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Abstract

Integrative analyses of high-throughput ‘omic data, such as DNA methylation, DNA copy

number alteration, mRNA and protein expression levels, have created unprecedented

opportunities to understand the molecular basis of human disease. In particular, integrative

analyses have been the cornerstone in the study of cancer to determine molecular subtypes

within a given cancer. As malignant tumors with similar morphological characteristics have

been shown to exhibit entirely different molecular profiles, there has been significant interest

in using multiple ‘omic data for the identification of novel molecular subtypes of disease,

which could impact treatment decisions. Therefore, we have developed intNMF, an integra-

tive approach for disease subtype classification based on non-negative matrix factorization.

The proposed approach carries out integrative clustering of multiple high dimensional

molecular data in a single comprehensive analysis utilizing the information across multiple

biological levels assessed on the same individual. As intNMF does not assume any distribu-

tional form for the data, it has obvious advantages over other model based clustering meth-

ods which require specific distributional assumptions. Application of intNMF is illustrated

using both simulated and real data from The Cancer Genome Atlas (TCGA).

Introduction

Identification of molecular subtypes of disease has received a great deal of attention using

disparate types of high throughput ‘omic data sets. Due to the advent of high throughput

microarray and next-generation sequencing (NGS) technologies, vast amounts of multi-level

molecular data have been accumulated lending to the study of “systems biology”. The underly-

ing principal of integrative analysis is that the biological mechanisms of disease are attributed

to the complex relationship and interplay within and between several levels of biological pro-

cesses [1]. Therefore, collective understanding of relationships between the various biological

levels (e.g., genome, transcriptome, epigenome, proteome), in addition to variations within

each biological level, are critical to the understanding of disease etiology, treatment, and

progression.
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One such integrative analyses approach is classifying the subjects into various subgroups

using clustering techniques. There exist countless different clustering methodologies using a

single data type at a time and only a few methods that use multiple data sets in a single compre-

hensive step [2]. The purpose of such methods is to group the objects across a discrete set of

classes (i.e. clusters) such that the objects within the same class are more similar to one another

as compared to objects in different classes. With the application of clustering to a data set, one

can either cluster the features (i.e., genes) or the samples (i.e., tumors from patients). In this

article we focus on clustering the samples with the goal of identifying molecular subtypes of

disease.

Conventional approaches for clustering samples based on multiple ‘omics datasets have

involved the manual integration of results obtained from individual clustering of each of such

‘omics data types. Such methods require great deal of understanding of all the data types and

the biology associated with them in order to fully utilize the available information. Although

such approaches will be able to capture a strong effect across multiple assays, it may miss

possible weak but consistent relationship across the multiple data types that may be equally

informative.

Depending on the technology and unit of measurement used to assess the biological pro-

cess, the data can follow a wide range of distributions. Therefore it is very difficult to model

the statistical distributions of all such datasets in a single integrative analysis. One of the most

commonly used integrative clustering method, iCluster, models the tumor subtypes as an

unobserved latent variable assuming that the data follow Gaussian probability distribution [3].

The extended version iCluster+ has flexibility of incorporating dichotomous data that follows

Binomial and count data that follows Poisson distribution [4]. Another example of integrative

clustering method uses a Gaussian mixture model [5]. In contrast to these methods based on

latent variables approach, Kirk et al. [6] have proposed Bayesian mixture modeling framework

in which each dataset is modelled using Dirichlet-multinomial allocation mixture model.

However, if the model assumptions are not satisfied, the model based methods can provide

misleading results. To this end, non-negative matrix factorization (NMF) algorithm first pro-

posed by Lee & Seung [7] and several variants of it [8–10], have been proposed for clustering a

single high-dimensional data. Zhang et al.[11] extended the NMF algorithm for multiple data

to identify the subsets of multidimensional genomic data (blocks of data) that have correlated

profiles, termed as multidimensional module, across several types of data. However, the

method cannot classify the subjects into disjoint set of clusters in order to discover the disease

subtypes.

In this article, we propose integrative clustering method based on NMF, intNMF, for classi-

fying subjects into disjoint set of clusters using multiple sources of molecular data. The pro-

posed method does not assume any distributional form of the data. The method is illustrated

and compared to iCluster using both simulated data and data collected within the TCGA net-

work for Breast and Glioblastoma cancers.

Materials & methods

Non-negative matrix factorization

NMF approach has been applied in several fields after it was formally proposed in 1994 by Paa-

tero & Tapper [12], with the algorithm outlined in 1999 by Lee & Seung [7]. Brunet et al. [8]

utilized the algorithm as it is in cancer subtype discovery, while others have added additional

regularization constraints to create sparse solutions [9, 10]. Suppose Xn�p 2 Rn�p is a matrix,

having all non-negative entries, with n subjects and p measured features. NMF factorizes the

matrix Xn×p into two non-negative matrices such that. Xn×p�Wn×kHk×p, where k represents

Integrative clustering using NMF
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the pre-set number of groups or clusters, Wn×k is a matrix of basis vectors, and Hk×p is the

matrix of coefficient vectors. Each column of X can be written as X[,col]�WH[,col], where

X[,col] and H[,col] are the corresponding columns in X and H respectively. Each data vector

X[,col] is approximated by a linear combination of the columns of W weighted by the compo-

nents of H[,col]. Therefore W is regarded as a matrix of basis vectors which is optimized for

the linear approximation of the data in X and can be used to classify the subjects into groups

or clusters.

Integrative NMF (intNMF)

We propose the following extension of NMF to allow for the clustering of subjects using multi-

ple biological sources of data (e.g., mRNA expression, DNA methylation, protein expression).

Let Xi, i = 1, 2,. . ., m be matrices representing m data types profiled on n samples with pi, i = 1,

2,. . ., m features (i.e., X1 would be a n × p1 matrix). Integrative clustering with NMF is carried

out by estimating common basis matrix W and data specific coefficient matrices Hi such that

Xi
n�pi
�Wn�kH

i
k�pi
; i ¼ 1; 2; . . . m; ð1Þ

where all entries of W and Hi are non-negative. The objective function is then defined as the

weighted Frobenius norm

Q ¼ minW;H

Xm

i¼1
y

i
jjXi � WH ijj

2
: ð2Þ

θi> 0 is the user specified weight for ith data. For example, the weights can be calculated as the

maximum of the mean sums of squares among all data divided by the mean sums of squares of

each data y
i
¼

Max fmeanfjjXi jj2g; i¼1;...;mg
meanfjjXi jj2g

; i ¼ 1; . . . ;m
� �

. The function Q is convex with respect

to W; however, the function is not convex when W and all Hi are considered together. There-

fore, there is no unique global minimum of the NMF problem [12, 13]. However, a local opti-

mum can be achieved by minimizing the objective function Q using numerical optimization

methods.

As NMF imposes the non-negativity constraint, the linear combination has only the addi-

tive effect if the effect is present (because the effect is positive if it is present otherwise it is

zero), and is compatible with the intuitive notion of combining parts to form the whole. Many

studies have shown that a good local minima can provide desirable properties such as pattern

recognition, grouping of the variables in the data etc [7–11]. The strategy to finding the “best”

local minima is to determine numerous local minimums using several initializations of W and

Hi and then choosing the one for which objective function Q with the smallest value.

The higher order generalized singular value decomposition (HO GSVD) [14] and its vari-

ants [15, 16] have also been proposed for integrative matrix factorization. These methods are

the extensions of singular value decomposition (SVD). SVD factorizes the matrix X into USVT

where U and V are orthogonal matrices having both positive and negative elements. S is diago-

nal matrix with non-negative numbers on the diagonal. NMF approximately factorizes the

non-negative matrix X into non-negative matrices W and H. The main difference between the

SVD and NMF is that the matrices U and V contains both positive and negative elements

while matrices W and H contain only the non-negative elements. Lee & Seung (1999)[7], in

their seminal work, have extensively carried out the comparison between SVD based method

and NMF in the application of pattern recognition and have concluded that NMF is more effi-

cient than SVD for pattern recognition studies. This is because the negative values in the factor

loadings of U or V can result in contradicting physical realities because some of the effects for

some important features cancel each other. The extended higher order generalized SVD (HO
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GSVD) factorizes the matrices Xi into UiSiVT, for i = 1,. . .,m where V is common across the

data and contains the pattern-structure shared across the several data sets. intNMF factorizes

the matrices Xi into WHi for i = 1,. . .,m where W is common across the data sets that contains

the cluster structure across the multiple data sets. Since both of these methods are extensions

of the method designed for single data matrix, the similar differences in the performance of

pattern recognition exist in HO SVD and intNMF.

NMF algorithms

The available algorithms to find a solution to the system of equations defined by Q can be

divided into three general classes: (i) multiplicative update algorithms; (ii) gradient descent

algorithms; and (iii) alternating least square algorithms [13]. Lee & Seung [7] proposed an

multiplicative update algorithm using mean squared error as objective function and used

properties of gradient and continual descent (continual non-increase) to show that the algo-

rithm converges to a local minimum. This claim has been questioned by a few papers with an

argument that the continual descent property does not preclude descent to a saddle point

instead of local minima [17, 18]. A few papers have proposed sparse NMF using multiplicative

update rule [9, 19, 20]. In contrast, gradient descent algorithms [20, 21] update the elements

by moving in the direction of negative gradient at a speed depending on the step size. Without

proper choice of the step size, little can be said about the convergence of the gradient descent

method as the convergence properties have yet to be determined [13].

For fitting intNMF we utilize the non-negative Alternating Least Square (ALS) algorithm

[12], where the algorithm carries out the estimation of the matrices W and H alternatively

using least squares. The basic idea lies in the fact that the objective function becomes convex in

W given H and vice versa. The ALS approach is also called the “block coordinate descent”

method in bound constraint optimization [22]. Unlike multiplicative algorithm where one

must initialize both W and H, in ALS only W has to be initialized. Moreover, in our implemen-

tation of the algorithm, no matter how many datasets are being used for the integrative analy-

ses, only one initialization of W is required; whereas for the multiplicative algorithm both W
and Hi,i = 1,. . .m matrices have to be initialized [11]. Another limitation of the multiplicative

algorithm is that once the elements in W or H become 0, it must remain 0 in the successive

iterative steps resulting in a “locking effect” [13, 23]. This is not an issue with ALS as the itera-

tive procedure allows escaping from a poor path / solutions.

To ensure the non-negativity condition on W and Hi,i = 1,. . .m matrices, non-negativity

constrained least square algorithm is implemented. The non-negativity constrained alternating

least square (NNALS) algorithm was first proposed by Lawson & Hanson [24], with the con-

vergence properties of NNALS having been described in detail [18, 22, 24, 25]. Solving the

non-negatively constrained least squares is computationally expensive compared to un-con-

strained least squares. In order to overcome with this computation time, faster versions of

NNALS have been proposed [26, 27]. The algorithm proposed by Van Benthem & Keenan

[27] has been utilized in intNMF in order to solve for W and Hi i = 1,2,. . .m, as outlined

below. Derivation of the algorithm is provided within the S1 File.

Algorithm for fitting intNMF

1. Initialize W randomly from uniform distribution (U[0,1]) and/or using non-negative

double singular value decomposition (NNDSVD) method proposed by Boutsidis &

Gallopoulos [28].

Integrative clustering using NMF
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Using the solution for W, the cluster membership for each sample is then determined by the

highest entry in each column (i.e., sample j is assigned in cluster c if W[j, c] is the largest ele-

ment in W[j,] where j represents rows, j = 1,. . .,n, and c represents columns in W, c = 1,. . .,k).

Initialization and stopping criteria

NMF algorithms are sensitive to initialization of the matrices W and Hi, i = 1,2,. . .m. In our

implementation of intNMF only W needs to be initialized. Many NMF algorithms utilize

simple random initialization, while a few initialization methods are based on singular value

decomposition (SVD) [23]. One such SVD based initialization method is non negative double

singular value decomposition (NNDSVD) [28]. The algorithm contains no random numbers

and is based on two SVD processes, one approximating the data matrix and the other approxi-

mating positive sections of the resulting partial SVD factors. In our algorithm we initialize sev-

eral W matrices (one of them using NNDSVD and remaining using uniform distribution), one

for each run of the algorithm, so that we can choose the factorization that results in the mini-

mum value of the objective function out of those runs.

The stopping criterion in the algorithm is based on the stability in connectivity matrix [8,

29]. For each run of the algorithm, a n×n connectivity matrix C with all the entries either 0 or

1 is defined based on the sample assignment to the clusters. If two samples i and j belong to the

same cluster then the corresponding entry of the connectivity matrix is 1 (cij = 1) otherwise it

is 0 (cij = 0). The algorithm stops when C does not change for a pre-set number of consecutive

iterations e.g. 50 iterations. Stopping criteria can also be defined based on the relative change

in the reconstruction error. For each iteration, the sum of the difference between the original

data and the reconstructed data ð
Pm

i¼1
jXi � ðWH iÞjth iterjÞ is calculated and compared with the

similar value computed in the previous ((j-1)th) iteration. When the change in such reconstruc-

tion error falls below user specified threshold (e.g. 10−4), the algorithm stops. Our algorithm

generates the reconstruction errors which can be used to create a plot against iterative steps in

order to view the convergence trajectory but utilizes stability in C as a stopping rule.

Estimation of optimum number of clusters (k)

The most important parameter to estimate in any clustering method is the optimum number

of clusters k for the data, where k needs to be small enough to reduce noise but large enough to

retain important information. A couple of methods have utilized consensus matrix defined by

2. Solve for each Hi i = 1,2,. . .m individually using NNALS and the current value for W.

QHi ¼ argminHi jjXi � WH ijj
2

i ¼ 1; 2; . . . ;m such that H i
k�pi
� 0 ð3Þ

3. Solve for W using Xi and current values for Hi i = 1,2,. . .m using NNALS.

QW ¼ argminW

Xm

i¼1
y

i
jjXi � WH ijj2 such that Wn�k � 0 ð4Þ

4. Repeat Step 2 and 3 until convergence.

Integrative clustering using NMF
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Monti et al. [29] to determine k. Consensus matrix, �C , is defined as the average of the connec-

tivity matrices constructed over many iterative steps until convergence. The entries of the con-

sensus matrix that ranges from 0 to 1, reflects the probability of clustering the two samples i
and j together. Brunet et al. (2004) [8] proposed cophenetic correlation coefficient and Kim

and Park (2007) [10] proposed dispersion coefficient based on consensus matrix for each pre-

assigned k. The value of k that results in maximum of the coefficient is chosen as optimum.

Another approach that can be utilized based on dissimilarity measure derived from consen-

sus matrix is the silhouette width [30]. The entries in the consensus matrix (�C) can be consid-

ered similar to Gower’s similarity coefficient [31] with similarity defined as the proportion of

iterative runs the two samples i and j are grouped together in the same cluster. 1� �C can then

be used as a new distance matrix in place of usual measures such as Euclidean distance [29].

Average silhouette width (s) is computed using 1� �C for each value of k and the value of k cor-

responding to maximum s is the optimum.

The method proposed by Hutchins et al (2008) [32] utilizes the variation of the residual

sums of squares (RSS) between the original data X and the estimated data bXð� cW bHÞ. RSS is

calculated for each choice of k and plotted against k. The value of k at which the plot of RSS

shows an inflection point is chosen as optimum.

Frigyesi et al. (2008) [33] indicated that the cophenetic correlation based on the consensus

matrix might over fit the data. In order to minimize this possible issue we propose resampling

based cross validation technic in estimating optimum number of clusters k. A few resampling

based methods for finding optimum k and assessment of predictability of the clusters can be

found in Dudoit and Fridlyand (2002) [34], Tibshirani and Walther (2005) [35], Kapp and

Tibshirani (2007) [36] and Shen et al (2012)[37]. The idea is to partition the data into training

(Xi
n1�pi

for i = 1,. . .,m) and testing (Xi
n2�pi

for i = 1,. . .,m) sets repeatedly. At each repetition,

intNMF algorithm is applied to the training data X i
n1�pi

in order to estimate coefficient matri-

ces H i
k�piðtrainÞ

i = 1, 2,. . .,m. The coefficient matrices are then used to estimate the common

basis matrix (Wn2�k) using the test data and solving the following optimization problem,

QWn2�k
¼ argminWn2�k

Xm

i¼1
y

i
jjXi

n2�pi
� Wn2�k

ðH iÞ
T
pi�kðtrainÞ

jj2 such that Wn2�k
� 0 ð5Þ

Cluster memberships of the samples in the test data are predicted (“predicted”) using the

Wn2�k
matrix as mentioned before. In parallel, intNMF algorithm is used in the test data Xi

n2�pi

independently to compute the clustering assignments (“observed”) of the samples in test

data. Under the true model, there should be a good consensus between the predicted and the

observed clustering assignments as measured by adjusted rand index [38]. The process is

repeated several times and average of the adjusted rand indices are computed which we call as

“Cluster Prediction Index”. The value of k that results in maximum value of Cluster Prediction
Index (CPI) is chosen as optimum number of clusters for the data.

Simulation study

An R package InterSIM [39] was used to generate three related datasets involving DNA meth-

ylation, mRNA gene expression and protein expression. The simulation method is based on

the real ovarian cancer datasets from the Cancer Genome Atlas (TCGA) [40]. The datasets are

generated for a set of samples with realistic biological correlation between and within the data-

set. Using CpG and protein to gene annotation information 367 CpGs and 160 protein map to

131 common genes. The annotation for methylation of CpG sites to genes was provided by

Illumina and the protein to gene annotation was obtained from MD Anderson Cancer Center.

Based on these 3 data types measured on 384 common subjects with the common mapped

Integrative clustering using NMF
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features, the intra- and inter- relationship between the features are estimated for use in the

simulation of realistic data sets. Five different scenarios of true number of clusters, k = 2:6,

were simulated setting 25% of the genomic features differentially expressed across the clusters

for varying effect sizes of 0, to 4 in the increment of 0.5.

In order to make the input data fit non-negativity constraint of intNMF, the values of the

data were shifted to positive direction by adding absolute value of the smallest negative num-

ber. Further, each data was rescaled by dividing by maximum value of the data to make the

magnitudes comparable (between 0 and 1) across the several datasets. We assess five methods

of finding optimum number of clusters: three of them using consensus matrix (Silhouette

width, Cophenetic correlation and Dispersion), fourth using residual sums of squares (RSS)

and fifth (CPI) based on cross validation. For the comparison equal weights were provided for

each data (i.e. θi = 1 for all i). Optimum number of cluster was searched over the range of

k = 2:8. intNMF was applied to the data generated for each scenario followed by computation

of five parameters of estimating optimum k. The algorithm was run for 30 initializations of W.

TCGA breast and glioma studies

We illustrate the use of proposed intNMF with two problems in cancer subtype discovery. The

multisource datasets for both examples are from The Cancer Genome Atlas (TCGA) studies

on breast cancer and glioblastoma. The purpose of these two examples is to show how the

results of proposed algorithm compare with the previously published results using two differ-

ent approaches of integrative clustering. The first example comes from the TCGA network

study [41] which utilized cluster-of-clusters approach in order to find out the breast cancer

subtype and the second example is from the glioblastoma study by Shen et.al [37] that utilized

iCluster method for subtype discovery.

Breast cancer. The dataset involves mRNA gene expression (17,814 genes), microRNA

(1046 genes), Reverse phase protein array (RPPA, 171 proteins), DNA methylation (574

probes) and DNA Copy Number (20,630) available on 348 common tumor samples. The data

set is publicly available at TCGA data portal https://tcga-data.nci.nih.gov/docs/publications/

brca_2012/. The clinical data is available at https://gdc.cancer.gov/. Previous studies have

found distinct clusters of tumors ranging from 2 to 10 using various characteristics of the

genomic assays [42, 43]. TCGA network carried out integrative clustering of the five multi-

source datasets using cluster-of-clusters (C-of-C) approach [41]. Individual clustering identi-

fied 12 clusters using mRNA gene expression data, 7 clusters using microRNA, 5 clusters using

DNA methylation, 5 clusters using DNA copy number and 7 clusters using protein data. Four

distinct clusters were concluded using consensus clustering (cluster-of-clusters) on these indi-

vidual platform specific clusters. These clusters correspond closely with the 4 well known

intrinsic molecular subtypes: Basal-like, HER2-enriched, Luminal A and Luminal B.

Glioblastoma. The original data, both molecular and clinical, can be found at TCGA data

portal https://gdc.cancer.gov/ but the preprocessed and sub-setted data are available in R pack-

age iCluster and described in Shen et al. [37]. The data involves DNA copy number variation

(1599 genes), DNA methylation (1515 CpGs) and gene expression (1740 genes) measured on

55 common subjects across the three data types. Using gene expression data, Verhaak et al.

[44] identified four distinct subtypes of samples: Classical, Messenchymal, Neural and Pro-

neural. In addition, previous integrative analysis using iCluster has found 3 clusters based on

these three datasets [37]. It should be noted that both the analysis using iCluster by Shen et al

[37] and our application of intNMF do not include mutation status for genes such as IDH1

and TP53, whereas, such information was incorporated manually into the cluster characteriza-

tion by Verhaak et al.
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Results

Simulation study

In the simulation study to look at the abilities of the various methods to determine the optimal

number of clusters (k), analyses were run on datasets in which the number of “true” clusters

was varied from 2 to 6. Fig 1 represents the plot of the five measurements for determining k
against the search range of k where the effect size was set to 3.5 (see S2 File for results for other

effects sizes). The points on the plot represent the values for each of the 30 runs of the algo-

rithm at each k. The average values of the parameters over the 30 runs are computed and over-

laid on the plots as a line.

Cluster Prediction Index (CPI), silhouette width and cophenetic correlation clearly peak at

true number of cluster. In contrast, the optimal number of clusters is hard to distinguish in the

plots for the dispersion measure. Similarly, although RSS shows the point of inflection at the

true number of clusters in general, in some settings it was difficult to discern the point of

inflection for estimate of k. Comparison of the methods over five different strengths of effect

sizes for true number of cluster k = 4 is given in S1 Fig. With the exception of the dispersion
measure, the signal to noise ratio is maximum at true number of clusters for the various meth-

ods, with best precision with CPI (S2 and S3 Figs).

Next, we compared the performance of intNMF clustering to iCluster[3] (tuning parameter

λ = 0.01), with results presented in Fig 2. First and second rows of Fig 2 represent the plot of

CPI and proportion of deviance (POD), measure given by iCluster method, against search

range of k. The third row represents the plot of adjusted rand index between true cluster mem-

bership and the clustering assignment. Both intNMF and iCluster result in optimum results

(maximum value of CPI for intNMF and minimum value of POD for iCluster) at true number

of simulated clusters.

Performances of the methods were further assessed with respect to cluster purity and

entropy. Purity is defined as the proportion of samples assigned to a class that truly belongs to

that class and entropy measures the amount of possible misclassification of the objects. Cluster-

ing performance is best when the value for purity is large and the value for entropy is small.

Both methods show highest value of purity and smallest value of entropy at true number of

clusters, S4 Fig. Provided at least a moderate effect size, both clustering methods determine the

correct number of clusters, S5 Fig.

TCGA data analyses

Breast cancer. In order to minimize noise and optimize computational cost, the

dimensionality of the mRNA, miRNA and CNV data were reduced prior to applying intNMF;

mRNAs having standard deviation of at least 1.5, miRNAs having less than 50% zeros and

CNVs having standard deviations of at least 0.9 were selected. The final data for integrative

clustering had 645 mRNAs, 574 available methylation probes, 423 miRNAs, 409 CNVs and

171 available proteins on 348 common samples. The weights were calculated as mentioned in

Methods section. intNMF algorithm resulted in 6 distinct clusters as displayed in Fig 3(a) and

3(b). Table 1 represents the cross-tabulation match between the intNMF clusters with TCGA

clusters and iClusters. A moderate, but significant, overlap between the TCGA clusters and

intNMF clusters was found (p-value < 2.2×10−16, Chi-square test). intNMF-C3 includes most

of HER2-enriched tumors, while intNMF-C4 includes most of Basal-like tumors. intNMF-C1

and intNMF-C6 are enriched with Luminal A tumors, with intNMF-C2 and intNMF-C5 are

comprised of both Luminal A and Luminal B tumors. TCGA network [41] found that basal
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like tumor had the most distinct multiplatform signature which closely agreed with results

from intNMF (Fig 3(c)). iCluster-C2 is made up of Basal subtype (S1 Table) and overlaps with

intNMF-C4. iCluster-C1 overlaps more with intNMF-C6 while iCluster-C3 overlaps more

with intNMF clusters C1, C2, C3 and C5.

Fig 1. Finding optimum number of clusters. The plots represent the comparison of five different methods of finding optimum

number of clusters on the dataset generated using moderate effect size of 3.5. First row represents silhouette width over k = 2:8 for

each of five different scenarios of true clusters 2, 3, 4, 5 and 6 over 30 runs of simulation. The average value of the silhouette

widths over 30 runs are overlaid on the plots as a line. Cophenetic correlation, Dispersion, Residual Sums of Squares and Cluster

Prediction Index are shown on second, third, fourth and fifth rows respectively.

https://doi.org/10.1371/journal.pone.0176278.g001
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Analysis of the long-term survival for this study data is limited because of the short follow-

up time (median 1.9 years) and low number of events (36 events out of 348). Because of this,

the TCGA network study [41] did not present survival analysis. Clear differences in the sur-

vival trajectories can be seen in Fig 3(d), however the differences in the survival probabilities

across the six identified clusters were not up to statistical significance (p-value = 0.445, log-

rank test). Also, the survival difference across the three subtypes as identified by iCluster is

not statistically significant too (S6 Fig). One reason for statistical non-significance is the small

number of events. In time-to-event analysis, power of statistical test depends more on the

number of events than on total sample size and in this example although the sample size is

decent (348) the number of events is low (36).

Somatic mutations in genes TP53, PIK3CA, GATA3 and MAP3K1 which were highlighted

by TCGA studies [41] as subtype-associated mutations, have been presented in Table 1 as per-

centage of their presence in each of the six integrative clusters. The results are consistent with

TCGA study findings. For example, intNMF cluster C4 is characterized by TP53 mutations

(85.1%) that includes most of Basal-like tumors (84% mutation, TCGA[41]) and integrative

cluster C6 is characterized by mutation in PIK3CA (55.3%) that is enriched with Luminal A

tumors (49% mutation, TCGA[41]). Moreover, the mutations are significantly associated across

the six integrative clusters (p-value<0.001 for TP53, PIK3CA and MAP3K1; p-value = 0.011 for

GATA3; Fisher Exact test). Graphical representation of this table has been provided with S7 Fig.

Fig 2. Comparison of intNMF and iCluster over varying k. First row represents the cluster prediction index, second row

represents the plot of proportion of deviance (POD) given by iCluster method and third row represents adjusted rand index

between (i) true and intNMF-clusters (red), (ii) true and iCluster-clusters (blue) and (iii) intNMF-clusters and iCluster-clusters

(green). The POD is expected to result in minimum at true number of clusters. In other plots, maximum is expected at true number

of clusters.

https://doi.org/10.1371/journal.pone.0176278.g002
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Fig 3. Example 1: Breast cancer data. (a) Plot of CPI over the search range of number of clusters from 2 to 8 for 30 runs of

intNMF algorithm at each k. The red line represents the mean values of CPI at each k. (b) The cluster pattern as shown by

the consensus matrix. (c) Heatmap of five types of data, mRNA, miRNA (log transformed and scaled), Protein, Methylation

and CNV with clustering assignment from intNMF and TCGA subtypes overlaid on top with legends on the side. (d) Kaplan

Meier Survival curves with p-value from log-rank test.

https://doi.org/10.1371/journal.pone.0176278.g003
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Glioblastoma. The intNMF results in three optimum number of clusters, Fig 4(a) and

4(b). The weights used in the method were calculated as mentioned in the Methods section.

The cross tabulation match with the expression-subtypes and iCluster-subtypes are shown

in Table 2 and heatmaps of the three datasets are shown in Fig 4(c). There was very strong

association between the clusters identified by intNMF and the previous clusters [37, 44]. The

intNMF cluster C2 matched with the proneural-subtype and iCluster-C2. intNMF-C1 was

enriched with Messenchymal and Neural, along with overlapping most with iCluster-C3.

Lastly, intNMF-C3 tumors were enriched for Classical type tumors and match with most of

iCluster-C1. Additionally, the cluster assignments from intNMF (Fig 4(d)), iCluster [37],

and clusters based only on mRNA data [44] were associated with overall survival (intNMF

clusters, p-value = 3.96×10−3; iCluster clusters, p-value = 1.0×10−2; mRNA only clusters, p-

value = 1.84×10−2). Somatic mutations in a few genes highlighted by TCGA studies [45] and

Verhaak et al.[44] have been presented in Table 2 as percentages of their presence in each inte-

grative cluster. Consistent with previous studies [44], Proneural made integrative cluster C2 is

characterized by mutations in TP53, Mesenchymal enriched integrative cluster C1 is character-

ized by mutations in NF1. Similar trends were seen in other gene mutations with PIK3R1 and

PIK3CA not present in integrative cluster C1 and RB1 not present in C2. Except EGFR, none

of the mutations were statistically significant across the integrative clusters.

Discussion

A fundamental problem in many high dimensional data analysis is to find a suitable lower

dimensional representation of the data. In this article, we have presented a clustering approach

that integrates multiple data types collected on the same set of subjects to find such a represen-

tation. In application of intNMF to two cancer studies from TCGA, we demonstrated that

intNMF is efficient in extracting the clusters inherent in the data. Both examples show that

the subtypes identified by the intNMF method match closely with the subtypes identified by

Table 1. Cross tabulation of intNMF subtypes with TCGA subtypes and iCluster subtypes using multiplatform Breast cancer data. The summary

table, followed by cross tabulation tables, represents the receptor status for estrogen (ER), progesterone (PR) and human epidermal growth factor 2 (HER2)

presented as percentage of their presence in each of the six intNMF clusters; and somatic mutations in four genes TP53, PIK3CA, GATA3 and MAP3K1.

TCGA Subtypes intNMF Total

C1 C2 C3 C4 C5 C6

Cluster of Clusters (1) HER2 2 4 25 4 1 3 39

(2) Basal 0 2 1 66 0 3 72

(3) Luminal A 25 23 6 3 12 92 161

(4) Luminal B 17 24 8 1 10 16 76

Total 44 53 40 74 23 114 348

iCluster C1 11 14 11 4 5 71 116

C2 0 0 9 68 0 0 77

C3 33 39 20 2 18 43 155

Total 44 53 40 74 23 114 348

ER+ (%) 95.5 94.3 60.0 13.5 95.7 97.4

PR+ (%) 86.4 71.7 42.5 5.4 82.6 86.8

HER2+ (%) 4.5 9.4 95.0 1.4 4.3 6.1

TP53 (%) 31.8 32.1 57.5 85.1 26.1 13.2

PIK3CA (%) 29.5 33.9 27.5 8.1 21.7 55.3

GATA3 (%) 6.8 16.9 10.0 1.4 8.7 17.5

MAP3K1 (%) 29.5 5.7 0.0 0.0 13.0 15.8

https://doi.org/10.1371/journal.pone.0176278.t001
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Fig 4. Example 2: Glioblastoma data. (a) Plot of CPI over the search range of number of clusters from 2 to 8 for 30 runs of

intNMF algorithm at each k. The red line represents the mean values of CPI at each k. (b) The cluster pattern as shown by the

consensus matrix. (c) Heatmap of three types of data, CNV, Methylation and mRNA with clustering assignment from intNMF,

iCluster and Expression subtypes overlaid on top with legends on the side. (d) Kaplan Meier Survival curves with p-value from

log-rank test.

https://doi.org/10.1371/journal.pone.0176278.g004

Integrative clustering using NMF

PLOS ONE | https://doi.org/10.1371/journal.pone.0176278 May 1, 2017 13 / 18

https://doi.org/10.1371/journal.pone.0176278.g004
https://doi.org/10.1371/journal.pone.0176278


previous studies. A challenge of any clustering methods is the unsupervised nature of the prob-

lem; that is, how many clusters are inherent in the data. To address this issue, we describe a

resampling based cross-validation method of model selection to find out optimum number of

clusters. Most importantly, the proposed intNMF method does not require any statistical dis-

tribution assumption of the data, and therefore has robust application to studies involving

diverse data types. The proposed intNMF clustering method is different than the integrative

NMF method proposed by Zhang et al. [11] with respect to both purpose and algorithm uti-

lized by the methods. The method by Zhang et al. was designed to identify the modules (blocks

of data) comprising the correlated variables while the proposed method in this article carries

out sample clustering and subtype discovery. Zhang et al. utilize multiplicative update rule

while the proposed method uses even better alternating least squares algorithm.

During the flow of genetic information within a biological system, the DNA is transcribed

to mRNA and mRNA is translated to protein. Also epigenetic modifications of genes by meth-

ylation and deletions/amplifications of sections of genome further alter the gene expression.

During this molecular process, the latent structure may or may not be seen consistently across

all genomic assays. Therefore platform specific data clustering may not be able to reveal

such latent structure. The integrative clustering not only strengthens this weakness but also

improves the statistical power of detection. Furthermore, all types of data may not be equally

informative and therefore context specific approach may be necessary in order to assign the

relative importance (weights) for the data in the clustering method when more is known about

the underlying properties of the data. The proposed integrative clustering approach allows

such user specified weights in the method.

In summary, as multiple types of data are increasingly available due to high throughput

technologies, an essence of integrative method of clustering has been more evident and atten-

tion has been diverted appreciably towards that direction. To this end, we propose unified

framework of clustering using intNMF for classifying the disease into distinct subtypes.

Table 2. Cross tabulation of intNMF cluster subtypes with (i) Expression cluster subtypes [44] and (ii) iCluster subtypes [37] using Glioblastoma

data. The summary table, followed by cross tabulation, represents somatic mutations in a few genes (highlighted by previous studies [44, 45]) presented as

percentage of their presence in each of the three integrative clusters. Graphical representation of this table has been provided with S8 Fig.

intNMF Total

C1 C2 C3

Expression Subtype Classical 2 0 12 14

Messenchymal 12 0 4 16

Neural 6 0 2 8

Proneural 1 12 4 17

Total 21 12 22 55

iCluster C1 1 0 19 20

C2 1 12 0 13

C3 19 0 3 22

Total 21 12 22 55

Somatic Mutation TP53 (%) 30 66.7 31.8

NF1 (%) 30 16.7 4.5

PTEN (%) 25 8.3 31.8

EGFR (%) 5 8.3 31.8

PIK3R1 (%) 0 25 18.2

PIK3CA (%) 0 8.3 9.1

RB1 (%) 15 0 4.5

ERBB2 (%) 15 16.7 9.1

https://doi.org/10.1371/journal.pone.0176278.t002
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Application of the method in both simulated and real data examples show that the method per-

forms as well as or better than existing methods by adding more flexibility and robustness for

using diverse types of data. The method is implemented in an R package available in CRAN

and is named intNMF.
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