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Abstract

Cathepsins are the major lysosomal proteases that maintain intracellular homeostasis.

Herein, we investigated the alterations in myocardial cathepsin expression during aging,

cardiac hypertrophy, and sudden cardiac death (SCD). Cardiac tissue and blood were sam-

pled from autopsy cases. Subjects were classified into three groups: SCD with cardiac

hypertrophy (SCH), compensated cardiac hypertrophy (CCH), and control. Immunoblotting

was performed for the major cardiac cathepsins and their targets: cathepsin B, D, and L

(CTSB/D/L), p62, ATP synthase subunit c (ATPSC), and α-synuclein (ASNC). Immunohis-

tochemical analysis and ELISA using serum samples were performed for CTSD. Cardiac

CTSB and CTSD were upregulated with age (r = 0.63 and 0.60, respectively), whereas the

levels of CTSL, p62, ATPSC, and ASNC remained unchanged. In age-matched groups, car-

diac CTSD was significantly downregulated in SCH (p = 0.006) and CTSL was moderately

downregulated in CCH (p = 0.021); however, p62, ATPSC, and ASNC were not upregulated

in cardiac hypertrophy. Immunohistochemistry also revealed decreased myocardial CTSD

levels in SCH, and serum CTSD levels were relatively lower in SCH cases. Overall, these

results suggest that upregulation of cardiac CTSB and CTSD with age may compensate for

the elevated proteolytic demand, and that downregulation of CTSD is potentially linked to

SCH.

Introduction

The lysosome is a single-membrane cytoplasmic organelle with an acidic pH of approximately

4.0–5.0 and contains over 50 hydrolases [1]. Lysosomal proteolysis is essential for maintaining

intracellular homeostasis, and cathepsins (CTSs) are the primary lysosomal proteases. CTSs

are categorized into three types on the basis of the amino acid residues in their active site: ser-

ine CTSs (CTSA/G), cysteine CTSs (CTSB/C/F/H/K/L/O/S/V/W/X), and aspartic CTSs

(CTSD/E) [2]. Alterations in CTS expression have been reported primarily in neurodegenera-

tive diseases: CTSB and CTSD are upregulated in the brain during aging [3], Parkinson’s dis-

ease [4], and Alzheimer’s disease [5,6]. In contrast, cardiac CTS levels in heart failure (HF)

display phase-dependent changes; CTSD is upregulated in the subacute phase after myocardial

infarction and is downregulated in the chronic phase [7,8] and in the final stage of dilated
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cardiomyopathy [9]. Serum CTS levels are reportedly useful predictors of the prognosis of

myocardial infarction [10–12]. However, alterations in cardiac CTS levels during aging and

sudden cardiac death (SCD) are yet unclear.

SCD is defined as an unexpected death without any obvious noncardiac cause, occurring

within 1 h of symptom onset (witnessed), or within 24 h of being in normal health (unwit-

nessed) [13–15]. Despite the overall decline in cardiovascular mortality over the last decade,

SCD is a persistent issue [16–18], and recent data suggest that the incidence of SCD is approxi-

mately 70 to 100 per 100,000 individuals per year in developed countries [17,19]. As SCD is

the major cause of natural sudden death, its antemortem prevention and postmortem diagno-

sis are socially important. Most SCD victims do not have heart disease or some have heart dis-

ease without severe systolic dysfunction [20,21]. However, retrospective studies including

autopsies have reported that numerous SCD cases have coronary atherosclerosis and left ven-

tricular hypertrophy [22,23]. Therefore, it is generally accepted that the primary direct cause of

SCD is malignant ventricular arrhythmias based on the structural and electrical remodeling

secondary to coronary artery disease and pressure overload [24,25]. Studies are required to

elucidate myocardial molecular changes that contribute to pathological remodeling. Here, we

hypothesized that impaired lysosomal proteolytic function contributes to pathological remod-

eling prior to SCD. We investigated the alterations in myocardial CTS expression during

aging, cardiac hypertrophy, and SCD. In particular, we focused on CTSB, CTSD, and CTSL,

which are abundantly expressed in the human heart, and on their target proteins, namely p62,

which is the major autophagic substrate and accumulates under lysosomal dysfunction [26],

ATP synthase subunit c (ATPSC), which accumulates upon CTSD impairment [27], and α-

synuclein (ASNC), which is degraded by CTSB and CTSL [28, 29].

Materials and methods

Subjects

SCD was defined as unexpected death without obvious noncardiac causes occurring within 24

h of being in normal health [14,22]. Because cardiac hypertrophy is an established risk factor

for SCD [25, 30], subjects were placed into three groups according to the cardiac size, namely

SCD with cardiac hypertrophy (SCH), compensated cardiac hypertrophy (CCH), and control.

Cardiac hypertrophy was defined as hypertrophy with a ratio of heart weight to body height

>2.5 g/cm [31]. SCH cases consisted of ischemic HF, hypertensive HF, and aortic stenosis.

None of the patients in this study had hypertrophic cardiomyopathy. CCH and control cases

did not exhibit severe coronary atherosclerosis or HF symptoms and died of noncardiac

causes. The clinical characteristics of the subjects are summarized in Table 1 and S1 Table. All

the bodies were moved to a 4˚C refrigerator within 24 h of death, and autopsy was performed

within a week.

Sampling

Approximately 1-cm-thick transverse sections of the heart (located 2–3 cm under the atrioven-

tricular sulcus) were sampled at autopsy. About 1 cm3 myocardia was dissected from the mid-

dle layer of the left lateral ventricular wall, which does not include trabecula or epicardial

adipose tissue, and immediately immersed in liquid nitrogen and stored at -80˚C until protein

isolation. Other cardiac tissues were fixed in 10% formalin for histological examination. Subse-

quently, samples for microscopy were obtained from the left ventricular anterior, lateral, and

posterior walls, the septum, and the right ventricular wall. Histological examination was per-

formed by a skilled pathologist in a blinded manner. Blood samples were obtained from the

left ventricular chamber. This study was approved by the Ethics Committee of Tokai
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University and informed consent was obtained from the bereaved relatives of the subjects. The

study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki.

Western blotting

Approximately 100 μg of frozen cardiac sample was homogenized in 500 μL of RIPA buffer

(Wako, Japan), and the supernatant was harvested after centrifugation at 15,000 rpm for 10 min.

Protein concentration was determined using the BCA Protein Assay (Thermo Fisher Scientific,

USA). Western blotting was performed for CTSB, CTSD, CTSL, p62, and ASNC using capillary

immunoblotting with the Wes system (Protein Simple, Japan) in accordance with the manufac-

ture’s protocol. Briefly, 5 μL of 1 μg/μL protein sample was applied to a 12–230 kDa Wes Separa-

tion Module, and probed with the first antibody for 1 h, which was followed by probing with the

secondary antibody for 30 min. Western blotting for ATPSC was performed manually: 10 μL of

a 0.02 μg/μL protein sample was applied to a 4%–12% Bis-Tris Plus gel (Invitrogen Waltham,

USA), and electrophoresis was carried out in NuPAGE™ MES SDS Running Buffer (Thermo

Fisher Scientific) for 18 min at 200 V. The electrophoresed proteins were transferred to the

membrane using Trans-Blot Turbo Transfer System (Bio-Rad) at 25 V and 2.5 A for 1 h. The

membrane was probed with the primary antibody overnight at 10˚C, and then with the second-

ary antibody for 1 h at room temperature. After application of Immobilon Western HRP Sub-

strate (Merck, USA), signal intensity was measured with a CCD camera. The antibodies used in

this study and their dilutions were as follows: anti-CTSB at 1:500 (AF953, Novus Biologicals,

USA), anti-CTSD at 1:50 (AF1014, Novus Biologicals), anti-CTSL at 1:200 (AF952, Novus Bio-

logicals), anti-p62 at 1:50 (GP62-C, Progen, Germany), anti-ATPS at 1:5000 (ab181243, Abcam,

UK), and anti-ANSC at 1:100 (10842–1, Proteintech, Japan). Anti-GAPDH (G9545, Sigma,

Japan) was used for the internal control at a dilution of 1:500 for capillary immunoblotting and

1:5000 for manual immunoblotting. Anti-rabbit HRP-linked antibody (NA9340, GE Healthcare

Life Sciences, Japan) was used at a dilution of 1:5000 for manual immunoblotting.

Immunohistochemistry

The transverse section of the heart was stained with hematoxylin and eosin and examined

under a microscope. For immunostaining of CSTD, antigen retrieval was carried out by heat-

ing in Target Retrieval Solution, pH 9.0 (Dako, USA) at 120˚C for 10 min. Blocking was car-

ried out with Protein Block, Serum-Free (Dako) at room temperature for 10 min. The

specimens were immunostained with anti-CTSD antibody (1:100; Novus Biologicals) at 4˚C

Table 1. Characteristics of the cases.

SCH (n = 11) CCH (n = 10) Cont (n = 17)

Cause of Death Ischemic HF (6), Hypertensive HF (4), Aortic stenosis (1) Accident (9), Noncardiac disease (1) Accident (14), Noncardiac disease (3)

Age 62.0 ± 16.0 (41–85) 58.5 ± 18.0 (31–86) 50.2 ± 20.9 (17–88)

Sex (m/f) 9/2 8/2 12/5

Postmortem interval (days) 2.4 ± 1.5 3.0 ± 0.9 3.4 ± 1.8

BMI (kg/m2) 27.1 ± 8.2� 24.7 ± 2.9� 20.6 ± 2.8

Heart weight 553 ± 202�� 486 ± 43�� 314 ± 64

Coronary atherosclerosis Severe (Ischemic HF) None–Little (Others) None–Mild None–Mild

SCH, sudden cardiac death with cardiac hypertrophy; CCH, compensated cardiac hypertrophy; HF, heart failure; BMI, body mass index; Coronary atherosclerosis is

categorized according to the most serious occlusion at cross section: severe > 90%, high > 75%, mild > 50%, little > 25%, none� 25%.

� p < 0.05

�� p < 0.001, compared with Cont. Individual characteristics are detailed in S1 Table.

https://doi.org/10.1371/journal.pone.0230375.t001
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overnight, and then with the secondary antibody at room temperature for 1 h. DAB and hema-

toxylin dye were used for staining.

Serum CTSD assay

The level of CTSD in the serum was quantified using the Cathepsin D Human ELISA kit

(Abcam) in accordance with the manufacture’s protocol. The subjects who had brain damage

were excluded because CTSD is highly expressed in the brain. The serum CTSD levels were

compared between age-matched groups.

Statistical analysis

Quantitative data were imported into Excel 2010 (Microsoft, USA) and presented as

means ± standard deviation values. The correlation between the CTS level and age was

assessed by determining the correlation coefficient (r). A regression analysis was performed,

and the coefficient of determination (R2) was calculated according to the least squares method.

Multiple comparisons were made using the Steel–Dwass test in Excel Statistics 2015 (SSRI,

Tokyo, Japan). Differences with p values<0.05 were considered statistically significant.

Results

Expression levels of cardiac CTSs and their substrates during aging

In subjects with noncardiac cause of death, cardiac CTSB and CTSD were upregulated and dis-

played a moderate correlation with aging (r = 0.628 and 0.601 respectively, Fig 1A and 1B);

however, cardiac CTSL levels were not significantly correlated with aging (r = 0.229, Fig 1C).

Among the substrate proteins, the levels of p62, one of the primary substrates in lysosomal

autophagy [26], were slightly, but not significantly, increased (r = 0.321, Fig 1D). Furthermore,

ATPSC, the primary substrate of CTSD [27], and ANSC, a common substrate for CTSB and

CTSL [29], were not upregulated upon cardiac aging (r = 0.227 and 0.153 respectively, Fig 1E

and 1F). Thus, none of these CTS substrates were observed to accumulate in the heart with

age. The original uncropped images of the immunoblots are presented in S1–S6 Figs.

Expression levels of cardiac CTSs and their substrates in SCD

Among the age-matched groups, cardiac CTSB levels remained largely unchanged (Fig 2A);

however, cardiac CTSD was significantly downregulated in SCH (p = 0.006) and slightly

downregulated in CCH (Fig 2B). Moreover, CTSL was moderately downregulated in CCH

(Fig 2C, p = 0.021). Among the CTS substrates, p62 levels remained unchanged in cardiac

hypertrophy (Fig 2D), whereas cardiac ATPSC and ASNC were moderately downregulated in

SCH (Fig 2E and 2F, p = 0.048 and p = 0.039, respectively). The uncropped images of the

immunoblots are presented in S1–S6 Figs.

Cardiac histopathology with CTSD

In the cases of SCD with ischemic HF, cardiomyocytes showed eosinophilic waviness, contrac-

tion band necrosis, and slight neutrophil infiltration, which represent the acute phase of myo-

cardial infarction (Fig 3A). Moreover, cardiomyocyte hypertrophy with nuclear enlargement

was equal in SCH and CCH, and was accompanied by a slight increase in interstitial fibrosis

(Fig 3B). The hearts of control individuals displayed a normal cardiomyocyte array; however,

some elderly subjects showed moderate interstitial fibrosis (Fig 3C).

CTSD accumulation was observed as a cytoplasmic granular deposit in cardiomyocytes, specifi-

cally around the perinuclear area (Fig 3D–3F). Although this distribution pattern was independent
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of cardiac pathology, CTSD density was decreased in SCH and increased in older individuals. No

marked CTSD accumulation was observed in vascular endothelial cells or fibroblasts.

Alterations in serum CTSD levels

No significant changes were observed in serum CTSD levels with age (r = 0.309, Fig 4A). Also,

no significant changes were observed in serum CTSD levels in SCH, CCH, and control sub-

jects (Fig 4B).

Discussion

Changes in the expression of cardiac CTSs with aging

The present results show that cardiac CTSB and CTSD were stably upregulated with age,

whereas CTSL levels remained unchanged. Heterogeneous alterations in the levels of CTSs

indicate that the expression of lysosomal CTSs is regulated differently with cardiac aging.

Fig 1. Alterations in the expression levels of cardiac cathepsins and their substrates with age. Relative expression levels of cardiac cathepsin B (CTSB, a), cathepsin D

(CTSD, b), cathepsin L (CTSL, c), p62 (d), ATP synthase subunit c (ATPSC, e), and α-synuclein (ASNC, f) in cases of noncardiac death are shown with representative

images of immunoblots. n = 27 in each graph. The uncropped images of the immunoblots are presented in S1–S6 Figs.

https://doi.org/10.1371/journal.pone.0230375.g001
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Numerous studies have reported that brain CTSD activity is increased up to 2-fold in aged

rats compared to that in young adults [3, 32, 33] and that CTSD protein level is increased up to

10-fold in the rat brain [34, 35]. The discrepancy in the levels and enzymatic activity of CTSD

indicates the accumulation of inactive CTSD with aging. Therefore, our results probably show

the levels of both the active and inactive forms of CTSD. Similarly, in the human brain, CTSD

levels and activity are reported to increase up to 2-fold with age; therefore, the enzymatic activ-

ity mostly correlates with the CTSD expression levels [6,36]. No changes in the levels of CTSD

substrates observed in the present study indicate that the lysosomal proteolytic activity is gen-

erally maintained in the aged human heart. This is in agreement with previous reports,

wherein it has been shown that autophagosome clearance is preserved in human cardiac aging

[37,38]. Thus, the age-dependent upregulation of cardiac CTSD might be able to cater to the

proteolytic demand during aging.

Fig 2. Alterations in the expression levels of cardiac cathepsins and their substrates in sudden cardiac death. Relative expression levels of cardiac cathepsin B

(CTSB, a), cathepsin D (CTSD, b), cathepsin L (CTSL, c), p62 (d), ATP synthase subunit c (ATPSC, e), and α-synuclein (ASNC, f) in sudden cardiac death with cardiac

hypertrophy (SCH, n = 11), compensated cardiac hypertrophy (CCH, n = 10), and control (n = 13) groups. All groups are age-matched. � p< 0.05; �� p< 0.01. The

uncropped images of the immunoblots are presented in S1–S6 Figs.

https://doi.org/10.1371/journal.pone.0230375.g002
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Cardiac CTSs in cardiac hypertrophy and SCD

In this study, CTSB and CTSL were found to be downregulated in cardiac hypertrophy, poten-

tially implying slightly limited myocardial proteolytic activity. However, the levels of their

substrate proteins, including ATPSC and ASNC, remained unchanged or were relatively downre-

gulated. This suggests that the downregulation of CTS can be balanced, to some extent, by the

downregulation of redundant proteins during hypertrophic growth of cardiomyocytes. Cardiac

hypertrophic remodeling may be divided into two types based on clinical findings: physiological

remodeling in CCH and pathological remodeling in SCH. Cardiac immunoblotting results

Fig 3. Expression pattern of cardiac cathepsin D. Representative microscopic images; (a-c) hematoxylin and eosin staining (d-f) cathepsin D (CTSD) immunostaining.

Expression levels (a, d) at 45 years in sudden cardiac death with cardiac hypertrophy (SCH) patient with ischemic heart failure, (b, e) at 31 years in compensated cardiac

hypertrophy (CCH) subject with accidental death, (c, f) at 71 years in the control case with accidental death. Bar = 20 μm.

https://doi.org/10.1371/journal.pone.0230375.g003

Fig 4. Serum cathepsin D levels. (a) Serum CTSD levels at different ages. (b) Comparison of serum CTSD levels among SCH, CCH, and control groups.

https://doi.org/10.1371/journal.pone.0230375.g004
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obtained in the present study indicate that advanced downregulation of CTSD is potentially asso-

ciated with pathological remodeling.

Oxidative stress results in cytosolic release of lysosomal CTSD [39], and some clinical stud-

ies have reported that circulating CTSD levels are elevated after myocardial infarction until 6

months later [11,40]. Hence, we analyzed serum CTSD levels to determine whether myocardial

CTSD is downregulated in SCH by assessing the CTSD leakage into the blood. Consequently,

serum CTSD levels in SCH were observed to be relatively lower in our study, and we assume

that myocardial CTSD leakage is not the primary cause of myocardial CTSD reduction in

SCH. These results are in agreement with those of previous studies showing that low serum

CTSD levels predict an unfavorable prognosis after myocardial infarction, including in-hospi-

tal mortality and cardiac dysfunction [10,11].

CTSD degrades various substrate proteins. Thus, alterations in CTSD expression levels and

activity are potential physiological adaptations or lethal pathologies depending on the situa-

tion. Because CTSD has high sequence homology with renin, it potentially displays renin-like

activity [41,42]. Therefore, the elevation of circulating CTSD after myocardial infarction

potentially contributes to angiotensin formation and an increase in blood pressure [40]. How-

ever, CTSD yields a cleaved 16-kDa form of prolactin, which has antiangiogenic and proapop-

totic properties, and contributes to postpartum cardiomyopathy [43]. In contrast, CTSD-

deficient (CTSD-/-) mice develop normally for 2 weeks after birth but die with intestinal necro-

sis, thromboembolism, and lymphopenia within 4 weeks [44]. Although the heart of CTSD-/-

mice shows restrictive cardiomyopathy along with myocardial ATPSC and LC3-II deposits, its

ejection fraction is maintained [8, 27, 45]. Moreover, CTSD heterozygous mice (CTSD+/-),

which do not present with cardiac dysfunction under normal conditions, display impaired

autophagic flux and exacerbated cardiac function after myocardial infarction [8].

Overall, this study shows that CTSD downregulation in the human heart can potentially

contribute to not only HF but also SCD through myocardial and electrical remodeling. How-

ever, as we analyzed autoptic samples with various postmortem interval, some postmortem

degradation may have confounded the immunoblotting results. With such a practical limita-

tion, our results do not indicate the target protein of CTSD crucial for lethal arrhythmogenesis.

Therefore, further studies are required to focus on cardiac hypertrophy and SCD, to decipher

the precise role of myocardial CTSD in SCH.

Supporting information

S1 Table. Characteristics of individual subjects.

(PDF)

S1 Fig. Capillary immunoblotting of cardiac CTSB and GAPDH. Exposure was set automat-

ically with the Wes system. Con13, Con8, CCH4, Con6, Con4, CCH3, and CCH7 were as rep-

resented in Fig 1A.

(PDF)

S2 Fig. Capillary immunoblotting of cardiac CTSD and GAPDH. Exposure was set auto-

matically with the Wes system. Con13, Con8, CCH4, Con6, Con4, CCH3, and CCH7 were as

represented in Fig 1B.

(PDF)

S3 Fig. Capillary immunoblotting of cardiac CTSL and GAPDH. Exposure was set automat-

ically with the Wes system. Con13, Con8, CCH4, Con6, Con4, CCH3, and CCH7 were as rep-

resented in Fig 1C.

(PDF)
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S4 Fig. Capillary immunoblotting of cardiac p62 and GAPDH. Exposure was set automati-

cally with the Wes system. Con13, Con8, CCH4, Con6, Con4, CCH3, and CCH7 were as rep-

resented in Fig 1D.

(PDF)

S5 Fig. Immunoblotting of cardiac ATPSC and GAPDH. The membrane was cut at around

25 kDa and independently stained with the primary antibody. Exposure time was set at 30 s

for ATPSC detection, and 10 s for GAPDH detection. Dashed lines indicate cropped immuno-

blots presented in Fig 1E.

(PDF)

S6 Fig. Capillary immunoblotting of cardiac ASNC and GAPDH. Exposure was set auto-

matically with the Wes system. Con13, Con8, CCH4, Con6, Con4, CCH3, and CCH7 were as

represented in Fig 1F.

(PDF)
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9. Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, et al. Myocytes die by multiple mechanisms

in failing human hearts. Circ Res. 2003; 92:715–724. https://doi.org/10.1161/01.RES.0000067471.

95890.5C PMID: 12649263

10. Kundi H, Balun A, Cicekcioglu H, Cetin M, Kiziltunc E, Topcuoglu C, et al. Admission value of serum

cathepsin d level can be useful for predicting in-hospital mortality in patients with NSTEMI. Acta Cardiol

Sin. 2017; 33:393–400. https://doi.org/10.6515/ACS20170129A PMID: 29033510

11. Yamac AH, Sevgili E, Kucukbuzcu S, Nasifov M, Ismailoglu Z, Kilic E, et al. Role of cathepsin D activa-

tion in major adverse cardiovascular events and new-onset heart failure after STEMI. Herz. 2015;

40:912–920. https://doi.org/10.1007/s00059-015-4311-6 PMID: 25911051
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