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Abstract

The matrix (M) protein of vesicular stomatitis virus (VSV) has a complex role in infection and

immune evasion, particularly with respect to suppression of Type I interferon (IFN). Viral

strains bearing the wild-type (wt) M protein are able to suppress Type I IFN responses. We

recently reported that the 22–25 strain of VSV encodes a wt M protein, however its sister

plaque isolate, strain 22–20, carries a M[MD52G] mutation that perturbs the ability of the M

protein to block NFκB, but not M-mediated inhibition of host transcription. Therefore,

although NFκB is activated in 22–20 infected murine L929 cells infected, no IFN mRNA or

protein is produced. To investigate the impact of the M[D52G] mutation on immune evasion

by VSV, we used transcriptomic data from L929 cells infected with wt, 22–25, or 22–20 to

define parameters in a family of executable logical models with the aim of discovering direct

targets of viruses encoding a wt or mutant M protein. After several generations of pruning or

fixing hypothetical regulatory interactions, we identified specific predicted targets of each

strain. We predict that wt and 22–25 VSV both have direct inhibitory actions on key elements

of the NFκB signaling pathway, while 22–20 fails to inhibit this pathway.

1 Introduction

Viral infection is recognized in the cytoplasm of infected cells by pathogen-associated molecu-

lar pattern receptors such as retinoic acid inducible gene-I (RIG-I). This leads to activation of

transcription factors, including NFκB, IRF3, and IRF7, that induce antiviral cytokines such as

TNF-α, IL-6, and Type I interferons (IFNα and IFNβ) [1–3]. RIG-I-dependent activation of

IRF3 and consequent IFN gene expression has been well studied in VSV-infected cells [4–6].

However, VSV also induces NFκB-dependent expression of many other cytokines, whose acti-

vation and suppression have been less well examined.

Many viruses have evolved countermeasures that prevent the expression or function of the

host antiviral response [2]. Vesicular stomatitis virus (VSV), the prototypical member of the

Rhabdovirus family, has been widely studied as a model system to investigate the mechanisms
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by which viruses evade the host’s Type I interferon (IFNα and IFNβ) response. This is among

the first antiviral defenses activated in an infected cell, where IFN proteins are secreted outside

the cell and activate receptors on neighboring cells, triggering a signal transduction cascade

that results in the induction of many antiviral genes whose products limit viral replication [1,

3].

Mutant strains of VSV are often associated with defective immune evasion functions, limit-

ing their ability to infect cells with functioning IFN responses [7]. However, antiviral responses

induced by IFNα and IFNβ are perturbed in many cancers, leaving them susceptible to infec-

tion by “oncolytic” viruses such as VSV [8–10]—even mutant strains without immune evasion

mechanisms. Healthy normal cells are not harmed because they mount an antiviral response

which blocks virus replication, while cancer cells usually have critical defects in their antiviral

response pathways, rendering them susceptible to viral infection [11]. However, some cancers

are resistant to VSV because their IFN response pathways remain intact [12–16]. Understand-

ing these differences and the mechanisms by which VSV interacts with innate immunity is

therefore essential to its continued development as a potential oncolytic agent [13].

A hallmark of wild-type (wt) VSV infection is the suppression of Type I IFN responses

through one or more virus-encoded suppressors [17]. The most prominent of these is the

matrix (M) protein, which is crucial for shutoff of host transcription [18–20], inhibition of

nuclear-cytoplasmic transport of host RNAs [21–23], inhibition of host translation [24–27],

and is sufficient to suppress IFN gene expression in the absence of other viral components [19,

28]. There is also a strong correlation between a virus’s ability to inhibit host transcription and

its ability to suppress IFN expression [28]. Wt VSV rapidly inhibits host RNA and protein syn-

thesis and is a poor inducer of IFN [29]. In contrast, the mutant VSV strain T1026R1 (R1) [3]

contains a single amino acid mutation at position 51 of the M protein [M(M51R)] [19], which

abrogates its ability to inhibit host RNA and protein synthesis [30] and makes it a strong

inducer of IFN [31, 32].

Since VSV is sensitive to the effects of IFN, it is plausible that the virus might utilize multi-

ple mechanisms to evade the host’s antiviral response. We recently found that the wt M protein

alone was sufficient to inhibit virus-driven NFκB activation independently of infection, and

that this inhibition was abrogated by the M(M51R) mutation. We also identified a mutant M

protein–M(D52G)–in VSV isolate 22–20 and determined that this virus also activated NFκB

[33]. Its sister plaque isolate, 22–25, did not contain a mutation in this highly conserved region

of M and retained the ability to block NFκB activation [33]. IFN mRNA and protein were pro-

duced in L929 cells infected with viruses encoding the M(M51R) mutation, however little to

no IFN mRNA or protein was produced in wt, 22–25, or 22-20-infected L929 cells [34]. It is

thus likely that VSV M protein has multiple independent means of interfering with immune

activation by acting on distinct cellular targets.

Understanding general mechanisms by which VSV regulates NFκB-dependent innate

immune responses (IFN, apoptosis, autophagy) would be of great benefit for future identifica-

tion of potential pharmacological targets to overcome VSV resistance in cancer cells with func-

tioning IFN responses without permitting unwanted infection of healthy cells. In this work, we

assembled a computational model of the RIG-I/NFκB pathways involved in host defense

against VSV. This model was constrained to support transcriptomic data on the response of

murine L929 fibroblasts to infection by wt, 22–20, and 22–25 VSV. Simulations of the model

agreed on likely specific targets of different mutant strains of VSV, suggesting mechanistic

explanations for the differential ability of these strains to block Type I IFN responses in host

cells. Specifically, our simulations predict that wt and 22–25 VSV selectively inhibit NFκB-

dependent signaling via IKKβ, while the 22–20 VSV strain, which bears the mutant M(D52G)

protein, fails to inhibit this pathway.
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2 Materials and methods

2.1 Cells, viruses, and infections

Murine L929 fibroblast monolayers (ATCC CCL-1) were grown in complete media containing

Eagle’s Minimum Essential Medium (EMEM) supplemented with 10% Horse Serum (HS).

VSV field isolates 22–20 and 22–25 were generous gifts from Philip Marcus (University of

Connecticut) and have been previously described [32, 35]. The heat resistant (HR) strain of

the Indiana serotype of VSV was used as the wt virus [17]. All viruses were grown on either

baby hamster kidney cells or Vero cells as previously described [3, 36]. L929 cells were infected

with each virus at a multiplicity of infection (MOI) of 5 PFU/cell. Virus was adsorbed in

EMEM for 1 h at 37˚C in the absence of serum, after which complete medium was added.

2.2 RNA sequencing

Total RNA was isolated from infected L929 cells at 1 hour and 3 hours post infection (hpi)

using the TRIZol Plus RNA Isolation Kit (Life Technologies) according to the manufacturer’s

directions. To ensure that the highest quality RNA is used in this analysis, 4 biological repli-

cates of each condition were isolated. RNA was quantitated via nanodrop and bioanalyzer. Full

workflow integrated service (RNA-Seq through Data QC and Analysis) was provided by Pro-

teinCT Biotechnologies (Madison, WI). This workflow closely follows the pipeline outlined by

Pertea et. al. [37] with modifications. cDNA libraries were prepared using the Illumina TruSeq

strand specific mRNA sample preparation system (Illumina). Briefly, mRNA was extracted

from total RNA using polyA selection, followed by RNA fragmentation and cDNA synthesis.

The quality of the cDNA library was checked using the Agilent 4200 TapeStation. The libraries

were sequenced (Single end 100bp reads) using the Illumina HiSeq4000. Ten samples per lane

were run, with final counts reaching over 20 million reads per sample. The HISAT2 aligner

software was used to map the raw data from the Illumina reads that was provided by Pro-

teinCT to the GRCm38 genome (with annotations for snps and transcripts) [38]. SAMtools

[39] was then used to convert the SAM output files from HISAT2 into BAM files. These con-

verted files were subsequently compared to the Ensembl gene annotations (v90) GTF file using

Stringtie [40]. The Stringtie output (estimated counts) were then converted to raw counts to

use as input for differential expression analysis using R Bioconductor packages. PCA was per-

formed as implemented in base R [41], and visualizations used the ggplot2 package [42].

2.3 Model assembly

Regulatory interactions (edges) between known components of the RIG-I and NFκB signal trans-

duction pathways were identified by mining published scientific literature using the Pathway Stu-

dio platform (Elsevier Life Sciences, Amsterdam), which uses MedScan [43] natural language

processing engine to infer the direction and effect (activation or inhibition) of regulatory actions.

Each gene which showed significant dynamic variation over time or across viral infection by

ANOVA was included in the search query as a network entity. Interactions between entities were

limited to those with a documented mechanism of direct protein-protein interaction or modifica-

tion (represented in the knowledge graph as “direct regulation”, “protein modification”, or “pro-

moter binding” relations). The references supporting each interaction were validated by the

authors to ensure that they were accurately interpreted. Gene expression for each network entity

was expressed as a log2 fold change relative to the mock-infected cells. These fold changes were

converted to discrete values by clustering onto gamma distributions using an expectation-maxi-

mization algorithm [44] implemented in MatLab (MathWorks). The activation of each entity in

the network was constrained to the binary states of “active” (1) or “inactive” (0). Such binary logic
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has been successfully employed in studies of intracellular signaling [45, 46]. Dynamic behavior

was imparted to this regulatory circuit model using a logical formalism where the responses of

each node under different combinations of input values are assigned using a truth table look-up

of so-called K value entries [47, 48]. Other parameters calculated include the presence and effect

of hypothetical edges from different VSV strains, as well as the activation threshold above which

they exert their effects. Data from our own experiments (described above) were formulated as

constraints which predictions based on any given set of model parameters must satisfy. Adherence

to these constraints was expressed as a percentage of the maximum possible Manhattan distance

between the predicted output and the reference experimental data (0–100%), with lower percent-

ages representing closer adherence. Parameterization was conducted using a constraint satisfac-

tion-based optimization method implemented under our group’s BioModelChecker [49] suite of

tools for the reverse engineering of biological networks.

2.4 Edge fixation

Model parameterization was conducted over multiple generations to determine the likely inclu-

sion and polarity of the hypothetical connections between different VSV strains and each of the

host molecular entities in the network circuit. After each generation, candidate models supporting

the reference trajectories to within 5% departure were selected as described above. The adjusted

polarity (Padj) for each hypothetical edge was then calculated as Ep/S-En/S, where Ep = the number

of candidate models where the edge was included with positive polarity, En = the number of solu-

tions where the edge was included with negative polarity, and S = the total number of solutions.

Edges with |Padj|�0.5 had a consistent inclusion and polarity in the majority of candidate models,

and were therefore accepted into the circuit model and applied with their consensus polarity in

the next generation of parameterizations, whereas edges with |Padj|�0.05 were removed.

2.5 RT-PCR

L929 cells were challenged with 22–20 or 22–25 VSV at 5 for 6 hours. At the conclusion of this

period cells were lysed and RNA harvested as previously described [6]. Briefly, total RNA was

isolated from cells, reverse transcribed into cDNA, and the commercially available mouse Taq-

Man expression assay (Mm00437121, Applied Biosystems) was used for Real-Time PCR analy-

sis of TNFAIP3 mRNA production. Samples were run in triplicate and the HPRT endogenous

control Taqman Gene Expression Assay (Mm00446968) was used for relative quantification.

All calculations were done using the 2-ddCT method. Statistical comparisons were performed

on the log2 fold change by Student’s t test in R.

3 Results

3.1 Data processing and network assembly

Transcriptomic data was first filtered for significantly differentially expressed genes by a one-

way ANOVA searching for significant variation due to Virus (Mock-infected, 22–20, 22–25,

and WT) and/or hours post-infection (HPI) (q<0.05 after Benjamini-Hochberg adjustment).

A total of 4905 genes were found to be significantly affected by at least one of these variables.

PCA performed on the significantly variable genes was able to explain some 88% of the total

variance with the top 2 components. With respect to these 2 components, all 3 viruses strongly

diverge from the mock samples by 3 HPI, though the 22–20 virus did not appear to induce

substantial transcriptional activity by 1 HPI (Fig 1). The results of the PCA show substantial

differences in the transcriptional response of L929 cells to each VSV strain, demonstrating the

necessity for interrogation of the regulatory dynamics of these responses.
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Since these viral mutants all tended to significantly impact genes involved in immune

response pathways, we focused our network modeling efforts on the subset of differentially

regulated genes known to be members of RIG-I and NFκB pathways, which are highly influen-

tial in antiviral responses. Natural language processing of the peer-reviewed literature and

mining of curated pathway databases yielded a network model incorporating 37 molecular

entities involved in the RIG-I/NFκB signaling pathways governing Type I IFN responses (Fig

2). These entities were connected by 150 documented regulatory interactions (“edges”), sup-

ported by 8376 published references (median 18.5 per edge).

The mRNA expression of each network entity was expressed as the log2-transformed fold

change relative to mock-infected cells. These fold changes were discretized by projection onto

two gamma-distributions using expectation-maximization to compare the measured values

with the different expected distributions under assumptions of relative activation or inhibition,

resulting in values of 1 or 0 for each data point [44]. The median discrete value for each combi-

nation of virus strains and timepoints was then taken to represent the activation of each gene

under each experimental condition. Trajectories were modeled as proceeding from the

“mock” timepoint (State 1) with added virus through a 1h timepoint (State 2) before arriving

at the 3h post-infection state (State 3). Part of the solution output is a prediction of the inter-

vening events under unobserved experimental conditions. Input values were expressed in

binary form, with entities not confidently assigned to either the maximum or minimum cluster

value left unknown. Unknown values predicted for the 0h-timepoint in infected samples were

constrained to be equivalent to one another.

3.2 Parameterization

The identification of regulatory logic parameters for the pathway network from discretized

data was defined as a multi-objective optimization problem directed first to maximize

Fig 1. PCA showing gene expression relative to mock-infected cells for variable genes. Percentages are the fraction

of total variance explained by each principal component.

https://doi.org/10.1371/journal.pone.0263065.g001
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adherence to the input data and next to identify the most parsimonious models, i.e. the mini-

mum number of targets required for 22–20, 22–25, and wt VSV to elicit the observed

responses. We initially identified 145 candidate models adhering to the data to within 5%

error (minimum error of 1.9%). Overall, 99.3% of logical K values were variable and did not

display obvious clustering, suggesting a broad range of distinct competing regulatory kinetics

each capable of reproducing the 3 sequentially observed expression profiles. The median pair-

wise distance between K matrices was 9555 out of a maximum 26870, indicating meaningful

differences among the dynamic parameters (i.e. not limited to subtle changes without effect on

output).

The median output trajectories from these models (Fig 3) closely follow the reference exper-

imental data (Fig 4). For unobserved conditions, the predicted activation of network entities is

determined by the dynamic parameters and connectivity associated with each candidate

model. Thus, these models represent a family of mechanistic hypotheses consistent with the

available data.

3.3 Edge fixation

A summary of the edges connecting each viral mutant to the network entities. Some edges

have a high degree of both inclusion and consensus as to their effect. Using a simple majority

Fig 2. Network circuit architecture based on mechanistic interactions documented in published scientific literature. Green edges indicate

activation of their targets and red edges indicate inhibition.

https://doi.org/10.1371/journal.pone.0263065.g002
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voting scheme, edges with an adjusted polarity greater than or equal to 0.5 in the positive or

negative direction were said to be “fixed” with relative confidence, while edges with an

adjusted polarity less than or equal to 0.05 were considered here as unlikely to be necessary.

Hypothetical edges confidently assigned after one generation of edge fixation were 22-

20-TNFAIP3, 22-25-RELA, 22-25-TNFAIP3, and wt-TNFAIP3. The thresholds used for fixa-

tion are displayed in Fig 5.

After repeating parameterization with these additional constraints, we identified 41 distinct

models capable of reproducing the data with<5% departure. The process of edge fixation was

continued until succeeding generations failed to fix or remove any additional edges at the

established confidence thresholds. In all, eight generations of edge fixation were required.

After the conclusion of this process, all but 4 of the hypothetical candidate edges were fixed

with confidence, namely 22–20—NFKB1, 22–25—MAPK12, wt—ISG15, and wt—MAPK14

which remain indeterminate based on the available data. By the final generation of the model,

IKBKB, MAPK8, MAVS, and TMEM173 were not direct targets of any of the viral strains

under investigation. All three VSV strains were predicted to directly inhibit TNF and TRAF2,

and to directly activate TRADD.

22–25 and wt VSV were predicted to have matching direct effects not shared by 22–20 on 8

targets (ATG5, CHUK, IKBKE, IRF1, NFKB1, RELA, RIPK1, and TNFAIP3), while 22–20 and

wt had matching effects on 6 (APP, CXCL10, CYLD, FADD, IRF3, and MAPK9). 22–20 and

22–25 had matching effects on only 2 (MAPK14 and NFKB2).

Of note, 22–20 was the only virus to directly target IRF2, NFKBIA, and TRAF3, and 22–25

was the only virus to directly target DDX58, ISG15, S100B, and TBK1. There were no pre-

dicted targets unique to wt VSV.

Fig 3. Median output trajectories from all models which supported the available discretized reference trajectories to within

5% departure. Timepoints missing from the initial reference trajectories were predicted according to the logical parameters of each

candidate model.

https://doi.org/10.1371/journal.pone.0263065.g003
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To assess the accuracy of these novel predicted interactions, we additionally measured the

transcription of TNFAIP3 in L929 cells infected by 22–20 or 22–25 VSV via RT-PCR. While

both viruses significantly upregulated TNFAIP3 transcription as predicted by the model (Fig

6), there was slightly significant statistical evidence that the magnitude of this upregulation

was lower in cells infected by 22–25 (p<0.1)

4 Discussion

We constructed a mechanistic regulatory circuit model of the intracellular signaling pathways

governing Type I IFN response to VSV infection based on causal relationships between the

RIG-I and NFκB pathways documented in published scientific literature and experimental

observations. The model was used to simulate observed responses in L929 cells using a binary

(or “Boolean”) logical framework. The initial model contained hypothetical connections

between each VSV strain and every cellular entity in the network, such that each viral mutant

could directly target any immune network molecule. By constraining this binary network

model to support data obtained from in vitro experiments with different VSV strains, we iden-

tified a putative minimal set of targets necessary to reproduce the observed cellular response to

infection by each VSV strain. The sets of targets shared by each pair of viruses suggest that the

inability of 22–20 VSV to suppress host IFN production can be attributed to a failure to block

NFκB activation.

After iteratively fixing or removing hypothetical viral actions based on the degree of con-

sensus among candidate models best supporting the reference data, all but 4 of the initial 111

Fig 4. Reference trajectories for parameterization showing the median discretized value for each gene in the network circuit.

State 1 represents the 0h timepoint, state 2 is 1 hour post infection, and state 3 is 3 hours post infection. Individual observations

(dots) are connected by lines where multiple timepoints were measured. Blank spaces represent observations which either were not

present in the experiment or could not be assigned to a discrete value with sufficient confidence to warrant inclusion as a

constraint.

https://doi.org/10.1371/journal.pone.0263065.g004

PLOS ONE Predicting targets of VSV matrix protein

PLOS ONE | https://doi.org/10.1371/journal.pone.0263065 February 2, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0263065.g004
https://doi.org/10.1371/journal.pone.0263065


Fig 5. Assignment of candidate edges after one generation of model parameterization. Edges with adjusted polarity�0.5 or

�-0.5 (black dashed lines) were fixed with their consensus polarity for subsequent model generations; edges with adjusted polarity

between -0.05 and 0.05 (red dashed lines) were removed. This process was continued in an iterative fashion until candidate models

converged on consensus values for edge inclusion and polarity (Table 1).

https://doi.org/10.1371/journal.pone.0263065.g005
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could be confidently assigned. While different thresholds for edge fixation or removal could

alter the outcome of this process, the applied criterion of agreement over a majority of models

ensures that the final model is consistent with the best-performing candidate parameter sets.

The mathematical problem posed is, by its nature, under-constrained, and the final hypotheti-

cal connectivity suggested by these models should be taken first as a suite of testable hypothe-

ses in future experiments. It is also important to note that the host protein entities represented

in the network circuit (Fig 2) are subject to other regulatory signals in addition to the viral

Fig 6. Differential regulation of TNFAIP3 by 22–20 and 22–25 VSV. The log2 fold change relative to uninfected

(Mock) cells is displayed. TNFAIP3 mRNA is significantly upregulated by both 22–20 and 22–25 relative to Mock

(p<0.05), and the magnitude of upregulation is greater in 22–20 (p<0.1).

https://doi.org/10.1371/journal.pone.0263065.g006
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effects predicted by our modeling. For example, 22–25 VSV is predicted to exert an inhibitory

effect on MAP3K1; however, MAP3K1 also receives activating signals from TRAF2 and

TRAF6. These activating signals may counteract or overcome the inhibitory action of 22–25

VSV, such that it is possible for MAP3K1 activation to increase over time even during 22–25

VSV infection (Fig 3). The final set of predicted actions in Table 1 must be understood within

the broader regulatory context of the network circuit in Fig 2.

There are striking similarities between the predicted actions of wt with 22–25. The targets

for wt and 22–25 are functionally similar, with close connections to NFκB-dependent signal-

ing. Predicted targets for 22–20, however, involve both NFκB and IRF family members. Wt

VSV is known to have complex mechanisms of immune evasion, mainly dependent on the M

protein [6, 9, 50]. The D52G mutation in the M protein of the 22–20 strain appears to have

perturbed its ability to block NFκB activation in L929 cells. Thus, 22–20 VSV, unlike the wt

and 22–25 strains, cannot rely on NFκB inhibition for immune evasion, and instead inhibits

Table 1. Predicted targets for each VSV with polarity and inclusion fixed after 8 generations of parameterization.

Target wt 22–25 22–20

IRF2 negative

NFKBIA negative

TRAF3 negative

DDX58 negative

ISG15 negative

TBK1 negative

CASP8 negative positive

IKBKG negative positive

S100B positive

MAPK14 positive positive

NFKB2 positive positive

FADD negative negative

IRF3 negative negative

IKBKE negative negative

RELA negative negative

RIPK1 negative negative

TNF negative negative negative

TRAF2 negative negative negative

TNFAIP3 negative negative positive

CXCL10 negative positive negative

IRF7 positive negative

MAPK12 positive negative

MYD88 positive negative

APP positive positive

CYLD positive positive

MAPK9 positive positive

MAP3K1 positive negative

TRAF6 positive negative

ATG5 positive positive

CHUK positive positive

NFKB1 positive positive

IRF1 positive positive negative

TRADD positive positive positive

https://doi.org/10.1371/journal.pone.0263065.t001
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host IFN production via an independent suppressor function [34]. These predictions can be

partially validated by comparison with existing descriptions of VSV targets. VSV bearing a

non-functional M protein has been shown to be a strong activator of TNFAIP3 [51], though

wild-type VSV was not a subject of the experiment. Our model independently corroborates

this result, and extends it to suggest that the property of TNFAIP3 activation may be specific

to VSV strains bearing inactivating mutations in the M protein. The strain-specific regulatory

interactions predicted by the computational modeling procedure are corroborated by the con-

firmatory RT-PCR we performed to measure TNFAIP3 transcription in infected cells. While

both 22–20 and 22–25 strains upregulated TNFAIP3 relative to uninfected cells, resulting in

their converging to similar values on a binary scale, we observed greater upregulation by 22–

20 VSV, consistent with the differential regulation of TNFAIP3 by these strains predicted by

our model.

While wt VSV has been observed to activate targets in addition to TBK1 [52], our model

does not require both wt-M-bearing strains of VSV to interact with TBK1 directly. Since inhi-

bition of IKKβ has been found to exacerbate inflammatory symptoms in sepsis [53], it is plau-

sible that VSV strains bearing mutant M protein might favor early activation of NFκB-

dependent signaling in infected cells. Conversely, the wt and 22–25 strains were predicted to

activate MyD88, a critical component of IL-1R and TLR signaling pathways. In the context of

TLR4, preferential engagement of MyD88-dependent signaling pathways appears to act in

opposition to the TRIF-dependent pathway which governs IFN responses [54, 55]. A similar

effect may manifest itself in the context of RIG-I/NFκB responses to VSV infection: by activat-

ing MyD88 but not IKK, wt VSV may direct the host inflammatory response away from early

production of antiviral mediators. Pharmacological suppression of ADAM15, an inhibitor of

TRIF activity and consequent IFN production, has been observed to increase inflammation in

response to VSV infection in vitro [56]. The VSV-resistant PC-3 cell line showed reduced

matrix metalloprotease activity and metastasis upon ADAM15 suppression (54), suggesting

that this modulation of the inflammatory response by VSV may also hold true in cancer cells.

In this study, we report novel predictions of potential causal mechanisms governing the

dynamics of immune evasion by VSV. Based on RNA-Seq data and known regulatory interac-

tions between components of the RIG-I and NFκB signaling pathways, we used constraint sat-

isfaction programming to infer likely targets of direct molecular interactions by wt, 22–20, and

22–25 strains of VSV. Our simulations predict that VSV strains bearing the wt and M[D52G]

forms of the M protein differentially regulate host inflammatory responses, in particular

NFκB- and IRF-dependent signaling. These predictions would have been very time-consum-

ing and costly to obtain by traditional experimental means: our constraint satisfaction

approach has enabled us to leverage minimal observations to generate testable mechanistic

hypotheses. In future work, we aim to extend this model by increasing its resolution beyond

binary logic and testing these predicted interactions in vitro.
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