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All B Cells Contribute Equally to Islet
Growth and Maintenance

1,2,3
d

1,23

Kristen Brennan , Danwei Huangfu''*3, Doug Melton%>"

1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America, 2 Harvard Stem Cell Institute, Harvard University,
Cambridge, Massachusetts, United States of America, 3 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, United States of America

In healthy adult mice, the p cell population is not maintained by stem cells but instead by the replication of
differentiated p cells. It is not known, however, whether all B cells contribute equally to growth and maintenance, as it
may be that some cells replicate while others do not. Understanding precisely which cells are responsible for § cell
replication will inform attempts to expand p cells in vitro, a potential source for cell replacement therapy to treat
diabetes. Two experiments were performed to address this issue. First, the level of fluorescence generated by a pulse
of histone 2B-green fluorescent protein (H2BGFP) expression was followed over time to determine how this marker is
diluted with cell division; a uniform loss of label across the entire p cell population was observed. Second, clonal
analysis of dividing p cells was completed; all clones were of comparable size. These results support the conclusion that
the B cell pool is homogeneous with respect to replicative capacity and suggest that all p cells are candidates for in
vitro expansion. Given similar observations in the hepatocyte population, we speculate that for tissues lacking an adult
stem cell, they are replenished equally by replication of all differentiated cells.
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Introduction

Stem cells are defined by an ability to self-renew and
differentiate into a variety of cell types. Some adult organs,
including the intestine, skin, blood, and parts of the brain, are
maintained by stem cells [1-5]. In cases where the differ-
entiated cells are postmitotic, such as erythrocytes and
olfactory neurons, tissue turnover depends entirely on stem
cell differentiation.

To explain the mechanism of B cell maintenance and
regenerative repair, it has been hypothesized that renewal
occurs via an adult stem cell residing in the pancreatic ducts
[6], acini [7], islets [8,9], spleen [10], or bone marrow [11]. In
contrast, Dor et al. found that pre-existing P cells, rather than
stem cells, are the major source of new P cells in healthy and
pancreatectomized mice [12]. Furthermore, the forced cell
cycle arrest of B cells severely restricts postnatal B cell mass
[13], indicating that non- cells (such as putative adult stem
cells) cannot maintain B cell mass. Together, these results
demonstrate that B cell mass is predominately, if not
exclusively, sustained through the replication of B cells.

It remains unclear whether all B cells contribute equally to
growth and maintenance. Two possible models might explain
the expansion of B cells. The B cell population may be
heterogeneous, comprised of both highly replicative cells and
very slowly dividing, possibly postmitotic, cells. This would be
consistent with the hypothesis that a subpopulation of
insulin-expressing cells may maintain the entire pool,
perhaps as unipotent adult stem cells [14] or by reversible
dedifferentiation to a replicative state [15]. Alternately, the
cell population may be homogeneous, with all B cells
contributing equally to growth.

Two approaches were used to address this issue (Figure 1).
First, a broad survey of the replicative potential of the entire
B cell pool was performed by monitoring the dilution or
disappearance of a fluorescent marker accompanying cell
division. B cells were pulse labeled with a tetracycline-
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inducible histone 2B-green fluorescent protein (H2BGFP)
[16] and, following a chase period, the level of fluorescence
detectable within B cells was measured. Second, the clonal
descendents of individual B cells were examined using a
reporter system developed for mosaic analysis with double
markers (MADM) [17]. Both assays are designed to assess
whether B cells are a heterogeneous population. If § cells are
heterogeneous, highly replicative B cells will lose the H2BGFP
label quickly as they replicate and generate large clones, while
slowly dividing B cells will retain the H2BGFP label and
generate small clones. Alternately, if B cells are a homogenous
population, all B cells would be expected to lose the H2BGFP
label at similar rates, and all clones should be of comparable
size. We observed uniform loss of the H2BGFP label with
time, and detected only similarly sized clones in the chase
population. The tetracycline-inducible H2BGFP and MADM
systems are complementary approaches, both supporting the
conclusion that all B cells contribute equally to § cell growth
and maintenance.
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Author Summary

The B cells of the pancreas are responsible for insulin production
and their destruction results in type | diabetes. B cell maintenance,
growth, and regenerative repair is thought to occur predominately,
if not exclusively, through the replication of existing B cells, not via
an adult stem cell. It was previously unknown, however, whether all
B cells divide at the same rate, or if multiple subpopulations of 3
cells exist, some highly replicative and others very slowly dividing,
possibly postmitotic. We performed two types of experiments to
determine whether all 8 cells are alike: label-retaining analysis and
clonal analysis. Our results indicate that all 8 cells contribute equally
to islet growth and maintenance.

Results
H2BGFP Is Diluted with Cell Division In Vitro

Tumbar et al. engineered transgenic mice expressing
H2BGFP from a tetracycline-responsive promoter (tetracy-
cline-inducible promoter [tetO]-H2BGFP) to mark cells and
assess their rates of division [16]. To verify that H2BGFP is
diluted with cell division and distributed equally between
daughter cells, we characterized the tetO-H2BGFP system in
vitro. Rosa26 and CAGGs (constitutive promoters containing
the CMV enhancer and the chicken B-actin promoter) are
commonly used in mouse embryonic fibroblasts (mEFs) and
mouse embryonic stem (mES) cells. We used these promoters
to drive expression of the reverse tetracycline transactivator
(rtTA) in the presence of doxycycline. Rosa26-rtTA; tetO-
H2BGFP mEFs and CAGGs-1tTA; tetO-H2BGFP mES cells
express H2BGFP within 12 h of doxycycline application
(Figure 2A and 2C). Doxycycline was removed from the
media, and the progressive dilution of H2BGFP protein
resulting from cell division was measured by fluorescence-
activated cell sorter (FACS; Figure 2B and data not shown). A
uniform loss of label was observed and the median GFP
intensity of GFP-positive cells decreased with time. Given that
mEFs divide every 24 h (unpublished data), and that H2BGFP
fluorescence can no longer be detected after 5 d, H2BGFP
fluorescence is no longer detectable above background in
vitro by FACS after a population has undergone approx-
imately five cell divisions (Figure 2B). The standard deviation
of fluorescent intensity within the labeled pulse population is
too large to precisely measure the number of cell divisions
within the chase population.

To verify that H2BGFP is segregated equally between
daughter cells, CAGGs-rtTA: tetO-H2BGFP mES cells were
cultured on the stage of a confocal microscope and imaged
every 12 min. After the first division, total GFP fluorescence in
the two daughter cells, measured as integrated pixel inten-
sity, added up to the fluorescence of the original cell, and
H2BGFP was split equally between daughter cells in
the first and second divisions (Figure 2D). In both dividing
and nondividing cells, minimal bleaching was observed,
despite imaging every 12 min over 18 h (Figure 2D and
unpublished data). Detection of H2BGFP fluorescence is
dependent on the laser settings used. In this case, H2BGFP
fluorescence was no longer detectable after three rounds
of cell replication, though lower laser intensities were used
than typically employed for fixed tissue sections.
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B Cells Contribute Equally to Growth

Model 1. Heterogeneous.
Ahighly replicative subpopulation of B-cells
is responsible for growth and maintenance.

Model 2. Homogeneous.
All B-cells are alike and contribute equally to
growth and maintenance.
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Figure 1. Two Possible Models for the Growth and Maintenance of
Pancreatic B Cells Are Predicted, Given the Lack of an External Stem Cell
Pool

Two approaches were used to study replication of § cells. Pulse-chase
analysis follows the loss of the H2BGFP label (green) with B cell division,
while clonal analysis follows the generation of (yellow) clones from
individual B cells. Model 1: the B cell population is heterogeneous,
composed of fast- and slow-dividing subpopulations. This model
predicts that highly replicative B cells will lose the H2BGFP label quickly
and generate large clones, while slowly dividing B cells will fail to dilute
the H2BGFP label and generate small clones. Model 2: the B cell
population is homogeneous, and all B cells divide at the same rate. This
model predicts that all B cells will lose the H2BGFP label uniformly, and
that all clones identified through clonal analysis will be of comparable
size.

doi:10.1371/journal.pbio.0050163.g001

H2BGFP Incorporation Is Replication Independent

Because P cells divide slowly, and some may be postmitotic,
it was important to determine whether all cells, regardless of
replicative activity, can be labeled by the inducible H2BGFP
system. We found that H2BGFP labeling occurs independent
of cell division in cultured Rosa26-rtTA; tetO-H2BGFP mEFs
(Figure S1). Cells treated with mitomycin C are irreversibly
arrested in S phase, but still express H2BGFP, which
incorporates into the nucleus within 12 h of the admin-
istration of doxycycline. Furthermore, cells reversibly ar-
rested with either aphidicolin (Gy/G; block) or nocadozole
(Go/M block) express H2BGFP upon treatment with doxycy-
cline. At 3 h after release from nocadozole, cells develop
labeled mitotic spindles, indicating that the H2BGFP has
been integrated into chromatin and not just added to a
nuclear histone pool (unpublished data).

In Postmitotic Cell Populations, H2BGFP Is Stable for at
Least Six Months

The Rosa26 locus is active in most cells of the mouse [18],
suggesting that in the presence of doxycycline, Rosa26-rtTA
should drive tetO-H2BGFP expression and label most mouse
cells. Rosa26-rtTA; tetO-H2BGFP labeled diverse cell types,
including but not limited to pancreas, intestine, fat, bone
marrow, muscle, skin, and retina (Figures 3, 4, and unpub-
lished data), but not cortical neurons, olfactory bulb, or
spinal cord, possibly due to the inability of doxycycline to
cross the blood-brain barrier (unpublished data). Under
repressive conditions (without doxycycline), no expression
was observed in these organs (n = 4; Figures 3 and 4).

The stability of H2BGFP can be most easily assessed in
postmitotic cells, where any loss of fluorescence with time can
only be explained by degradation of the H2BGFP protein.
Mammalian photoreceptor cells are postmitotic and are not
replaced over the lifespan of the animal; they are identified
by their position within the outer nuclear layer of the retina
and by expression of the calcium-binding protein recoverin
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Figure 2. In Vitro Characterization of Dilution of Tetracycline-Inducible H2BGFP with Cell Division

(A) Fluorescent images of Rosa26-rtTA; tetO-H2BGFP mEFs pulsed with doxycycline and cultured in the absence of doxycycline. Original magnification,
100X.

(B) FACS plots of Rosa26-rtTA; tetO-H2BGFP mEFs pulsed with doxycycline and cultured in the absence of doxycycline. Median intensity of GFP-positive
cells versus days cultured without doxycycline shown in graph.

(C) Fluorescent images of CAGGs-rtTA; tetO-H2BGFP mES cells pulsed with doxycycline and cultured in the absence of doxycycline. Original
magnification, 100X.

(D) Time-lapse confocal images of a single CAGGs-rtTA; tetO-H2BGFP mES cell undergoing two rounds of cell division. Integrated pixel intensity shown
in white text; total integrated pixel intensity of all cells shown in yellow text. Original magnification, 400X.

doi:10.1371/journal.pbio.0050163.9g002
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Figure 3. Experimental Schematic for Use of Tetracycline-Inducible H2BGFP To Identify LRCs In Vivo
(A) Schematic for Rosa26-rtTA; tetO-H2BGFP and Pdx1-tTA; tetO-H2BGFP expression.

(B) Doxycycline-dependent expression of Rosa26-rtTA; tetO-H2BGFP and Pdx1
in red. Up to 80% of B cells are labeled following the pulse period; no B cell

(C) Timeline for Rosa26-rtTA; tetO-H2BGFP and Pdx1-tTA; tetO-H2BGFP pulse—

doi:10.1371/journal.pbio.0050163.g003

[19]. Photoreceptor cells can be labeled by Rosa26-rtTA;
tetO-H2BGFP (Figure 4A). Following a chase of 6 mo (Figure
3C), H2BGFP was detected in whole eyes and sectioned
retinas at the same imaging settings used to collect pulse data.
Staining with recoverin verified that label retention is
restricted to the photoreceptor layer of the retina (Figure
4A). Thus, the H2BGFP label is stable and retained in
postmitotic cells. It is formally possible that the H2BGFP
protein has a shorter half-life in pancreatic B cells than in
postmitotic photoreceptor cells.

LRCs Can Be Identified in Known Stem Cell Populations
Using H2BGFP

As a further validation that the tetO-H2BGFP system can
identify heterogeneity in cell populations, we confirmed that
we could detect nonuniform loss of H2BGFP in tissues where
slow-cycling cells are known to exist. Stem cells are often
proliferatively quiescent compared with neighboring transit-
amplifying cells. Because of their slow-dividing nature, stem
cells tend to remain labeled in experiments that use DNA
synthesis labels such as tritiated thymidine or bromodeox-
yuridine. Label-retaining cells (LRCs) in Rosa26-rtTA; tetO-
H2BGFP mice are clearly visible in the hair follicle bulge cells
after a 2 mo chase, as previously shown by Tumbar et al. [16]
(Figure 4B). Furthermore, GFP-positive intestinal crypt cells
can be identified up to 1 mo following the pulse, though the
vast majority of the labeled cells in chase intestines seem to be
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-tTA; tetO-H2BGFP expression in the pancreas. Insulin expression is shown

s are labeled in the absence of pulse. Original magnification, 400X.
chase experiments.

slowly dividing mesenchymal cells and intestinal neurons
(Figure 4B). Finally, Lin'*"kit'sca® sorted hematopoietic stem
cells within the bone marrow also retain GFP fluorescence to
a much greater extent than whole bone marrow (unpublished
data). Because pulse-chase experiments using tetO-H2BGFP
can identify tissue heterogeneity in the form of slowly
dividing stem cell populations, it should also be able to
identify a subpopulation of slowly dividing B cells, should it
exist.

No LRCs Are Detected in the B Cell Population

To determine whether all B cells divide at the same rate, we
used the tetO-H2BGFP strategy in combination with pro-
moters that express either tetracycline transactivator (tTA) or
rtTA within the pancreas. Pdx1 expression in the postnatal
pancreas is enriched in B cells, where it regulates insulin
expression [20]. In tetO-H2BGFP animals, expression of tTA
from the native Pdx1 locus (Pdx1-tTA) should label B cells in
the absence of doxycycline, while the transgenic rat insulin
promoter (RIP)-rtTA should label B cells in the presence of
doxycycline. However, RIP-rtTA, but not Pdx1-tTA, labeled B
cells even in unpulsed animals (unpublished data and Figure
3B), indicating that the RIP-rtTA transgene system is leaky.
Therefore, Pdx1-tTA is the only B cell-specific driver suitable
for these experiments. It should be noted that Pdx1-tTA
animals are haploinsufficient;
inactivated Pdx1 allele can be maintained in the heterozygous

however, mice with one
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Figure 4. Identification of LRCs in Postmitotic Cells and Stem Cell Populations Indicates Stability of H2BGFP Fluorescence

(A) LRCs detected in the postmitotic photoreceptor cells of the retina after expression of Rosa26-rtTA; tetO-H2BGFP from EO-E6 wk. Top row: H2BGFP
fluorescence in the eye persists at least 6 mo following initial pulse. Original magnification, 20X. Bottom row: label retention in the retina is restricted to
postmitotic photoreceptor cells, labeled in red with anti-recoverin. Original magnification, 400X. All images are exposure matched.

(B) LRCs detected in the adult skin and intestine after expression of Rosa26-rtTA; tetO-H2BGFP from EO-E6 wk. In the skin, bulge stem cells are labeled
with an arrow. In the intestine, a putative crypt cell is marked with an arrow. White arrowheads mark smooth muscle, and yellow arrowheads label
enteric neurons. Images are exposure matched. Original magnification: skin, 630X; intestine, 400X.

doi:10.1371/journal.pbio.0050163.9g004

state and have normal pancreatic development and B cell
maintenance, though they show modestly impaired glucose
tolerance [20].

Pulsing Pdx1-tTA; tetO-H2BGFP animals for 6 wk after
birth labeled 80% of B cells (Figure 3B). In addition to
labeling B cells, some labeled nuclei occurred outside the P
cell pool (Figure S2). Somatostatin and pancreatic polypep-
tide-expressing cells were frequently labeled in Pdx1-tTA;
tetO-H2BGFP animals, consistent with the fact that Pdx1 was
originally cloned from somatostatin-producing islet cell lines
[21,22], and that Pdx1 expression can be detected in these
cells [23]. Rare glucagon cells were labeled, while exocrine
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cells (amylase-positive) were consistently weakly labeled, and
no H2BGFP expression was observed in the ducts (CKI19-
positive; Figure S2). These observations are also consistent
with the findings of Oster et al., who observed rare Pdxl-
immunoreactive nuclei in all pancreatic cell types [23].

The entire B cell pool was assayed for LRCs. A group of 38
Pdx1-tTA; tetO-H2BGFP animals (19 female, 19 male) were
pulsed from birth until 6 wk of age by ceasing doxycycline
administration at postpartum day 0 (P0O; Figure 3C). Six of
these animals (three male, three female) were euthanized
following a 6-wk postnatal pulse. All animals collected in the
pulse group showed 80% of B cells labeled with H2BGFP;
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Figure 5. Uniform Loss of Label in Adult B Cells Following Pulse-Chase with Pdx1-tTA; tetO-H2BGFP and Rosa26-rtTA; tetO-H2BGFP Mice
(A) Label retention present in the adult pancreas (insulin expression shown in red) following a chase period of up to 6 mo. Exposure-matched images.

Original magnification, 400X.

(B) Whole islets of Rosa26-rtTA; tetO-H2BGFP pulse—chase animals prior to dissociation and FACS. Exposure-matched images. Original magnification,

100X.

(C) FACS plots of dissociated islets of Rosa26-rtTA; tetO-H2BGFP pulse—chase animals. Median intensity of GFP-positive cells versus length of chase

shown in graph.
doi:10.1371/journal.pbio.0050163.g005

labeling was consistent throughout the pancreas and between
animals (n = 6). The remaining mice were again administered
doxycycline water to repress transcription of H2BGFP, and
were euthanized after chase periods of 1 wk (n=4), 2 wk (n=
4), 1 mo (n =16), 2 mo (n=16), 3 mo (n=06), and 6 mo (n = 6).
Sections of the pancreati were stained with insulin to identify
B cells. We observed a uniform loss of label in f cells with time
(Figure 5A).

To confirm this finding, the experiment was repeated with
Rosa26-rtTA; tetO-H2BGFP animals. A group of 40 animals
(18 female, 22 male) were pulsed from conception until 6 wk
of age by administration of doxycycline water. Eight animals
(four male, four female) were euthanized at 6 wk of age. Pulse

iE). PLos Biology | www.plosbiology.org
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expression in these mice was more variable between animals
than for Pdx1-tTA; tetO-H2BGFP mice, so all experiments
were performed on sibling cohorts. The remaining mice were
removed from doxycycline and were euthanized after chase
periods of 1 wk (n=4), 2wk (n=4),1 mo (n=6),2mo (n=6), 3
mo (n = 6), and 6 mo (n = 6). Sections of the pancreati were
stained with insulin to identify B cells. Again, we observed
uniform loss of label in B cells with time (Figure 5A).

To measure the relative intensity of GFP-positive cells, we
used FACS analysis of dissociated islet cells. For these
experiments, littermates were pulsed for at least 6 wk, and
chases were structured so that all animals could be euthanized
and analyzed by FACS on the same day. Importantly,
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(A) Schematic for the RIP-CreER; Rosa26°%/Rosa26~® pulse—chase experiments.
(B) RIP-CreER; Rosa26°F/Rosa26"C mice were pulsed with a tamoxifen injection between 4-8 wk of age. Shown here are sections of typical B cell clones
(green) within 4 d of the pulse and after 1 and 2 mo of chase. B cells are identified by insulin staining (red). Original magnification, 400X.

doi:10.1371/journal.pbio.0050163.g006

comparisons of animals pulsed for 6 or 14 wk showed no
significant increase in the median intensity of the GFP-
positive population (unpublished data). By analyzing all
timepoints in parallel, we were able to compare the relative
GFP intensity between the pulse and chase populations. This
experiment was repeated four times using Rosa26-rtTA; tetO-
H2BGFP mice and twice using Pdx1-tTA; tetO-H2BGFP mice;
the results were consistent each time. Exposure-matched
photographs of whole islets taken prior to dissociation
(Figure 5B) and FACS plots of dissociated islets (Figure 5C)
indicate that the median intensity of the GFP fluorescence
within the B cell pool decreases with time. No outlying
population of LRCs in the B cell pool can be identified.

Hepatocytes, like B cells, are an endodermal cell type, and
are thought to be maintained by self-replication [24]. It is
unknown, however, whether all hepatocytes contribute
equally to growth and maintenance. We examined livers
from Rosa26-rtTA; tetO-H2BGFP pulse-chase animals and
observed a uniform loss of label with time (Figure S3). Similar
to the results with B cells, no outlying population of LRCs in
the hepatocyte pool was identified.

Clonal Analysis Demonstrates that B Cells Contribute
Equally to Pancreas Expansion

To directly compare the replication capacity of individual
B cells, a lineage-based clonal analysis in the pancreas was
performed. RIP-CreER transgenic mice [12] drove expression
of tamoxifen-dependent Cre recombinase specifically in
cells, while the MADM reporter system [17] was used to label
individual B cells. The MADM system is a unique tool that
allows low-frequency labeling of cells, a prerequisite for
clonal analysis (Figure 6A). It contains two alleles at the
Rosa26 locus, Rosa26°% and Rosa26RG, each containing
reciprocal parts of chimeric marker genes (GFP and RFP)
interrupted by a loxP site. Neither allele generates an active
fluorescent protein until Cre-mediated interchromosomal
recombination restores functional expression of GFP and
RFP. Cells are labeled differently depending on when
recombination occurs during the cell cycle. Recombination

iE). PLos Biology | www.plosbiology.org

at Gy or G; results in double-colored cells (expressing both
GFP and RFP). Alternately, recombination at Gy results in two
outcomes at equal frequency: either one red and one green
daughter cell (single-colored cells), or one colorless and one
double-colored daughter cell.

As expected, no labeling was observed in RIP-CreER;
Rosa26“%/R0sa268¢ mice in the absence of tamoxifen. We
injected tamoxifen over 3 d into 23 RIP-CreER; Rosa26°%/
Rosa26R¢ mice between 4 and 8 wk of age. Two animals were
euthanized within 4 d of tamoxifen injection (the pulse
group), and we found that 0.1%-0.5% of B cells were labeled.
All clones observed were insulin positive, and 90% were
single-cell clones (the remainder were composed of two cells).

In pulse and chase animals, all labeled cells expressed both
GFP and RFP (RFP expression required antibody staining for
detection; Figure S4A). The existence of only double-colored
clones indicates that recombination occurred during G; or
Gy, which is expected for a slow-dividing cell population that
spends little time in G,. Conversely, in experiments
performed using Pdx1-Cre; Rosa26°®/Rosa26R¢ mice, where
Cre recombinase was expressed in the rapidly dividing
embryonic pancreas, single-colored clones were detected
occasionally (Figure S4B). These observations are consistent
with those of Zong et al. [17], who found that single-colored
cells are a minority, though their proportion to double-
colored cells increases when Cre recombinase is expressed in
a rapidly dividing population. Given that all B cell clones are
double-colored, all clones are shown only in green to allow
for ease of presentation, and insulin staining is shown in red.

For the purpose of this experiment, clones are defined as
clusters of labeled cells within a single islet; all cells within a
clone are assumed to be derived from a single B cell.
Tamoxifen-treated mice were euthanized 1 mo (n =12) or 2
mo (n = 9) following the pulse. A total of 175 clones from 1-
mo chase animals and 122 clones from 2-mo chase animals
were sampled using single random sections, and no large
clones were detected. The absence of large clones qualita-
tively suggests an absence of fast-dividing B cells. To estimate
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the expansion of B cells, we analyzed serial sections. After 1
mo of chase, the average size of a clone was 5.1 = 5.4 cells (n=
45 clones), whereas after 2 mo of chase, the average size of a
clone was 8.2 £ 6.9 cells (n = 40 clones). In addition, the
experiment was repeated using CAGGs-CreER; Rosa26°%/
Rosa26R¢ mice, and again, no large P cell clones were
detected (unpublished data). Labeled cells found within a
single islet are of clonal origin: the probability that three or
more labeled cells found within the same islet are not clonal
is 1.8 X 1072 (based on Poisson distribution analysis assuming
labeling frequency of 0.1% and islet size of 500-1,000 cells).
This clonal analysis supports the model that the growth and
maintenance of B cell mass in the adult pancreas is achieved
by the replication of individual B cells that have similar
replicative capacities.

Discussion

Our experiments were designed to address the mechanism
of growth and maintenance of mature B cells. To determine
whether all B cells divide at the same rate in the adult mouse,
two experiments were undertaken. The tetracycline-inducible
H2BGFP and MADM systems are complementary approaches:
whereas tetO-H2BGFP labels most B cells and provides a
broad view of the population dynamic, MADM labels single
cells and provides an accurate clonal analysis of the progeny
of individual cells within the B cell pool. Both the uniform
loss of the H2BGFP label with time in the B cell population
and the comparable B cell clone sizes generated through
MADM analysis indicate homogeneity exists within the f cell
pool. Stated otherwise, all B cells appear to contribute equally
to growth and maintenance.

The B cell mass is dynamic and can respond to environ-
mental cues such insulin and glucose [25]. The  cell number
increases dramatically in the first year of rodent life [12,26],
up to 10-fold in cases of insulin resistance [27], and up to 1.5-
fold during pregnancy [28,29]. Recent experiments suggest
that when not hindered by persistent autoimmune attack or
the toxicity of high blood glucose levels [30], B cells have the
capacity to regenerate. While the mechanism regulating f cell
expansion remains unclear, our findings indicate that all
cells are capable of replication and are therefore viable
targets for in vitro or in vivo expansion.

Seaberg et al. recently reported that single-cell clones
derived from adult islets generated colonies of 2,000-10,000
cells that expressed markers of neural, glial, pancreatic
endocrine, exocrine, and duct identities [31]. These clones
were generated from ~0.02% of islet cells, though their
identity and relationship to in vivo growth is yet to be
determined. We cannot rule out the possibility that a rare
type of B cell was missed in our examination of individual
clones using the MADM marking experiments. However,
because the rate of clonal expansion is sufficient to account
for the growth of the P cell population during the chase
period, a rare highly proliferative B cell did not contribute
significantly to the expansion of § cell mass.

Published rates for B cell replication in adult mice (12 wk
old) are highly variable, from 2% [32] to 15% per day [33].
Assuming 5% of B cells replicate per day, and that all B cells
are equivalent, B cells should divide approximately every 20 d.
This would dilute the H2BGFP label beyond detection (by
completing up to five rounds of replication) within 100 d. In
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addition, clone size at 2 mo should be approximately eight
cells. These straightforward calculations predict results that
are entirely consistent with our findings. These estimates, of
course, assume no P cell death over the duration of our
experiments.

B cells have a finite lifespan, but the absolute B cell death
rate is unknown. Based on B cell mass measurements and an
estimate of B cell proliferation of 2% per day throughout
adulthood, Finegood et al. calculated the B cell lifespan to be
52 d [32]. Recent findings demonstrate that B cell prolifer-
ation rates decline to less than 0.1% in 1-y-old mice [33],
casting doubt on the often quoted rates for B cell turnover in
mice. Furthermore, TUNEL analysis of wild-type B cells
consistently fail to identify apoptotic cells [13,27,33,34].
Regardless of the true rate of B cell turnover, our findings
of a uniform loss of label and a consistent clone size indicate
that all B cells have equivalent replicative capacity.

Pancreatic B cells are not the only differentiated cell type
capable of growth and maintenance without the support of
an adult stem cell population. Hepatocytes are highly
replicative and not thought to be supported by a facultative
stem cell under normal conditions [35]. Pulse-chase analysis
with the tetracycline-inducible H2ZBGFP label shows that all
hepatocytes lose their label at the same rate. Therefore, like
the B cell population, the hepatocyte population seems to be
homogeneous. We do not know of an example of a mature
differentiated cell type that has two populations (one
replicative and the other not). We speculate that when tissues
are without an adult stem cell, they are replenished by equal
replication of all differentiated cells.

The demonstration that all B cells are equivalent, contri-
buting equally to the growth and maintenance of the  cell
population, has clinical implications if we assume that
rodents and man use the same mechanism for pancreatic
homeostasis. The destruction of B cells that causes type I
diabetes has been counteracted by the transplantation of B
cells. The clinical impact of this approach is currently limited,
in part, by the scarcity of available pancreatic tissue [36]. A
better understanding of adult B cell replication may help
attempts to expand pancreatic B cells in vitro as a source of
transplant material to treat diabetes.

Materials and Methods

Mice. Pdx1-tTA, Rosa26-rtTA, tetO-H2BGFP, and MADM mice
were generously provided by Ray MacDonald (University of Texas
Southwestern Medical Center, Dallas, Texas, United States), Rudolf

Jaenisch (Massachusetts Institute of Technology, Cambridge, Massa-

chusetts, United States), Elaine Fuchs (Howard Hughes Medical
Institute and Rockefeller University, New York, New York, United
States), and Liqun Luo (Howard Hughes Medical Institute and
Stanford University, Stanford, California, United States), respectively.
Mice were maintained at a barrier facility in the Department of
Molecular and Cellular Biology at Harvard University under animal
protocol 93-15. Pdx1-tTA, Rosa26-rtTA, and tetO-H2BGFP mice
were backcrossed to >95% C57BLI6 inbred background; RIP-CreER
and MADM mice were maintained on a mixed background.

Greater variation of H2BGFP expression was observed in Rosa26-
rtTA; tetO-H2BGFP animals than with the other drivers; experiments
were conducted on littermates to reduce variability. Notably, the
highest-expressing animals were often runted, indicating that either
Rosa26-rtTA activity or H2ZBGFP expression in some cell types is
harmful. Breeding to a C57BL/6 inbred background reduced
variability to some extent.

Genotyping. Genotyping was performed by adding a tail biopsy to
100 pl DirectPCR (ViaGen, http://www.viagen.com) with 30 pg
proteinase K (Roche, http://www.roche.com), incubating overnight at
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55 °C and denaturing proteinase K for 20 min at 95 °C. PCR primers
specific to tTA (forward 5'-ctggtcgagetggacggegacgta aac-3', reverse
5'-atgtgatcgegettctegtigggg-3'), Rosa26-rtTA (A 5'-aaagtcgctctgagtigt-
TAt-3', B 5'-gcgaagagtttgtcctcaacc-3', C b'-ggagegggagaaatggatatg-3"),
GFP (forward b5'-ctggtcgagctggacggegacgtaaac-3', reverse b5'-atgt-
gatcgegettetegttgggg-3'), Cre (forward b'-tgccacgaccaagtgacage-3',
reverse b'-ccaggttacggatatagttcatg-3'), MADM wild-type (forward 5'-
ctetgetgecteetggettet-3', reverse 5'-cgaggeggatcacaagcaata-3'), and
MADM knockin alleles (forward 5'-ctctgetgectectggettet-3', reverse
5'-tcaatgggegggggtcegtt-3') amplified 600 bp, 300 bp, 600 bp, 600 bp,
330 bp, and 250 bp fragments, respectively. PCR conditions: 95 °C for
5 min, then 35 cycles of 95 °C for 30 sec, 55 °C for 30 sec, 72 °C for 60
sec, and finally 72 °C for 5 min.

Doxycycline and tamoxifen. Doxycycline (Sigma, http:/lwww.
sigmaaldrich.com) was added to drinking water at 1 mg/ml and
sweetened with sucrose (1%). Water bottles were changed weekly with
freshly prepared solution. Tamoxifen (Sigma) was dissolved in corn
oil at 20 mg/ml and mice were injected intraperitoneally (6 or 8 mg/d
for 3 consecutive days).

Immunohistochemistry. Tissue was dissected from mice, fixed in
4% paraformaldehyde/PBS solution for two hours at 4 °C, washed in
PBS, incubated in 30% sucrose/PBS solution overnight, embedded in
OCT (Tissue-Tek; Electron Microscopy Sciences, http:/lwww.
emsdiasum.com) and stored at —80 °C. Frozen samples were sectioned
at 10 um for staining or up to 50 um for serial analysis. The following
primary antibodies and dilutions were used: guinea pig anti-Pdx1
antibody (kindly provided by C. Wright, Vanderbilt University,
Nashville, Tennessee, United States), 1:1000; guinea pig anti-swine
insulin (DakoCytomation, http://www.dako.com), 1:200; guinea pig
anti-glucagon antibody (Linco, http://lwww.linco.com), 1:200; rabbit
anti-human pancreatic polypeptide (DakoCytomation) 1:200; rabbit
anti-human somatostatin (DakoCytomation), 1:200; rabbit anti-
amylase (Sigma), 1:200; rabbit anti-CK19 (Developmental Studies
Hybridoma Bank, http://dshb.biology.uiowa.edu), 1:1,000; rabbit anti-
GFP (Molecular Probes, http://probes.invitrogen.com),1:200; rabbit
anti-DsRed (Clontech, http:/lwww.clontech.com), 1:100; and rabbit
anti-recoverin (Chemicon, http://www.chemicon.com), 1:2,000. Secon-
dary antibodies donkey rhodamine RedX anti-guinea pig (Jackson
ImmunoResearch, http://www.jacksonimmuno.com), donkey rhod-
amine RedX anti-rabbit (Jackson ImmunoResearch), and donkey
rhodamine RedX anti-goat (Jackson ImmunoResearch) were used at
1:200 dilution. To visualize nuclei, slides were stained with 0.5 pg/ml
DAPI and then mounted with VectaShield Mounting Medium (Vector
Laboratories, http:/lwww.vectorlabs.com). Triple-labeled GFP/rhod-
amine/DAPI images were acquired using a Zeiss LSM510 Meta
confocal microscope (http:/lwww.zeiss.com).

Islet dissociation and FACS. The pancreas was perfused through
the bile duct with 5 ml digestion solution (low-glucose DMEM [Gibco,
http:/lwww.invitrogen.com] with 10 mM HEPES [Gibco], 0.25 mg/ml
liberase RI [Roche], and 0.1 mg/ml ovalbumin trypsin inhibitor
[Roche]), dissected and incubated at 37 °C for 20 min. Cold washing
solution (low-glucose DMEM with 10 mM HEPES, 10% FBS [Hyclone,
www.hyclone.com], and 0.1 mg/ml ovalbumin trypsin inhibitor) was
added, and islets were centrifuged, washed twice, and filtered through
a 500 pm diameter wire mesh. Islets were centrifuged, washed twice in
washing solution, resuspended in Histopaque 1077 (Sigma), and
vortexed. The islet suspension was carefully overlaid with washing
solution (without serum) and centrifuged for 20 min at 10 °C,
separating islets from exocrine tissue. The islet layer was collected at
the interface, pelleted, washed twice, and further purified by two
rounds of gravity sedimentation. Finally, pure islets were handpicked
under a dissecting scope. Islets were dissociated by incubation with
0.25% trypsin-EDTA (Gibco) at 37 °C for 5 min, washed, fixed for 15
min in 1% paraformaldehyde/PBS solution, resuspended in 5%
donkey serum/PBS, and FACS sorted on a BD Aria (BD Biosciences,
http:/lwww.bdbiosciences.com).

Tissue culture. Rosa26-rtTA; tetO-H2BGFP mEFs were obtained by
collecting timed plugs and dissecting embryonic day (E) 12.5 embryos.
Embryos were eviscerated, trypsinized, plated on gelatinized plates,
and cultured in standard mEF media (DMEM with 10% FBS and 1x
penicillin/streptomycin [Gibco]). Cells were grown with 10 pg/ml
doxycycline to induce H2BGFP transcription.

CAGGs-1tTA; tetO-H2BGFP mES cells were obtained by electro-
porating a CAGGs-rtTA-IRES-puromycin plasmid into tetO-H2BGFP
mES cells derived from blastocysts, selecting with 4 pg/ml puromycin
in 10 pg/ml doxycycline and picking and expanding green colonies.
mES cells were grown in standard mES conditions (knockout DMEM
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[Gibco] with 15% defined FBS [Hyclone], 200 mM L-glutamine
[Gibco], 10 mM nonessential amino acids [Gibco],1X penicillin/
streptomycin, 0.001% B-mercaptoethanol [Sigma], and 1,000 U/ml
LIF [Chemicon]).

Dividing cells were imaged by culturing on the stage of a Zeiss LSM
confocal microscope, and 15-image z-stacks were scanned every 12
min at 0.5% laser intensity. Images were quantified using MetaMorph
software (Molecular Devices, http:/lwww.moleculardevices.com), and
values were recorded as integrated pixel intensity.

Cell-cycle experiments were performed as follows: 10 pg/ml
mitomycin C (Sigma) was applied to cells for 3 h to irreversibly
inhibit the cell cycle in S phase, 0.25 ng/ml aphidicolin (Sigma) or 100
ng/ml nocadozole (Sigma) was applied to cells for 6 h to reversibly
arrest the cell cycle at Go/G; or Go/M, respectively.

Supporting Information

Figure S1. Labeling of Chromosomes with H2BGFP is Cell Repli-
cation Independent

Rosa26-rtTA; tetO-H2BGFP mEFs express H2BGFP within 12 h of
administration of doxycycline, even following cell-cycle inhibition.
Cells treated with mitomycin C for 3 h are irreversibly blocked in S
phase but still develop green nuclei within 12 h of doxycycline
treatment. Administration of aphidicolin (Gy/G; block) or nocodazole
(Go/M block) for 6 h prior to and during doxycycline treatment still
results in labeled nuclei within 12 h. Original magnification, 200X.

Found at doi:10.1371/journal.pbio.0050163.sg001 (4.4 MB PDF).

Figure S2. Immunohistochemical Characterization of Pancreatic
Marker Expression within the PdxI1-tTA; tetO-H2BGFP Pulse
Population

Red staining represents common pancreatic proteins: insulin
expression in B cells; glucagon staining, o cells; somatostatin, d cells,
pancreatic polypeptide, pancreatic polypeptide cells; amylase, exo-
crine cells; and CK19, duct cells. Top panel: original magnification,
400X. Dashed box represents area of magnification in bottom panel.

Found at doi:10.1371/journal.pbio.0050163.sg002 (6.1 MB PDF).

Figure S3. Uniform Loss of Label in Adult Hepatocytes Following
Pulse-Chase with Rosa26-rtTA; tetO-H2BGFP Mice

No label retention present in hepatocytes following a chase period of
1 mo. Exposure matched images. Original magnification, 400X.

Found at doi:10.1371/journal.pbio.0050163.sg003 (1.7 MB PDF).
Figure S4. GFP and RFP Expression in MADM-Generated Clones

(A) Immunohistochemical staining showing expression of both GFP
(green) and RFP (red) in a RIP-CreER; Rosa26°%/Rosa26R¢ 2-mo chase
B cell clone. Original magnification, 200X.

(B) Demonstration of single-colored red and green clones in Pdxl-
Cre Rosa26°%/Rosa26"° mice. Original magnification, 400X.

Found at doi:10.1371/journal.pbio.0050163.sg004 (5.8 MB PDF).
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