Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-(1,4-Phenylene)bis(2-bromo-2methylpropanamide)

N. Haridharan, V. Ramkumar and R. Dhamodharan*
Department of Chemistry, IIT Madras, Chennai, Tamil nadu, India
Correspondence e-mail: damo@iitm.ac.in

Received 3 November 2011; accepted 26 January 2012
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.056 ; w R$ factor $=0.146$; data-to-parameter ratio $=19.7$.

The molecular structure of the title compound, $\mathrm{C}_{14} \mathrm{H}_{18}{ }^{-}$ $\mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, has one half-molecule in the asymmetric unit. The molecule has a crystallographic inversion centre in the middle of the benzene ring. The $\mathrm{C}-\mathrm{C}-\mathrm{N}-\mathrm{C}$ torsion angle between the benzene ring and the bromoamide group is 149.2 (7) ${ }^{\circ}$. The crystal is stabilized by a strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. These contacts give rise to a three-dimensional network.

Related literature

For the use of the title compound as an initiator in atom transfer radical polymerization and other polymerization studies, see: Ashraf et al. (1994); Domenicano et al. (1977); Kuipers et al. (1989); Matyjaszewski \& Xia (2001); Miroshnikova et al. (2007); Rollison et al. (2006). For similar structures, see: Haridharan et al. (2010).

Experimental

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=406.12$
Monoclinic, $P 2_{b} / c$
$a=13.834$ (3) А
$b=6.4746(13) \AA$
$c=9.4642$ (18) \AA
$\beta=103.807$ (9) ${ }^{\circ}$
$V=823.2(3) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=4.93 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.35 \times 0.22 \times 0.05 \mathrm{~mm}$

Data collection
Bruker APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.278, T_{\text {max }}=0.791$
1834 measured reflections 1834 independent reflections 664 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056 \quad 93$ parameters
$w R\left(F^{2}\right)=0.146 \quad \mathrm{H}$-atom parameters constrained
$S=0.94$
$\Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3}$
1834 reflections
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.23	$3.057(7)$	162
$\mathrm{C}^{\mathrm{i}}-\mathrm{H} 7 B \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.57	$3.503(9)$	164

Symmetry code: (i) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors acknowledge the Department of Chemistry, IIT Madras, for the single-crystal X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2195).

References

Ashraf, W., Dawling, S. \& Farrow, L. J. (1994). Hum. Exp. Toxicol. 13, 167-170. Bruker (2004). SADABS, APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Domenicano, A., Serantoni, E. F. \& Riva di Sanseverino, L. (1977). Acta Cryst. B33, 1664-1668.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Haridharan, N., Ramkumar, V. \& Dhamodharan, R. (2010). Acta Cryst. E66, o2007.
Kuipers, W., Kanters, J. A. \& Schouten, A. (1989). Acta Cryst. C45, 482-485.
Matyjaszewski, K. \& Xia, J. (2001). Chem. Rev. 101, 2921-2990.
Miroshnikova, O. V., Hudson, T. H., Gerena, L., Kyle, D. E. \& Lin, A. J. (2007). J. Med. Chem. 50, 889-896.

Rollison, D. E., Helzlsouer, K. J. \& Pinney, S. M. (2006). J. Toxicol. Environ. Health, Part B9, 413-439.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2012). E68, o811 [doi:10.1107/S1600536812003479]

N, N^{\prime}-(1,4-Phenylene)bis(2-bromo-2-methylpropanamide)

N. Haridharan, V. Ramkumar and R. Dhamodharan

Comment

The title compound $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$ is a difunctional aromatic amide based derivative, which is used as an initiator in Atom Transfer Radical Polymerization (ATRP) (Matyjaszewski et al., (2001). We have already reported a similar ATRP initiator (Haridharan et al., 2010). The title compound reported here is a similar derivative with a diamide functionality (Domenicano et al. (1977); Kuipers et al. (1989). It is mainly used as a component of engineering polymers and composites (Ashraf et al., 1994). It is also an ingredient in hair dyes.
p-Phenylenediamine is a precursor to aramid plastics and fibers such as Kevlar (Rollison et al., 2006). p-Phenylenediamine is also used as a developing agent in the color photographic film development process, reacting with the silver grains in the film and creating the colored dyes that form the image. p-Phenylenediamine derivatives such as chloroquine are the most important and widely used class of drugs for treatment of malaria (Miroshnikova et al., 2007). In the title compound $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, the torsion angle between the phenyl ring and the bromo amide group is $149.2(7)^{\circ}(\mathrm{C} 3-\mathrm{C} 1$ - N1-C4). The molecule has a crystallographic inversion centre in the middle of the phenyl ring. The crystal is stabilized by a strong intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bonding and weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. These contacts gives rise to a three dimensional network.

Experimental

p-Phenylene diamine ($5 \mathrm{~g}, 0.012$ moles), triethylamine ($12 \mathrm{~g}, 0.05$ moles) and THF (400 ml) were placed in a 3-neck round bottomed flask. Bromoisobutyrl bromide ($13.7 \mathrm{~g}, 0.05$ moles) was added slowly, using a syringe, with stirring, upon which a brown precipitate of triethylammonium bromide was formed. The mixture was left to react for 12 h , with stirring. Subsequently, triethylammonium bromide, the precipitate was removed by filtration and the THF was removed by rotary evaporation. The resulting crude product was dissolved in ethyl acetate, washed with bicarbonate solution and then with water thrice followed by brine solution and dried over anhydrous sodium sulfate. The resulting solvent was removed by rotary evaporation. The product was purified by column chromatography technique using 10% ethyl acetate in hexane as the eluent to obtain pure initiator as a bright yellow solid. Recrystallization of the compound from hexane gave X-ray diffraction quality crystals of $\mathrm{N}, \mathrm{N}^{\prime}$-(1,4-phenylene)bis(2-bromo-2-methylpropanamide).

Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic $\mathrm{C}-\mathrm{H}=0.93$ \AA, methyl $\mathrm{C}-\mathrm{H}=0.96 \AA$ and methylene $\mathrm{C}-\mathrm{H}=0.97 \AA$. The displacement parameters were set for phenyl and methylene H atoms at $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ and methyl H atoms at $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{C})$.
The crystal data was collected up to $0.73 \AA$ resolution, the crystal (the largest available) still diffracted quite weakly at high angle. On repeated crystallization we could get only small crystals which weakly diffracted. The data completeness we could get was only 93.6%.

Computing details

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINTPlus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figure 1
ORTEP of the molecule with atoms represented as 30% probability ellipsoids.

2-bromo- N -[4-(2-bromo-2-methylpropanamido) phenyl]-2-methylpropanamide

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=406.12$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.834$ (3) \AA
$b=6.4746$ (13) \AA
$c=9.4642(18) \AA$
$\beta=103.807(9)^{\circ}$
$V=823.2(3) \AA^{3}$
$Z=2$

Data collection

Bruker APEXII CCD area-detector

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\text {min }}=0.278, T_{\text {max }}=0.791$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.146$
$S=0.94$
1834 reflections
93 parameters
0 restraints
$F(000)=404$
$D_{\mathrm{x}}=1.638 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1219 reflections
$\theta=0.00-0.00^{\circ}$
$\mu=4.93 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Block, colourless
$0.35 \times 0.22 \times 0.05 \mathrm{~mm}$

1834 measured reflections
1834 independent reflections
664 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.0000$
$\theta_{\text {max }}=27.8^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
$h=-18 \rightarrow 17$
$k=0 \rightarrow 8$
$l=0 \rightarrow 11$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0575 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Br1	$0.90343(6)$	$0.80012(14)$	$0.54184(10)$	$0.0699(4)$
O1	$0.7011(3)$	$0.5876(8)$	$0.6804(5)$	$0.0520(14)$
N1	$0.6647(4)$	$0.7640(8)$	$0.4699(6)$	$0.0436(16)$
H1A	0.6809	0.7779	0.3882	0.052^{*}
C1	$0.5804(5)$	$0.8774(11)$	$0.4872(7)$	$0.0364(18)$
C2	$0.5188(5)$	$0.8134(11)$	$0.5735(8)$	$0.050(2)$
H2	0.5308	0.6887	0.6234	0.060^{*}
C3	$0.5607(5)$	$1.0646(13)$	$0.4144(7)$	$0.045(2)$
H3	0.6021	1.1089	0.3561	0.054^{*}
C4	$0.7212(5)$	$0.6389(10)$	$0.5664(8)$	$0.0366(18)$
C5	$0.8137(4)$	$0.5549(10)$	$0.5272(7)$	$0.0387(18)$
C6	$0.8682(6)$	$0.4020(14)$	$0.6398(9)$	$0.079(3)$
H6A	0.8881	0.4692	0.7327	0.118^{*}
H6B	0.9261	0.3518	0.6116	0.118^{*}
H6C	0.8250	0.2884	0.6465	0.118^{*}
C7	$0.7975(5)$	$0.4668(11)$	$0.3732(7)$	$0.051(2)$
H7A	0.8601	0.4226	0.3567	0.076^{*}
H7B	0.7693	0.5714	0.3036	0.076^{*}
H7C	0.7529	0.3512	0.3627	0.076^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	$0.0573(6)$	$0.0714(7)$	$0.0882(8)$	$-0.0096(5)$	$0.0316(4)$	$-0.0175(5)$
O1	$0.056(3)$	$0.074(4)$	$0.035(3)$	$0.008(3)$	$0.028(3)$	$0.009(3)$
N1	$0.053(4)$	$0.056(4)$	$0.032(4)$	$0.018(3)$	$0.028(3)$	$0.011(3)$
C1	$0.040(4)$	$0.046(5)$	$0.028(4)$	$0.003(3)$	$0.018(3)$	$0.000(4)$
C2	$0.056(5)$	$0.050(5)$	$0.052(5)$	$0.013(4)$	$0.027(4)$	$0.018(4)$
C3	$0.043(4)$	$0.066(6)$	$0.033(5)$	$0.010(4)$	$0.026(3)$	$0.009(4)$
C4	$0.045(4)$	$0.032(5)$	$0.038(5)$	$0.007(3)$	$0.021(4)$	$0.004(4)$
C5	$0.037(4)$	$0.044(5)$	$0.041(5)$	$0.012(4)$	$0.022(3)$	$0.012(4)$
C6	$0.095(7)$	$0.092(7)$	$0.062(6)$	$0.042(6)$	$0.044(5)$	$0.028(5)$
C7	$0.076(5)$	$0.041(5)$	$0.046(5)$	$0.013(4)$	$0.036(4)$	$-0.006(4)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Br} 1-\mathrm{C} 5$	2.000 (7)	C3-H3	0.9300
O1-C4	1.223 (7)	C4-C5	1.516 (8)
N1-C4	1.326 (8)	C5-C6	1.517 (9)
N1-C1	1.421 (8)	C5-C7	1.531 (9)
N1-H1A	0.8600	C6-H6A	0.9600
C1-C2	1.377 (8)	C6-H6B	0.9600
C1-C3	1.389 (9)	C6-H6C	0.9600
$\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	1.381 (9)	C7-H7A	0.9600
C2-H2	0.9300	C7-H7B	0.9600
$\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	1.381 (9)	C7-H7C	0.9600
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1$	127.0 (5)	C6-C5-C7	111.2 (6)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	116.5	C4-C5-Br1	104.2 (4)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	116.5	C6-C5-Br1	105.8 (5)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	118.8 (6)	C7-C5-Br1	108.0 (4)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	123.6 (7)	C5-C6-H6A	109.5
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{N} 1$	117.6 (5)	C5-C6-H6B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	119.7 (7)	H6A-C6-H6B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2	C5-C6- H 6 C	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.2	H6A-C6-H6C	109.5
C2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{C} 1$	121.6 (6)	H6B-C6-H6C	109.5
C2 ${ }^{\text {i }}$ - $\mathrm{C} 3-\mathrm{H} 3$	119.2	C5-C7-H7A	109.5
$\mathrm{C} 1-\mathrm{C} 3-\mathrm{H} 3$	119.2	C5-C7-H7B	109.5
$\mathrm{O} 1-\mathrm{C} 4-\mathrm{N} 1$	123.5 (6)	H7A-C7-H7B	109.5
O1-C4-C5	120.1 (6)	C5-C7- H 7 C	109.5
N1-C4-C5	116.4 (6)	H7A-C7- H 7 C	109.5
C4-C5-C6	111.7 (5)	H7B-C7-H7C	109.5
C4-C5-C7	115.2 (6)		
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-29.5 (11)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5$	-173.4 (6)
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3$	149.4 (7)	O1-C4-C5-C6	2.8 (10)
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3^{\text {i }}$	0.1 (12)	N1-C4-C5-C6	-175.8 (7)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3{ }^{\text {i }}$	179.0 (6)	O1-C4-C5-C7	130.9 (7)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	-0.2 (12)	N1-C4-C5-C7	-47.8 (8)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 3-\mathrm{C} 2^{\text {i }}$	-179.1 (6)	$\mathrm{O} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{Br} 1$	-111.0 (6)
C1-N1-C4-O1	8.0 (11)	N1-C4-C5-Br1	70.4 (7)

Symmetry code: (i) $-x+1,-y+2,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D — \mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.86	2.23	$3.057(7)$	162
$\mathrm{C} 7 — \mathrm{H} 7 B \cdots 1^{\mathrm{ii}}$	0.96	2.57	$3.503(9)$	164

Symmetry code: (ii) $x,-y+3 / 2, z-1 / 2$.

