patient census, and then pulls demographics, labs, and vitals

data for current GIM patients. The script then does data

cleaning, data processing, model prediction, and risk group

assignment. The outputs of the CHARTwatch pipeline script

are then communicated to clinicians through different

methods, which are part of a comprehensive clinical

intervention that was designed by an interdisciplinary team

(the team has previously been described) (2):

- “High risk” alerts are sent in real-time to the GIM physicians

through a paging application—“SPOK”1—running on the

GIM team phones and the charge nurse phone. At our

hospital, each GIM team and on-shift charge nurses carry a

hospital-assigned mobile phone device 24-hours per day.

Typically, the GIM team phones are carried by in-house

residents.

- Patient risk groups are displayed, and updated hourly, in a

locally-developed “electronic sign out” tool, which is used

by GIM physicians to organize their teams.

- Emails are sent twice a day to the GIM charge nurses. This

email contains the census of all GIM patients and their

CHARTwatch risk group. The email is used by the charge

nurses when they are assigning bedside nurses for the next

12-hour shift. They proactively attempt to match more

experienced or skilled nurses with higher risk patients and

to avoid one nurse from having multiple “High risk” patients.

- An email is sent once daily to the Palliative care team. This

email contains a list of all patients who received their first

“High risk” prediction in the past 24 h. The palliative care

team contacts the patients’ GIM physicians to ask whether

a palliative care consultation would be helpful, with the

goal of improving access to high quality end-of-life care for

“High risk” patients, when appropriate.
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“High risk” alerts to the mobile devices are triggered if a

patient is classified as “High risk” by the CHARTwatch

model. To minimize alert fatigue, the following alerting

protocol is applied:

- After an alert, no further alerts are sent for the same patient

for the next 48 h.

- Subsequent alerts only occur if a patient’s status changes from

“High risk” to “Low risk” or “Medium risk”, and then back to

“High risk”.

- Alerts for patients who are transferred from the ICU to the

GIM ward are silenced for 24 h after transfer, as these

patients are already known to be “High risk” and are

proactively followed by the critical care response team.

- In March 2022, in response to feedback that a small number of

patients were getting a very large number of alerts, we began

silencing all alerts after the fifth alert for a patient, although

their status is still indicated as “High risk” in other

communications.

A clinical pathway for “High risk” alerted patients was

developed by an implementation team as described in detail

elsewhere (2). This pathway was continuously refined by an

implementation committee composed of GIM, ICU, and

palliative care physicians and nurses, the chief medical

resident, a clinical informatics specialist, and the lead data

scientist. The committee met weekly through the pilot and

early phases of the implementation and then was scaled back

to meet monthly.
Silent deployment and pilot phase

CHARTwatch silent deployment was affected by the onset

of the COVID-19 pandemic. We initially planned a 4-month

silent deployment, which was subsequently extended for 6

more months to accommodate the clinical changes that were

being made amidst the challenges of the first wave of the

pandemic. During silent testing, we used weekly check-in

meetings with stakeholders to ensure the system was running

smoothly and had some preliminary training sessions with

end-users to assess buy-in and trust. The weekly check-in

meetings included members from the following groups: the

model development team, hospital Information Technology

(IT), clinical informatics, and clinicians working on GIM,

ICU and Palliative Care.

We began silent deployment in November 2019 and

planned to launch the intervention in March 2020. During

this time, we focused on several data-related issues. First, our

testing period coincided with the hospital changing from

traditional troponin measurement to a new “high sensitivity”

troponin assay. In order to address this change, we modified

our pre-processing code to scale the lab value accordingly.

Earlier versions of CHARTwatch relied on medications and
Frontiers in Digital Health 04
nurse notes. However, this silent testing period uncovered

database connection issues, and these data sources were

subsequently removed. This had no impact on model

performance.

The onset of the COVID-19 pandemic resulted in numerous

changes on the GIM unit, as this was the unit primarily

responsible for care of COVID-19 ward patients. This resulted

in physical changes to the ward, relocation of patients to

other units in the hospital, and creation of new clinical care

teams. All of these changes needed to be accommodated in

CHARTwatch, including ensuring the model continued to

identify the correct cohort of GIM patients and would be

delivered to all the relevant care teams. We made a plan to

deploy the model for GIM patients with COVID-19 as well as

for those with other illnesses. Once these changes were made,

we focused on model validation and data quality to ensure

accurate performance (see Results section for details).

In August 2020, we initiated the pilot phase of our

intervention. We began by deploying the system for 2 of the 7

GIM teams. Deployment progressed in a phased approach

over a 6-week period, rolling out to all GIM teams and then

to nurses and the palliative care team. The system was fully

running by October 20, 2020.

The silent deployment and pilot phases were essential as it

allowed the technical team to uncover issues with pipelines and

workflows, and also allowed the clinical team to collect feedback

from end-users.

A summary of major changes resulting from silent

deployment and iterative refinement of the solution during

the pilot and implementation phases is provided in Appendix

Table 2.
Downtime protocols

To ensure that CHARTwatch could run smoothly with

minimal interruptions, all deployed scripts were developed so

that emails to the project team would be sent out if any script

failed. Furthermore, the data extract scripts were set to run

hourly. If data extraction failed, the model outputs could rely

on an earlier data extract that is at most 3 h old. In the rare

case where errors would affect end-users, we developed email

templates to: (1) notify end-users of the unplanned downtime;

and (2) notify them when the unplanned downtime was over.

Planned downtimes are inevitable (e.g., due to database

updates, server updates) and we also developed email

templates accordingly.
End-user engagement

End-users were engaged through the full life-cycle of this

project as described in the methods and previous manuscripts
frontiersin.org
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(2, 10). A comprehensive effort was made to train physicians

and nurses prior to, and during the deployment of

CHARTwatch about the system, the interpretation of risk

groups, the meaning of alerts, and the expected clinical

responses. We incorporated CHARTwatch training into the

orientation of all new nurses, such that all nurses working on

the GIM ward receive CHARTwatch training. CHARTwatch

training was integrated into the monthly orientation for

residents, which includes in-person and emailed materials,

and involves approximately 100 resident physicians annually.

GIM staff physicians were trained through several

presentations at division meetings and all GIM physicians

(approximately 20) received the training.
Performance measures

To measure model performance, we report the area under

the receiver-operative curve (AUC), the positive prediction

value (PPV), and sensitivity. We compute these metrics in the

heldout test data (January 2020–May 2020), and in the real-

time data from deployment (August 2020–March 2022). The

model PPV is computed at the encounter-level. We calculate

sensitivity based on the visit’s maximum risk group, in order

to get an estimate of the proportion of outcomes that would

be captured by the visit’s maximum risk group. We want this

metric to be low for patients whose maximum risk group is

“Low risk”.

To estimate adherence to clinical pathways, we used the

number of vital sign assessments in the 24 h following an

alert. This reflects both physician and nurse adherence as

physicians must place an order and nurses must perform the

measurements. According to the clinical pathway, vital signs

should be measured every 4 h (the maximum frequency of

routine measurement for patients on the GIM ward). Thus,

adherence is measured as the total number of alarms that

follow the clinical pathway (i.e., are followed by vital signs

measurements every four hours) divided by the total number

of alarms. We compute this metric at a weekly level and

report the weekly percentage of alerts that follow the clinical

pathway.
Results

Model performance

Model performance metrics on the heldout test data

(January 2020 to May 2020, silent testing period) and the

deployment data (August 2020 to March 2022) are reported

in Table 2. When predicting the composite outcome of ICU

transfer and in-hospital mortality, the time-aware MARS

model achieved an AUC of 0.786 and of 0.759 on the test
Frontiers in Digital Health 05
data and deployment data, respectively. When predicting

patient deterioration within the next 48 h, the AUC was of

0.626 and 0.753.

Maximum risk group sensitivity was of 0.530 for the “High

risk” group, 0.471 for the “Medium risk” group, and 0 for the

“Low risk” group in the test data. In production, the risk

group sensitivity was of 0.559, 0.417, and 0.023.

During validation, we iterated through a range of risk score

values and selected a threshold that would yield a PPV of 0.40

on the composite outcome of ICU transfer, in-hospital

mortality, step-up unit transfer, and Palliative Care transfer.

With this outcome, the model achieved a PPV of 0.306 and

0.272 in the test data and deployment data, respectively. In

the composite outcome of ICU transfer and in-hospital

mortality only, the model achieved a PPV of 0.172 and 0.257

in the test and deployment data, respectively.
Alerts

Since deployment, there has been a mean of 2.60 (SD: 1.71)

alerts per day and a median of 2 (IQR: [1–4]), for a mean of

84.02 (SD: 7.48) and median 84 (IQR: [79–89]) total GIM

patients per day. There were 56 (9.589%) days where no alerts

were sent. Figure 1 shows the daily number of alerts since

deployment. The alerts were equally spread out across the

different GIM teams.
Adherence to clinical pathway

To assess adherence, we reported the percentage of alerted

patients who had at least 4 vital signs measurements. The

weekly percentage of adherence increased as users became

more familiar with the system. Between August 2020 and

November 2020, this weekly percentage was at a mean of 65%

(SD: 11%) and a median of 65% (IQR: [59%–75%]). Between

December 2021 and March 2022, this weekly rate had

increased to a mean of 74% (SD: 11%) and a median of 71%

(IQR: [69%–80%]).
CHARTwatch pipeline runtime and data
size

The pipeline runtime remains consistent and takes a mean

of 196.83 seconds (SD: 121.05 seconds) to complete and a

median of 151 seconds (IQR: [133–194] seconds). Similarly,

the data size remains consistent at a mean of 26.44 MB (SD:

3.98 MB) and a median of 26.25 MB (IQR: [24.42–28.06] MB).
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Downtime events

We experienced few downtime events and most of them

were planned. In total, the system was down for 52.5 out of

14,016 h (584 days). Thus, CHARTwatch was running for

99.6% of the time. 20 h (38.1%) of downtime were planned

(scheduled database maintenance/upgrade, updates to server,

etc.), and 32.5 h (61.9%) of downtime were due to unplanned

events (such as unexpected database or network failure).
Adherence to GMLP guidelines

1. Multi-Disciplinary Expertise Is Leveraged Throughout

the Total Product Life Cycle. CHARTwatch was

developed and deployed by a team from various fields of

expertise with strong end-user engagement including

advice from patients and caregivers, as previously

described in detail (2).

2. Good Software Engineering and Security Practices Are

Implemented. Our infrastructure follows best practices for

security; the deployment server for CHARTWatch sits in

the same secure private network as the clinical systems.

Access to all systems is restricted to authorized personnel

and continuously audited. Database administrators of

clinical systems provided guidance to data engineers in

developing high performance queries. The data pipelines

were coded using techniques to minimize the risk of SQL
TABLE 2 Performance of the CHARTwatch model in the test data and
the deployment data. AUC, PPV, and sensitivity are reported in the test
data (January 2020–May 2020) and in the deployment data (August
2020–March 2022). Metrics are reported on the composite outcome
of ICU transfer and in-hospital mortality (Outcome: ICU/Death), as
well as in the composite outcome of ICU transfer, in-hospital
mortality, step-up unit transfer, and Palliative Care transfer
(Outcome: ICU/Death/step-up/Palliative).

Metric Test Data Deployment Data

Outcome:
ICU/
Death

Outcome:
ICU/
Death/
step-up/
Palliative

Outcome:
ICU/
Death

Outcome:
ICU/
Death/
step-up/
Palliative

AUC
(ever)

0.786 0.735 0.759 0.768

AUC (in
next 48 h)

0.626 0.791 0.753 0.759

PPV of
alerted
encounters

0.172 0.306 0.257 0.272

Sensitivity (based on maximum risk group)

High
risk

0.480 0.53 0.565 0.559

Medium
risk

0.520 0.471 0.419 0.417

Low risk 0 0 0.016 0.023
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injection in case of a system breach, while leaving a

minimal footprint on the source systems. Furthermore, the

data science team employed an agile development

approach to develop the final deployed product. This

included regular meetings to assess tasks, re-visiting the

backlog and prioritizing as needed.

3. Clinical Study Participants and Data Sets Are

Representative of the Intended Patient Population. The

model was trained on historical hospitalizations from the

same patient population at the same institution, to

maximize representativeness. During model development,

we worked directly with source database systems to ensure

high quality data, including performing clinical validation

ensured that the data sets were representative of real-

world data.

4. Training Data Sets Are Independent of Test Sets. Our

training data sets and test data sets were independent of

each other. We used calendar-based data split approach to

ensure that performance reported on the test set would be

representative of deployment-level performance by

simulating historical training and deployment in a future

time period. Furthermore, silent testing did not overlap

with our training/validation/test datasets.

5. Selected Reference Datasets Are Based Upon Best

Available Methods. We tried multiple models and settled

on the one that gave us the best performance and could

work within constraints and limitations set by the system.

Further, the features and models used in CHARTwatch

were backed by previous evidence (10, 11).

6. Model Design Is Tailored to the Available Data and

Reflects the Intended Use of the Device. When

developing the model, we used data available at time of

each prediction. Any data generated or updated after the

expected prediction time was excluded from the training

dataset. The silent deployment periods also allowed us to

validate this.

7. Focus Is Placed on the Performance of the Human-AI

Team. The clinical team was involved in development and

deployment with regular meetings with all stakeholders

and with extensive training on how to use the system. We

suggested CHARTwatch predictions be used by clinicians

in conjunction with their own clinical judgement rather

than in isolation. Further, we conducted a clinical

validation, comparing CHARTwatch model predictions to

more than 3,000 real-time clinical predictions, to engender

trust and inform our understanding of the human-AI

team (manuscript under review).

8. Testing Demonstrates Device Performance during

Clinically Relevant Conditions. We had silent testing

periods as well as a pilot phase and a phased rollout.

Model performance was monitored throughout the silent

testing period and continues to be monitored on an

ongoing basis.
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FIGURE 1

Daily alerts sent by CHARTwatch. The red solid line indicates the median number of daily alerts. The blue dashed lines indicate the 25th quantile and
the 75th quantile.
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9. Users Are Provided Clear, Essential Information. To

ensure the delivery of simple, actionable messages for

clinicians, CHARTwatch predictions were categorized into

“High risk”, “Medium risk”, and “Low risk” groups.

Messaging alerts contain the following text: “[Patient Last

Name, First Name, Medical Record Number] is high risk

for transfer to ICU or death. Please refer to LINK for

more information.” The link takes users to a brief

description of the clinical protocol for alerted patients. All

clinicians receive training on how to use this system.

10. Deployed Models Are Monitored for Performance and

Re-training Risks are Managed. Model performance is

measured and monitored by an implementation

committee, using a small number of key performance

and process measures, including those reported in this

manuscript: model sensitivity, PPV, number of daily

alerts, number of outcomes for patients in different risk

groups, and number of vital signs measurements in the

24 h following an alert. These were initially monitored

weekly and once the intervention moved into a more

stable maintenance phase, committee meetings are held

monthly. Error alerts on the automated pipelines ensure

timely identification of errors by the team. Re-training

poses an important challenge, as the model has altered
Frontiers in Digital Health 07
clinical workflows, particularly for alerted patients. Given

that clinical interventions are intended to prevent adverse

outcomes for alerted patients, re-training the model may

lead to undesired feedback loops resulting in poorer

performance. This remains an area of active research for

our team and others (12), including exploring the use of

proxy labels to ensure that high risk patients who do not

experience adverse outcomes are still captured in the

modelling.

Discussion

In this manuscript, we describe our experience deploying

an early warning system for GIM patients in an academic

hospital, which highlights numerous practical lessons. We

observed that the GMLP guiding principles offer a helpful

starting point, and our solution was developed in alignment

with these suggestions. We offer concrete and detailed

descriptions of how we were able to operationalize the various

GMLP recommendations, to assist future initiatives. Beyond

these principles, we identified several aspects that have been

critical for successful deployment of our solution. First,

engagement of end-users was essential in designing,

deploying, and iteratively refining the solution. Second, a
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silent testing period and phased launch was crucial for

identifying unanticipated issues with models and data

pipelines and resulted in numerous updates before launch.

Third, it was important to create robust downtime protocols,

with a careful plan to prevent disruptions in clinical workflow

or patient harm.

Engaging a multidisciplinary group of end-users from the

project’s outset ensured that there was a high level of trust

and uptake of the designed solution. We discuss in more

detail our findings of engaging a multidisciplinary group in

(2). Ongoing engagement led to important iterations in the

intervention. Our engagement included identifying key

champions to participate in committees and lead the initiative

and a comprehensive training program for all clinicians.

Regular implementation committee meetings, initially held

weekly and then scaled back over time to monthly, allowed

the team to refine the intervention in response to feedback

from clinicians.

We achieve high model performance and, on average,

CHARTwatch only sends out two alerts each day. The

outcomes not captured by the alert are captured by the

“Medium risk” group. Combining the “High risk” and

“Medium risk” groups together yields a sensitivity of 0.976. In

addition to monitoring various measures of model

performance and clinical outcomes, we used a simple process

measure to capture clinical adherence (the number of vital

signs measurements). This reflects both physician and nurse

practice and demonstrated good adherence at the project’s

outset, with further improvements over time.

There is a notable absence of “best practices” in deploying

ML solutions in healthcare. The GMLP guiding principles are

an important step forward and as high-level guides, they are

very useful. However, greater specificity is needed to

understand how these principles can be operationalized, and

this manuscript reflects an effort to provide some of that

additional detail. We also note that there are several crucial

areas for ML deployment which are referred to only

tangentially in the GMLP and ought to be mentioned

specifically. GMLP Principle 1 (“Multi-Disciplinary Expertise

Is Leveraged Throughout the Total Product Life Cycle”) is

very applicable to the importance of end-user engagement,

although it does not mention this specifically. GMLP

Principle 8 (“Testing Demonstrates Device Performance

during Clinically Relevant Conditions”) may be strengthened

by highlighting the importance of silent testing in a real-

time production environment before deployment into

clinical care. An important area for future research is to

develop a guiding framework that would help determine

what duration of silent testing is sufficient before

deployment. This duration would be affected by parameters

related to model performance (e.g., prevalence of outcome

events, desired model accuracy) and factors related to the

data pipeline and clinical context (e.g., number of clinical
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systems involved, planned updates to systems and processes).

GMLP Principles 9 (“Users Are Provided Clear, Essential

Information”) and 10 (“Deployed Models Are Monitored for

Performance and Re-training Risks are Managed”) should be

expanded to include downtime protocols. While system and

model failures are rare, they are bound to happen, and end-

users should not be left in the dark. Borrowing from safety

engineering, failure modes and effect analysis could be a

good way to identify all potential risks within the deployed

system and, accordingly, develop downtime protocols (13).

Finally, we note that GMLP Principle 10 raises a crucial area

for future research. Re-training models that have already

been deployed into, and affected, clinical practice raises

challenging methodological issues (12). Identifying methods

to maintain highly accurate models over time is an urgent

need as models are increasingly deployed into clinical

environments.

This work has several limitations. First, our deployment

was conducted in a single academic hospital and thus

generalizability to other settings must be considered.

However, we believe the key lessons from our experience are

very likely to apply to a wide range of ML solutions. Second,

our deployment relates to a clinical decision-support and

predictive analytics solution. Other ML applications (e.g.,

computer vision) may require a different set of approaches

for their deployment. Third, we relied primarily on

routinely-collected data to measure model performance and

clinical adherence. This has the advantage of being scalable

and resource-efficient, but lacks granularity and clinical

context. Targeted chart reviews, as have been described in

the quality improvement literature (14), or interviews with

clinicians represent other important ways of gathering this

information.

In conclusion, deploying machine learning models in

healthcare settings is challenging and requires a multi-

disciplinary team to ensure success. As these deployments

become more frequent, we hope that more rigorous standards

and best practices will arise. The evolution of the GMLP

guiding principles, and lessons learned from real-world

implementations, can assist with strengthening best practices

in the deployment of machine learning models.
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Appendix Table 1: Table of scheduled
scripts.
Script Description Schedule

CHARTwatch
pipeline

The script extracts data from the source
systems, processes the data, generates
model prediction, and classifies each
patient into risk groups (“Low risk”,
“Medium risk”, “High risk”).

Hourly

Charge nurse email The scripts sends a list of the patient
census, including CHARTwatch risk
groups, to the charge nurse twice a day.

Every 12 h

SPOK alert update The script sends alerts to the “SPOK”
application on the GIM team phones and
charge nurse phone. The script sends
alerts on “High risk” patients and applies
re-alerting silencing rules (as specified in
Section “Description of system”).

Hourly

“Electronic sign out”
tool update

The script updates the CHARTwatch risk
groups in the “electronic sign out”
database.

Hourly

Palliative team email The script sends a daily email to the
Palliative care team. The email contains a
list of all new “High risk” patients.

Daily

Date Change Type of
change

13-Nov-
19

Silent deployment. Deployment was on an older
server and consisted in an ensemble model that
used the following input data: demographics, labs,
vitals, medications, clinical orders, nursing notes.

Silent
deployment

26-Nov-
19

New “high sensitivity troponin” lab added. Process change

20-Dec-
19

Silent deployment update. The model was
updated to an ensemble that relied only on
demographics, labs, and vitals. We also fixed an
issue where sodium labs (lab code is “NA”) were
getting interpreted as “Not available”.

Silent
deployment

24-Dec-
19

Silent deployment update. The data processing
was changed to address the troponin lab update.

Silent
deployment

14-May-
20

Silent deployment update. The deployment was
moved to a different server and we used the time-
aware MARS model (as described in Section
“Model development”).

Silent
deployment

25-Aug-
20

Start of pilot phase. Alerts and ‘electronic sign
out’ was activated for 2 GIM teams.

Deployment

11-Sep-
20

Risk group rule change: if patient is on step-up
unit, their risk group must at minimum be
“Medium risk”.

CW change
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Appendix Table 2: Timeline of
CHARTwatch major changes
11-Sep-
20

Alerting rule change: Alerts silenced for 24 h after
patient leaves ICU.

CW change

11-Sep-
20

Add “Team Stroke” to data extraction query. Process change

11-Sep-
20

Add new GIM ward location to data extraction
query, corresponding to the opening of a new
patient care tower.

Process change

15-Sep-
20

Launch to all GIM teams. Deployment

6-Oct-
20

Deployment to charge nurses. Emails are sent to
the charge nurse email address twice a day. Alerts
are sent to the charge nurse phone.

Deployment

20-Oct-
20

Deployment to palliative team—Full
deployment. Emails are sent daily to the Palliative
Care team email.

Deployment

19-Jan-
21

Switch from alerts 3×/day to hourly alerts. CW change

27-Apr-
21

Add an extra GIM team (opened for COVID-19)
to data extraction query.

Deployment

11-Jun-
21

Remove extra COVID-19 team from data
extraction query, as team closed.

Deployment

8-Mar-
22

Alerting rule change: stop repeat alerts after 5th
alert.

CW change
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Appendix 3: Details on the
CHARTwatch model

The final deployed model consists of two pieces:
(1) The Multivariate Adaptive Regression Spline (MARS) is a

weighted sum of basis functions (15). To determine the

coefficients, we used cross-validation to train the model.

The inputs to the MARS model are the features

described in Section “Model development”.
Frontiers in Digital Health 11
(2) The output of the MARS model is a score ranging from 0

to 1. The MARS score, as well as the difference in MARS

score between this time window and the previous one,

the percent change, and the percent change from

baseline, are then given as input to a logistic regression

model. The logistic model is trained on the training data.

The MARS and logistic regression models were trained

using R (version 3.6.3) (16) with the packages ‘earth’ (version

5.1.2) (17) and ‘glmnet’ (4.0-2), respectively (18). We use the

‘tidymodels’ suite of packages (19) to train and tune the models.
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