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Abstract: The air pollution characteristics of six ambient criteria pollutants, including particulate
matter (PM) and trace gases, in 29 typical cities across the Yangtze River Economic Belt (YREB) from
December 2017 to February 2018 are analyzed. The overall average mass concentrations of PM2.5,
PM10, SO2, CO, NO2, and O3 are 73, 104, 16, 1100, 47, and 62 µg/m3, respectively. PM2.5, PM10,
and NO2 are the dominant major pollutants to poor air quality, with nearly 83%, 86%, and 59%,
exceeding the Chinese Ambient Air Quality Standard Grade I. The situation of PM pollution in
the middle and lower reaches is more serious than that in the upper reaches, and the north bank
is more severe than the south bank of the Yangtze River. Strong positive spatial correlations for
PM concentrations between city pairs within 300 km is frequently observed. NO2 pollution is
primarily concentrated in the Suzhou-Wuxi-Changzhou urban agglomeration and surrounding areas.
The health risks are assessed by the comparison of the classification of air pollution levels with three
approaches: air quality index (AQI), aggregate AQI (AAQI), and health risk-based AQI (HAQI).
When the AQI values escalate, the air pollution classifications based on the AAQI and HAQI values
become more serious. The HAQI approach can better report the comprehensive health effects from
multipollutant air pollution. The population-weighted HAQI data in the winter exhibit that 50%, 70%,
and 80% of the population in the upstream, midstream, and downstream of the YREB are exposed to
polluted air (HAQI > 100). The current air pollution status in YREB needs more effective efforts to
improve the air quality.

Keywords: particulate matter; health risks; major pollutant; HAQI; Yangtze River Economic Belt

1. Introduction

In the past decade, air pollution levels over China have been far higher than the World Health
Organization (WHO) guidelines, with unprecedented urbanization and economic development [1–4].
The coexistence of particulate matter (PM) and gaseous pollutants (e.g., SO2 and NOx) from urban
traffic and regional industrial sources can interfere with the chemical composition, optical properties,
and mixing state of aerosol particles [5]. In recent years, through the adoption of a series of control
measures, the air quality has gradually improved, and the number of sunny days has been continuously
increasing [6,7]. However, urban fog and haze weather is still a major threat to human health, as well
as the environment [8]. In early 2013, the Ministry of Environmental Protection (MEP) of China began
to release real-time urban air quality data. The concentrations of six criteria pollutants, especially
PM2.5, NO2, and O3, are frequently above the Chinese Ambient Air Quality Standard (CAAQS) [9].
The pollutants have caused the strong concern of the public, because long-term exposure to air pollution
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potentially poses adverse effects on human health, triggers cardiovascular and respiratory diseases,
and causes damage to human immune systems [10–14].

The Yangtze River Economic Belt (YREB) along the Yangtze River, with Shanghai as the leader,
is one of the most important areas for China’s economic growth. In 2016, “the outline of the YREB
Development Plan” officially became a national development strategy, aiming to push forward the
new YREB urbanization [15]. The long-term high-intensity energy consumption and explosive growth
of automobile traffic have caused most cities in the developed YREB to face more severe air pollution
problems than other cities in China [16]. It is of great significance to analyze the spatial distribution
characteristics of air pollutants for taking effective measures to control and reduce pollution. Previous
research on air pollution distribution patterns mainly focus on a few key cities or urban agglomerations
over the YREB. Zhao et al. explored the spatiotemporal variations of six criteria air pollutants and
influencing factors (sources and meteorology conditions) in the city clusters of the Sichuan Basin,
which are located on the upper reaches of the YREB, and the results indicated that both PM2.5 and
O3 were simultaneously high in the West Sichuan Basin while PM2.5 in the South Sichuan Basin was
much higher than that in other regions [17]. Numerous joint studies on particulate and gaseous
pollutants have been carried out in representative urban cities in the Yangtze River Delta region,
located on the down reaches of the YREB, such as Shanghai and Nanjing [18–21]. In our earlier
study, concentrating on three metropolises in the YREB, we checked the current air pollution status in
Chongqing, Wuhan, and Nanjing and compared the results with earlier peer-reviewed studies [22].
The lately published available air quality observation data of six pollutants from more cities over the
YREB make it possible to look into the spatial distributions of the YREB. Additionally, when evaluating
the impacts of pollutant on human health, the air quality index (AQI) method on account of the
maximum concentration of six pollutants was frequently adopted, but the single pollutant index was
more impossible to reflect the actual air pollution level comprehensively [23–25]. Subsequently, to solve
the defect of the AQI, the aggregate AQI (AAQI) and health risk-based AQI (HAQI) were proposed
by Kyrkilis et al. and Wong et al., with considering the comprehensive health effects of exposure to
multi-pollutants, respectively [23,24]. Some studies compared the three approaches in several major
megacities in China and pointed out that the AQI system clearly underestimated the combined impact
of multiple pollutants on health risks [25–28]. The YREB is affected by high concentrations of air
pollutants, so the health risks associated with exposure to multi-pollutants might be more unique.

To the best of the authors’ knowledge, the systematic analyzation of air pollution characteristics,
including particulate, gaseous pollutants, and corresponding human health risks in the overall YREB,
are still lacking so far. To fill up the research gap, the major objectives of this work are organized as
follows: (1) to reveal the spatial characteristics of six criteria pollutants (PM2.5, PM10, SO2, CO, NO2,
and O3); (2) to investigate the regional relationship of PM pollution between different city pairs; (3) to
identify the proportion of major pollution in the upstream, midstream, and downstream of the YREB;
and (4) to assess the health effects of air pollutants on people and identify the proportion of humans
exposed to polluted air based on the comparative analysis of three approaches: AQI, AAQI, and HAQI
during the period 1 December 2017 to 28 February 2018 in 29 typical cities over the YREB. The findings
will be helpful to understand the current situation of environmental quality and provide a reference
for air pollution alleviation in YREB if necessarily in time.

2. Data and Methodology

2.1. Study Region

The YREB encompasses nine provinces (Yunnan, Sichuan, Guizhou, Hunan, Hubei, Jiangxi, Anhui,
Jiangsu, and Zhejiang) and two municipalities (Chongqing and Shanghai) and stretches across China
from the east to west. Its geographical area is about 2.05 million km2, accounting for 21.4% of the
whole country’s land mass. The YREB accounts for more than 40% of the national total population,
as well as gross domestic product (GDP), which makes it the most populous and prosperous river
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economic belt in China. The YREB is an inland river economic zone with global influence. Under the
implementation of various policies and guidelines, the economic growth space has expanded from
coastal areas to inland areas along the Yangtze River quickly; however, the efficient environmental
pollution control across provinces is still not perfected. On the basis of the geographical location,
the YREB is divided into three major areas (the upstream, the midstream, and the downstream) to
better understand the regional air pollution characteristics and associated health risks. The detail data
of 29 typical cities selected in this study are listed in Table 1, and the spatial distribution of each city is
illustrated in Figure 1.

Table 1. Basic information of 29 cities over the Yangtze River Economic Belt (YREB) by the end of 2017.
GDP: gross domestic product.

Cities Latitude
(Degree)

Longitude
(Degree)

Area
(Km2)

Population
(Million)

GDP
(Billion)

Vehicle
(Ten Thousand)

Number of
Monitoring Sites

The upstream
Panzhihua (PZH) 26.6 101.7 7401 1.2 114.4 26.0 5
Kunming (KM) 25.0 102.7 21,281 5.7 485.8 213.5 7
Chengdu (CD) 30.7 104.0 14,335 16.3 1388.9 398.2 10
Yibin (YB) 28.8 104.6 13,271 4.6 184.7 32.3 6
Mianyang (MY) 31.5 104.7 20,248 4.9 207.5 17.5 4
Zigong (ZG) 29.4 104.8 4381 2.9 131.2 22.4 6
Luzhou (LZ) 28.9 105.4 12,232 4.3 159.6 37.8 4
Nanchong (NCh) 30.8 106.1 12,477 6.4 182.8 46.2 6
Chongqing (CQ) 29.5 106.5 82,400 34.0 1950.0 320.7 21
Zunyi (ZY) 27.7 106.9 30,762 6.2 272.7 70.1 5

The midstream
Yichang (YC) 30.7 111.3 21,230 4.1 385.7 56.7 5
Xiangtan (XT) 27.8 112.9 5006 2.9 205.6 61.1 7
Changsha (CS) 28.1 113.0 11,816 8.2 1053.5 256.5 10
Yueyang (YY) 29.4 113.1 14,858 5.8 325.8 49.0 6
Zhuzhou (ZZ) 27.8 113.1 11,248 4.0 252.2 44.0 7
Wuhan (WH) 30.6 114.3 8569 11.1 1341.0 261.0 10
Jiujiang (JJ) 29.5 115.6 19,085 4.9 241.4 65.9 8
Nanchang (NC) 28.6 115.9 7402 5.5 500.3 97.0 10

The downstream
Hefei (HF) 31.8 117.2 11,445 7.6 721.4 169.7 10
Wuhu (WHu) 31.3 118.4 6026 3.9 306.6 47.7 4
Maanshan (MAS) 31.7 118.5 4049 2.3 173.8 31.1 5
Nanjing (NJ) 32.0 118.8 6587 8.4 1171.5 257.9 9
Yangzhou (YZ) 32.4 119.4 6591 4.5 506.5 94.0 5
Zhenjiang (ZJ) 32.2 119.5 3840 3.2 410.5 49.6 5
Changzhou (CZ) 31.8 120.0 4374 4.7 662.2 122.8 9
Wuxi (WX) 31.6 120.3 4627 6.6 1051.2 176.5 8
Suzhou (SZ) 31.3 120.6 8657 10.7 1730.0 355.7 8
Nantong (NT) 32.0 120.9 10,549 7.3 773.5 187.3 5
Shanghai (SH) 31.4 121.5 6341 14.6 3013.4 361.0 10

2.2. Date Source

In this study, the ground-based hourly mass concentrations of PM2.5, PM10, SO2, CO, NO2,
and O3—8 h from 1 December 2017 to 28 February 2018—were collected at each site from the official
website of the China National Environmental Monitoring Centre [29]. The 8-h, daily, and wintertime
concentrations of the six pollutants were obtained by averaging the hourly data of all monitoring
stations in each city. The diurnal concentrations of each pollutant were calculated only when there
were more than 16 h of valid data. Description of the quality assurance and controls were reported in
the previous literature [22]. The basic information, such as GDP, population, and vehicle counts of
studied cities, was downloaded from the Chinese Statistics Web Links [30].
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Figure 1. Location of the 29 cities in the Yangtze River Economic Belt (YREB) selected in this study.
Yichang and Jiujiang are the boundary points between the upstream, midstream, and downstream of
the YREB.

2.3. Methods

2.3.1. AQI

The AQI calculation approach refers to the CAAQS [31], which firstly calculates the individual air
quality index (AQIi) for each pollutant based on the 24-h average concentrations of six pollutants and
then chooses the maximum AQIi as the overall AQI (see Supporting Information) [32].

2.3.2. AAQI

The AAQI, considering the combined effects of the six criteria pollutants, is calculated through
Formula (1) [23,33]:

AAQI =
(∑n

i=1
(AQIi)

ρ) 1
ρ

(1)

where ρ is an empirical constant. Similar to other literatures, ρ = 2 was adopted in this paper [25–27].

2.3.3. HAQI

To explicate the established exposure–response relationship between various atmosphere
contaminants and health risks, the concept of total excess risk (ERtotal) of exposure to six pollutants
was proposed [34]. First, the relative risk (RRi) of a pollutant i was calculated by Formula (2):

RR = exp[βi(Ci −Ci,0)], Ci > Ci,0 (2)

where Ci represents the measured concentration of pollutant i, and Ci,0 represents the threshold
concentration of pollutant i (the upper risk limit of CAAQS daily Grade II in this study). The β (0.038%
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per µg/m3 for PM2.5, 0.032% per µg/m3 for PM10, 0.081% per µg/m3 for SO2, 0.13% per µg/m3 for NO2,
0.048% per µg/m3 for O3, and 3.7% per mg/m3 for CO [2]) is the exposure–response coefficient and
represents the excess health risk caused by the increase in per-unit pollutant i when Ci > Ci,0. There is
no excess health risk for pollutant i as Ci £ Ci,0 (RRi = 1).

The excess risk of each pollutant i (ERi) and the ERtotal of six pollutants are calculated by
Formula (3):

ERtotal =
∑n

i=1
ERi =

∑n

i=1
(RRi − 1) (3)

Supposing the ER of a pollutant i is equal to ERtotal, its equivalent relative risk (RR*) and equivalent
pollutant concentration (Ci

*) can be derived as Formulas (4) and (5) [25]:

RR∗ = ERtotal + 1 = exp
[
βi(C∗i −Ci,0)

]
(4)

C∗i =
ln(RR∗)
βi

+ Ci,0 (5)

Ci
* is the aggregate risk of all pollutants; hence, the HAQIi can be obtained by Formula (6) [25]:

HAQIi =
AQIi, j−AQIi, j−1

Ci, j−Ci, j−1
× (C∗i −Ci, j−1) + AQIi, j−1, j > 1

HAQIi = AQIi,1
C∗i

Ci,1
, j = 1

(6)

where Ci,j and Ci,j−1 are the nearby high and low values of Ci
*, and AQIi,j and AQIi,j−1 are the individual

air quality indexes for Ci,j and Ci,j−1 (Supplementary Table S1), respectively.
After getting each HAQIi, the overall HAQI is then calculated by choosing the maximum HAQIi

of the six pollutants as Formula (7):

HAQI = max(HAQI1, HAQI2, HAQI3, HAQI4, HAQI5, HAQI6) (7)

3. Results and Discussion

3.1. Wintertime Air Quality Overview

Figure 2 illustrates the spatial variations of the averaged concentrations of the six criteria air
pollutants for 29 typical cities across the YREB during the entire study time period (1 December 2017–
28 February 2018). For PM2.5 pollution, conspicuous spatial heterogeneity is observed. The mass
concentrations are high, with an increasing spatial pattern from upstream (~69 µg/m3) to midstream
(~76 µg/m3) and downstream (~74 µg/m3). Regions with serious PM2.5 pollution and relatively clean
air quality are roughly diagonally distributed, and the former is mainly located on the north bank of
the middle and lower reaches (~80 µg/m3), while the latter is primarily concentrated on the south bank
of the upper reaches (~45 µg/m3) of the Yangtze River. In particular, the PM2.5 mass loadings in the
Sichuan Basin urban agglomeration are also high. In contrast to the summer, spring, and autumn
concentrations, the wintertime concentrations are generally higher due to meteorological conditions
unfavorable to pollutant diffusion (inversion, lower boundary layer, etc.) and the increased energy
consumption caused by anthropogenic activities (coal, fossil oil, etc.) [35–39]. PM10 displays similar
spatial distributions, and its concentrations range from 80 to 130 µg/m3 for the majority of cities (Table 2).
Especially, Zigong in Sichuan Province and Yichang in Hubei Province are the two heavily polluted
cities and have the highest PM2.5 (PM10) levels of all cities in the winter, up to ~105 (137) µg/m3.
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Figure 2. Wintertime average concentrations of particle matter (PM)2.5 (a), PM10 (b), SO2 (c), CO (d),
NO2 (e), and 8-h peak O3 (f). The unit is µg/m3 for PM2.5, PM10, SO2, NO2, 8-h peak O3, and mg/m3

for the CO.

A smaller difference is observed for both CO and SO2 in all cities. The only exception is Panzhihua,
located within an important metallogenic belt in Southwest China. The sulfur-containing minerals
and coal-fired heating directly lead to high concentrated CO (2 mg/m3) and SO2 (44 µg/m3). The other
two gaseous species, NO2 and O3, on the contrary, demonstrate great urban differences. Large NO2

concentrations are mostly distributed in the Suzhou-Wuxi-Changzhou Metropolitan region and nearby
areas as a result of the more local vehicular exhaust emissions. Throughout the year, O3 is one of the
scarcest atmospheric pollutants in the winter under the conditions of low temperatures, short sunshine
duration, and weak solar radiation intensity. Ozone pollution for Zigong and Nanchong (~80 µg/m3)
is more dependent on traffic vehicle emissions inside the Sichuan Basin [17].

Figure 3 exhibits the frequency distributions of daily six ambient air pollutants. The average
mass concentrations of PM2.5 and PM10 are 73 and 104 µg/m3. PM2.5 (PM10) concentrations in the
range of 30–90 (45–135) µg/m3 dominate most days, accounting for about 62% (66%). About 83%
and 40% of the PM2.5 are above the corresponding CAAQS daily Grade I (35 µg/m3) and Grade II
(75 µg/m3) standards for PM2.5 and PM2.5, and 86% and 16% of the PM10 exceed the CAAQS Grade I
(50 µg/m3) and Grade II standards for PM10 (150 µg/m3), respectively. The O3 concentrations average
as 62 µg/m3, with nearly 8% exceeding the CAAQS-I standard (100 µg/m3). Similarly, the SO2 and CO
averages are 16 µg/m3 and 1.1 mg/m3, respectively, with a tiny percentage (~1%) above the Grade I
daily standards (50 µg/m3 for SO2 and 2 mg/m3 for CO). NO2 is the major gaseous pollutant in the
wintertime. The mean NO2 concentration is 47 µg/m3, with a range of 10–110 µg/m3. The frequency
distributions of daily NO2 indicate that 59% and 6% NO2 could not meet the Grade I (40 µg/m3) and
Grade II (80 µg/m3) standards, respectively.
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Table 2. Wintertime average concentrations and associated standard deviations of six criteria pollutants
in all cities. PM: particle matter and CAAQS: Chinese Ambient Air Quality Standard.

Cities PM2.5
(µg/m3)

PM10
(µg/m3)

SO2
(µg/m3)

CO
(mg/m3)

NO2
(µg/m3)

O3 8 h
(µg/m3)

PZH 45.7 ± 14.7 86.7 ± 27.1 44.4 ± 16.6 2.2 ± 0.7 47.2 ± 12.1 70.0 ± 21.6
KM 37.6 ± 15.8 66.2 ± 22.0 14.5 ± 4.1 1.0 ± 0.2 34.4 ± 7.8 76.3 ± 27.4
CD 79.5 ± 36.1 123.6 ± 55.8 10.9 ± 3.5 1.1 ± 0.3 52.1 ± 16.6 71.7 ± 23.6
YB 87.8 ± 40.2 123.7 ± 56.0 21. 9± 5.9 1.3 ± 0.3 45.1 ± 11.2 54.6 ± 29.8
MY 84.6 ± 41.4 128.0 ± 69.4 7.8 ± 3.2 1.0 ± 0.3 40.3 ± 14.9 68.0 ± 23.5
ZG 105.4 ± 45.3 136.4 ± 58.2 19.2 ± 6.7 1.2 ± 0.3 44.4 ± 16.4 79.7 ± 35.1
LZ 71.4 ± 37.3 104.7 ± 52.9 17.0 ± 7.2 0.8 ± 0.3 41.5 ± 13.8 42.3 ± 27.6
NCh 71.3 ± 28.2 110.5 ± 43.5 10.4 ± 3.6 1.0 ± 0.2 39.9 ± 14.4 79.7 ± 24.6
CQ 65.3 ± 35.1 96.5 ± 49.8 11.1 ± 3.5 1.1 ± 0.2 50.9 ± 14.2 35.2 ± 20.3
ZY 45.9 ± 24.8 69.9 ± 36.2 23.0 ± 11.9 1.0 ± 0.2 33.6 ± 12.6 59.4 ± 23.3
YC 105. 7± 39.0 137.7 ± 49.4 13.5 ± 2.4 1.4 ± 0.2 45.9 ± 13.6 56.8 ± 23.6
XT 80.6 ± 38.8 111.6 ± 48.5 20.1 ± 12.9 1.0 ± 0.2 45.8 ± 18.3 65.7 ± 29.2
CS 78.3 ± 37.8 92.2 ± 43.8 13.2 ± 8.6 1.0 ± 0.2 45.8 ± 18.6 60.5 ± 28.2
YY 74.3 ± 26.0 101.8 ± 34.1 9.9 ± 4.7 1.1 ± 0.2 30.7 ± 12.5 67.5 ± 26.7
ZZ 68.4 ± 33.4 114.5 ± 51.4 21.4 ± 10.5 0.9 ± 0.2 44.9 ± 16.0 60.5 ± 29.6
WH 83.3 ± 35.1 106.7 ± 42.3 12.2 ± 7.0 1.2 ± 0.3 56.4 ± 22.0 54.4 ± 25.2
JJ 63.9 ± 30.9 86.1 ± 40.4 15.5 ± 7.1 0.8 ± 0.2 35.4 ± 13.2 63.3 ± 20.5
NC 49.5 ± 22.7 82.5 ± 36.7 12.6 ± 7.1 1.1 ± 0.3 44.3 ± 15.9 63.1 ± 26.7
HF 81.1 ± 43.0 100.5 ± 45.4 10.2 ± 5.8 1.1 ± 0.3 53.6 ± 22.2 63.3 ± 22.5
WHu 94.1 ± 54.1 105.1 ± 52.3 16.1 ± 6.8 1.1 ± 0.4 57.0 ± 20.4 60.5 ± 26.3
MAS 82.6 ± 48.3 113.0 ± 54.6 23.4 ± 9.3 1.2 ± 0.4 51.3 ± 20.1 63.1 ± 21.4
NJ 75.7 ± 51.1 118.3 ± 64.7 14.7 ± 5.3 1.0 ± 0.4 58.4 ± 23.2 61.3 ± 21.1
YZ 73.7 ± 41.1 129.1 ± 66.1 13.4 ± 7.0 1.0 ± 0.4 46.3 ± 23.4 59.9 ± 19.7
ZJ 84.5 ± 53.3 110.0 ± 59.8 14.3 ± 8.1 0.8 ± 0.4 52.3 ± 25.5 60.9 ± 20.1
CZ 68.6 ± 34.8 98.7 ± 40.9 18.4 ± 4.5 1.3 ± 0.3 56.2 ± 15.8 44.4 ± 13.5
WX 69.9 ± 46.9 111.0 ± 62.1 15.2 ± 6.1 1.4 ± 0.4 57.3 ± 22.2 60.2 ± 21.7
SZ 67.9 ± 46.2 96.5 ± 53.1 15.0 ± 6.6 1.0 ± 0.4 61.7 ± 24.7 61.6 ± 21.0
NT 58.8 ± 38.3 78.9 ± 45.4 19.0 ± 6.9 1.0 ± 0.3 45.0 ± 21.5 73.0 ± 17.7
SH 52.9 ± 36.7 69.2 ± 38.3 13.7 ± 5.1 0.9 ± 0.3 56.8 ± 21.9 73.1 ± 19.3
CAAQS-I/II 35/75 50/150 50/150 2/4 40/80 100/160

The formation mechanisms and sources of PM2.5 are complicated, and recent research has stated
that secondary aerosol components probably play an important role in the PM2.5 mass [22,35]. Besides,
the primary sources might be a combination of resuspended dust, biomass combustion, transportation,
and industrial activities, etc. The PM2.5-to-PM10 ratios during both the episode (daily average PM2.5

> 75 µg/m3) and nonepisode days are presented in Figure 4. The mean PM2.5/PM10 ratios increase
from 0.65 on nonepisode days to 0.69 on episode days in the upstream cities, and the corresponding
values are 0.66 vs. 0.74 and 0.63 vs. 0.76 for the midstream and downstream cities, respectively.
The remarkably increased PM2.5/PM10 levels on episode days highlights that PM2.5 accounts for a
dominant fraction of the PM10 mass, and the contribution of secondary aerosols to the PM2.5 mass
significantly increases. Moreover, larger differences of the ratios between episode and nonepisode
days are exposed downstream (0.13) as compared to upstream (0.04) and midstream (0.08). Panzhihua,
Zhuzhou, and Yangzhou have relatively lower PM2.5/PM10 ratios, implying more primary PM sources
may occur in those three cities. The stable atmospheric conditions in the wintertime are conducive to
the secondary PM accumulation and coarse particles dry deposition, which eventually result in the
dominance of fine particles in PM10. The combined control strategy, including anthropogenic primary
emissions and the secondary PM formation, can alleviate the ambient pollution more effectively.
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Figure 4. Mean PM2.5/PM10 ratios and standard deviations in the Episode and Nonepisode days. 
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Table 3. Pearson correlation coefficients (r) for PM2.5 (cells above the diagonal) and PM10 (cells below the diagonal) between studied cities. 0 < r ≤ 0.3 (weak
correlation), 0.3 < r ≤ 0.7 (moderate correlation), and 0.7 < r ≤ 1.0 (strong correlation, in bold).

PZH KM CD YB MY ZG LZ NCh CQ ZY YC XT CS YY ZZ WH JJ NC HF WHu MAS NJ YZ ZJ CZ WX SZ NT SH

PZH — 0.46 0.48 0.50 0.38 0.45 0.45 0.38 0.38 0.31 0.27 0.24 0.23 0.17 0.29 0.17 0.23 0.27 0.25 0.34 0.28 0.28 0.29 0.30 0.29 0.28 0.30 0.24 0.27
KM 0.49 — 0.34 0.32 0.31 0.31 0.35 0.26 0.37 0.51 0.00 0.23 0.21 0.14 0.29 0.02 0.11 0.13 0.06 0.09 0.13 0.09 0.15 0.09 0.11 0.14 0.18 0.14 0.21
CD 0.43 0.26 — 0.82 0.92 0.86 0.82 0.88 0.85 0.62 0.62 0.40 0.36 0.30 0.48 0.34 0.34 0.41 0.34 0.33 0.29 0.28 0.37 0.35 0.22 0.18 0.19 0.14 0.11
YB 0.44 0.28 0.86 — 0.73 0.89 0.94 0.75 0.80 0.56 0.59 0.41 0.37 0.32 0.46 0.40 0.43 0.43 0.32 0.33 0.27 0.26 0.30 0.31 0.21 0.17 0.18 0.10 0.11
MY 0.29 0.23 0.92 0.78 — 0.81 0.75 0.84 0.78 0.63 0.57 0.37 0.35 0.29 0.45 0.30 0.31 0.34 0.29 0.28 0.27 0.25 0.32 0.31 0.20 0.14 0.16 0.12 0.08
ZG 0.41 0.30 0.88 0.91 0.83 — 0.90 0.85 0.82 0.64 0.60 0.47 0.44 0.35 0.54 0.41 0.45 0.45 0.32 0.33 0.30 0.28 0.33 0.33 0.23 0.18 0.18 0.14 0.12
LZ 0.44 0.37 0.83 0.91 0.73 0.90 — 0.76 0.88 0.63 0.61 0.45 0.41 0.36 0.50 0.39 0.42 0.44 0.27 0.29 0.23 0.21 0.29 0.27 0.18 0.13 0.14 0.07 0.06

NCh 0.35 0.25 0.87 0.74 0.80 0.85 0.78 — 0.83 0.66 0.58 0.39 0.36 0.29 0.49 0.30 0.37 0.40 0.25 0.25 0.22 0.19 0.28 0.25 0.17 0.12 0.13 0.08 0.06
CQ 0.41 0.35 0.76 0.73 0.66 0.80 0.88 0.81 — 0.68 0.55 0.45 0.40 0.33 0.51 0.35 0.38 0.44 0.28 0.30 0.25 0.21 0.35 0.28 0.20 0.16 0.18 0.10 0.09
ZY 0.27 0.45 0.68 0.62 0.62 0.68 0.69 0.75 0.70 — 0.37 0.46 0.42 0.34 0.60 0.17 0.37 0.46 0.12 0.20 0.20 0.14 0.24 0.19 0.20 0.18 0.22 0.19 0.21

YC 0.36 0.10 0.67 0.60 0.58 0.63 0.63 0.65 0.54 0.49 — 0.58 0.55 0.55 0.53 0.55 0.56 0.52 0.53 0.48 0.43 0.41 0.42 0.46 0.34 0.28 0.29 0.28 0.22
XT 0.33 0.32 0.65 0.62 0.60 0.64 0.61 0.63 0.55 0.62 0.71 — 0.99 0.87 0.93 0.75 0.77 0.81 0.61 0.54 0.55 0.53 0.52 0.53 0.47 0.42 0.43 0.39 0.36
CS 0.31 0.29 0.60 0.56 0.56 0.59 0.55 0.60 0.49 0.60 0.63 0.94 — 0.89 0.92 0.77 0.76 0.78 0.62 0.55 0.55 0.52 0.52 0.53 0.47 0.42 0.43 0.39 0.36
YY 0.19 0.22 0.53 0.51 0.48 0.49 0.48 0.49 0.37 0.48 0.69 0.86 0.81 — 0.84 0.79 0.79 0.73 0.62 0.61 0.60 0.57 0.52 0.54 0.49 0.45 0.45 0.40 0.38
ZZ 0.33 0.31 0.60 0.57 0.53 0.63 0.56 0.62 0.53 0.60 0.65 0.95 0.91 0.84 — 0.65 0.78 0.78 0.52 0.54 0.54 0.52 0.53 0.53 0.49 0.44 0.44 0.42 0.38
WH 0.42 0.27 0.73 0.67 0.67 0.65 0.62 0.64 0.57 0.58 0.68 0.75 0.71 0.71 0.70 — 0.83 0.70 0.80 0.66 0.64 0.61 0.53 0.56 0.47 0.43 0.41 0.34 0.34

JJ 0.34 0.29 0.64 0.62 0.61 0.58 0.59 0.62 0.54 0.66 0.64 0.82 0.76 0.74 0.76 0.80 — 0.84 0.80 0.75 0.74 0.68 0.57 0.62 0.61 0.59 0.59 0.51 0.53
NC 0.33 0.24 0.61 0.57 0.54 0.56 0.56 0.61 0.51 0.63 0.65 0.83 0.78 0.77 0.81 0.74 0.83 — 0.60 0.56 0.54 0.51 0.51 0.49 0.49 0.47 0.47 0.42 0.44

HF 0.43 0.28 0.67 0.62 0.64 0.59 0.54 0.57 0.49 0.47 0.64 0.71 0.64 0.63 0.64 0.84 0.79 0.69 — 0.85 0.86 0.81 0.73 0.76 0.70 0.68 0.67 0.59 0.58
WHu 0.42 0.19 0.49 0.50 0.40 0.48 0.43 0.41 0.34 0.32 0.56 0.64 0.58 0.67 0.62 0.68 0.56 0.56 0.77 — 0.97 0.94 0.84 0.90 0.90 0.87 0.85 0.78 0.78
MAS 0.42 0.29 0.55 0.54 0.51 0.51 0.44 0.46 0.38 0.39 0.54 0.68 0.62 0.66 0.68 0.73 0.69 0.63 0.85 0.88 — 0.97 0.87 0.93 0.92 0.89 0.87 0.81 0.80

NJ 0.42 0.25 0.56 0.56 0.52 0.51 0.45 0.42 0.37 0.33 0.51 0.65 0.58 0.63 0.64 0.69 0.64 0.57 0.80 0.87 0.96 — 0.88 0.96 0.93 0.89 0.86 0.82 0.79
YZ 0.39 0.25 0.52 0.50 0.45 0.47 0.43 0.42 0.39 0.37 0.52 0.63 0.58 0.59 0.62 0.64 0.60 0.59 0.83 0.85 0.91 0.94 — 0.95 0.88 0.82 0.80 0.78 0.71
ZJ 0.43 0.25 0.55 0.53 0.48 0.49 0.46 0.42 0.42 0.36 0.53 0.64 0.57 0.58 0.63 0.67 0.61 0.59 0.75 0.85 0.92 0.96 0.97 — 0.94 0.88 0.84 0.84 0.77
CZ 0.38 0.23 0.42 0.43 0.38 0.40 0.35 0.35 0.33 0.31 0.42 0.57 0.53 0.53 0.59 0.57 0.58 0.53 0.70 0.80 0.92 0.93 0.95 0.95 — 0.91 0.95 0.93 0.90
WX 0.38 0.26 0.39 0.39 0.34 0.35 0.29 0.33 0.29 0.32 0.38 0.54 0.47 0.52 0.56 0.55 0.58 0.54 0.68 0.76 0.90 0.89 0.90 0.90 0.96 — 0.99 0.93 0.95
SZ 0.46 0.29 0.40 0.39 0.37 0.34 0.29 0.33 0.28 0.35 0.39 0.54 0.47 0.51 0.55 0.54 0.59 0.54 0.68 0.72 0.88 0.86 0.88 0.87 0.93 0.98 — 0.94 0.96
NT 0.29 0.27 0.36 0.34 0.32 0.30 0.23 0.27 0.19 0.29 0.34 0.49 0.44 0.46 0.51 0.48 0.54 0.49 0.60 0.66 0.84 0.83 0.87 0.85 0.92 0.93 0.94 — 0.95
SH 0.27 0.33 0.32 0.29 0.29 0.26 0.20 0.28 0.15 0.37 0.33 0.47 0.41 0.47 0.49 0.44 0.54 0.51 0.53 0.60 0.76 0.72 0.75 0.73 0.81 0.88 0.91 0.94 —
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Figure 5. Pearson correlation coefficients of PM2.5 and PM10 between cities over the YREB.
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3.2. Spatial Variability

The regional relationship of daily average PM2.5 and PM10 between all studied cities is investigated
using the Pearson correlation coefficient (r) analysis. The corresponding results are demonstrated in
Table 3, ranging from 0 to 0.3 (weak correlation), 0.3 to 0.7 (moderate correlation), and 0.7 to 1.0 (strong
correlation). The correlation coefficients are further compared in light of the distance between cities
(Figure 5). The city pairs located closer to each other present with better correlations. Given in bold in
Table 3, most city pairs in the downstream of the Yangtze River show strong correlations (distance
< 285 km), except Hefei with Wuxi, Suzhou, Nantong, and Shanghai (290 km < distance < 410 km).
Basically, cities in the downstream moderately correlate with those in the midstream (480 km < distance
< 980 km) while weakly correlating with those in the upstream (1050 km < distance < 2000 km).
The correlation coefficients for PM2.5 are generally lower as compared to PM10. It may be caused
by the following reasons, such as local primary emission sources and meteorological, geographic,
and geological conditions [40]. When the distance between cities exceeds 300 km, the r values of
PM2.5 and PM10 seldom outstrip 0.7, indicating that, besides abating the local emissions, collaborative
controls across administrative borders are needed for any urban areas.

3.3. Major Pollutant

Figure 6 shows the fractions of major pollutants for cities in the upstream (a), midstream (b),
and downstream (c) regions. One of the six criteria pollutants with the largest AQI as AQI > 50 is
defined as the major pollutant.

PM10 is the dominant pollutant affecting Kunming and Panzhihua, occupying more than half of
all pollutants, possibly caused more by the influence of local dust discharge. For other cities in the
upstream region, PM2.5 dominates over PM10 as the most significant air contaminant with a frequency
of 55–93%, followed by PM10 (2–16%) and NO2 (0–8%). SO2 rarely acts as the primary pollutant
except 1% for Panzhihua, and other gas species, including CO and O3, are never found as major
pollutants. PM2.5 is still the main pollutants in the midstream region, and PM10 is still the second-most
frequent pollutant for most cities, whereas NO2 is the second-most frequent pollutant for Changsha
and Wuhan. Curiously, NO2 pollution is relatively severe in the downstream region and appears
to be the most important pollutant for Shanghai (44%) and the second-most important pollutant for
Suzhou (35%), Wuxi (27%), Nanjing (19%), Nantong (18%), Changzhou (16%), Hefei (13%), and Wuhu
(8%). NO2 emissions mainly come from traffic vehicles, power stations, and industries with a huge
consumption of fuels—among which, motor vehicles account for the largest percentage. As shown in
Table 1, the expansion of vehicular counts is observed downstream. For example, the total number of
vehicles reached 3.6, 3.6, 2.6, 1.9, 1.8, and 1.2 million for Shanghai, Suzhou, Nanjing, Nantong, Wuxi,
and Changzhou, respectively. The rapid growth of traffic vehicles and the resulting exhaust emission
lead to a sharp increase of NOx and volatile organic compounds, which has a great impact on the air
quality. Since NO2 is the precursor of O3 and PM, the strict NOx emission control measures should be
modified in the near feature. In addition, due to the strong chemical activity and short lifetime of NO2,
its concentration is less affected by regional transport. Like the upstream region, no O3, CO, and SO2

pollutions are found in the midstream and downstream regions. In brief, air pollution in the YREB has
evident spatial variability, and proper collaborative control measures of PM and NOx should be taken
to effectively abate the air quality of different cities in the winter.
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Figure 7. Scatter plots between the air quality index (AQI) and (a) aggregate AQI (AAQI) and (b) health
risk-based AQI (HAQI). Whiskers box plots between the AQI and (c) AAQI–AQI, (d) HAQI–AQI,
(e) AAQI/AQI, and (f) HAQI/AQI. The top and bottom whiskers show the 95th and 5th percentiles,
the upper and lower boundaries of the central box indicate the 75th and 25th percentiles, the middle
line of the box indicates the median, and the pentacle indicates the arithmetic average.

3.4. Health Risks Assessment

Based on the daily average values of pollutants, three approaches, including the AQI, AAQI,
and HAQI indices, are calculated to characterize the health risks for individual cities.

In the case of AQI < 100 and AQI = HAQI, the air has no obvious impact on human health. Thus,
it is defined as a healthy day; otherwise, it is defined as an unhealthy day when AQI > 100. As shown
by the scattered plots with the comparisons of three calculated indices for all cities in Figure 7a,b,
both AAQI and HAQI values are greater than the corresponding AQI on unhealthy days, suggesting
that the AQI obtained based on the maximum concentrations of the six criteria pollutants seriously
underestimate the air pollution level, yet the AAQI and HAQI show higher health risks due to their
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combined consideration of the impact of multi-pollutants on health. Seen as a whole, the average
values of the three indices follow the order of AAQI (199) > HAQI (170) > AQI (148) when AQI > 100.
The correlation coefficients (r2) are 0.99 and 0.97 for AAQI vs. AQI and HAQI vs. AQI, and the slopes
of zero-crossing linear fitting are 1.31 and 1.17, respectively. Moreover, the data are divided into four
AQI-based health risk categories (101–150 light pollution, 151–200 moderate pollution, 201–300 serious
pollution, and > 300 very severe pollution). As shown in Figure 7c–f, on the light pollution and
moderate pollution days, both the estimated AAQI–AQI gaps and AAQI/AQI ratios are obviously
greater than the HAQI–AQI gaps and HAQI/AQI ratios. The averaged values are 49.9 vs. 9.4 (gap) and
1.4 vs. 1.1 (ratio) for light pollution and 52.0 vs. 33.1 (gap) and 1.3 vs. 1.2 (ratio) for moderate pollution.
However, the HAQI gaps and ratios become smartly higher than the AAQI on serious pollution days
(63.3 vs. 54.5 and 1.3 vs. 1.2) and very severe pollution days (123.7 vs. 66.6 and 1.4 vs. 1.2), suggesting
the AAQI approach likely under-reports the health risks on days when the AQI > 200.

Figure 8 depicts the number of days of five health risk categories on account of the AQI during
studied period (average of all cities). Each category is then reclassified according to distinct AAQI
and HAQI levels. For AQI-based healthy days (AQI < 100 and AQI = HAQI), 63% of days are light or
moderate pollution if based on the AAQI. For the AQI-based risk category of light pollution, 78% (8%)
and 5% (3%) of the days are moderate pollution and serious pollution if based on the AAQI (HAQI).
For AQI-based moderate pollution, the AAQI and HAQI classify 86% and 54% of days into serious
pollution, respectively. The AQI-based serious pollution days account for a few days, yet there is still
24% of very severe pollution days based on the AAQI, and the ratio is up to 39% based on the HAQI.
The results show that the counted days obtained by different approaches used to consider the health
risks are inconsistent. The AAQI and HAQI-based health risks in many cases are clearly greater than
what the government AQI propose, especially for the days when the AQI >100, indicating that the
impact of the actual air quality on human health is more serious.Int. J. Environ. Res. Public Health 2020, 17, x  14 of 18 
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Figure 8. Comparisons of AQI-classified health risk categories with the (a) AAQI and (b) HAQI
classifications (averaged data from 29 cities).

Figure 9 illustrates the spatial distribution of the mean AQI, AAQI, and HAQI values in the
wintertime. Air pollution appears to be more serious on the north bank of the Yangtze River. Based on
the AQI, among all cities, only 14 cities are under light pollution, and no city is found to be under
moderate pollution. While based on the HAQI, the number of cities with light pollution and moderate
pollution are 17 and 2, and the numbers are 15 and 13 based on the AAQI, respectively. The wintertime
air quality in most studied cities over the YREB is still not optimistic.
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4. Conclusions 

In this work, we utilized the hourly monitoring data of six criteria pollutants (PM2.5, PM10, SO2, 
CO, NO2, and O3) to discuss the air pollution characteristics and associated human health risks in 29 
typical cities over the YREB during December 2017–February 2018. From the spatial distribution of 
the PM, cities on the north bank of the middle and lower reaches were more polluted than those on 
the south bank of the upper reaches of the Yangtze River. The Pearson correlation coefficient of the 
PM seldom outstripped 0.7 if the distance between the city pairs was over 300 km. The PM2.5/PM10 
ratios highlighted that the contribution of secondary aerosols to the PM2.5 mass increased on episode 
days (PM2.5 > 75 µg/m3). Compared to CO and SO2, NO2 and O3 displayed more obvious intercity 
differences. High NO2 concentrations occurred in the Suzhou-Wuxi-Changzhou Metropolitan region 
and nearby areas due to the more local vehicular exhaust discharge. PM2.5, PM10, and NO2 were the 
three most frequent major pollutants in the wintertime. The AQI, AAQI, and HAQI approaches were 
further used to characterize the spatial distribution of the air pollution. The HAQI approach took into 
account the population and reflected the exposure–response relationship of air pollutants to human 
health, which can better assess the human health risks of air pollution. During the study period, 
approximately 50%, 70%, and 80% of people in the upstream, midstream, and downstream of the 
YREB were exposed to air pollution (HAQI >100). More efficient pollution control strategies should 
be adopted to improve the air quality and reduce health risks by further strengthening interregional 
cooperation. 
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To visually assess the proportion of humans exposed to air pollution, the cumulative population
distribution against the mean HAQI during wintertime is calculated, and the results are displayed
in Figure 10b. On average, the proportions of people exposed to air pollution in the YREB are
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approximately 63% (HAQI > 100). Different spatial scales have diverse cumulative distributions of
population weights based on individual HAQI values. Nearly 50% of people are faced with polluted air
for the upstream. By contrast, higher concentrations of PM and NOx in the midstream and downstream
pose higher risks of exposure to the local population; and the proportions of people exposed to air
pollution are 70% and 80% for the midstream and downstream, respectively. The discrepancy between
Figures 10a and 10b once more gives prominence to the advantage of the HAQI that can better reflect
the exposure–response relationships of air pollutants to human health. At present, more valid measures
should be taken to lighten the wintertime air pollution in the YREB.

4. Conclusions

In this work, we utilized the hourly monitoring data of six criteria pollutants (PM2.5, PM10, SO2,
CO, NO2, and O3) to discuss the air pollution characteristics and associated human health risks in
29 typical cities over the YREB during December 2017–February 2018. From the spatial distribution of
the PM, cities on the north bank of the middle and lower reaches were more polluted than those on
the south bank of the upper reaches of the Yangtze River. The Pearson correlation coefficient of the
PM seldom outstripped 0.7 if the distance between the city pairs was over 300 km. The PM2.5/PM10

ratios highlighted that the contribution of secondary aerosols to the PM2.5 mass increased on episode
days (PM2.5 > 75 µg/m3). Compared to CO and SO2, NO2 and O3 displayed more obvious intercity
differences. High NO2 concentrations occurred in the Suzhou-Wuxi-Changzhou Metropolitan region
and nearby areas due to the more local vehicular exhaust discharge. PM2.5, PM10, and NO2 were
the three most frequent major pollutants in the wintertime. The AQI, AAQI, and HAQI approaches
were further used to characterize the spatial distribution of the air pollution. The HAQI approach
took into account the population and reflected the exposure–response relationship of air pollutants
to human health, which can better assess the human health risks of air pollution. During the study
period, approximately 50%, 70%, and 80% of people in the upstream, midstream, and downstream
of the YREB were exposed to air pollution (HAQI >100). More efficient pollution control strategies
should be adopted to improve the air quality and reduce health risks by further strengthening
interregional cooperation.
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