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Simple Summary: Gallbladder cancer (GBC) is an aggressive disease with poor prognosis that
urgently needs risk biomarkers for prevention. Long noncoding RNAs (lncRNAs) have been linked
to various types of cancer and have good potential as circulating biomarkers. Prediction of lncRNA
expression based on genotype data may contribute to quantify individual GBC risk even without
direct lncRNA expression measurement. In this study, we investigate the relationship between GBC
risk and genotype-based expression of circulating lncRNAs.

Abstract: Long noncoding RNAs (lncRNAs) play key roles in cell processes and are good candi-
dates for cancer risk prediction. Few studies have investigated the association between individual
genotypes and lncRNA expression. Here we integrate three separate datasets with information on
lncRNA expression only, both lncRNA expression and genotype, and genotype information only
to identify circulating lncRNAs associated with the risk of gallbladder cancer (GBC) using robust
linear and logistic regression techniques. In the first dataset, we preselect lncRNAs based on ex-
pression changes along the sequence “gallstones→ dysplasia→ GBC”. In the second dataset, we
validate associations between genetic variants and serum expression levels of the preselected lncR-
NAs (cis-lncRNA-eQTLs) and build lncRNA expression prediction models. In the third dataset, we
predict serum lncRNA expression based on individual genotypes and assess the association between
genotype-based expression and GBC risk. AC084082.3 and LINC00662 showed increasing expression
levels (p-value = 0.009), while C22orf34 expression decreased in the sequence from gallstones to
GBC (p-value = 0.04). We identified and validated two cis-LINC00662-eQTLs (r2 = 0.26) and three
cis-C22orf34-eQTLs (r2 = 0.24). Only LINC00662 showed a genotyped-based serum expression associ-
ated with GBC risk (OR = 1.25 per log2 expression unit, 95% CI 1.04–1.52, p-value = 0.02). Our results
suggest that preselection of lncRNAs based on tissue samples and exploitation of cis-lncRNA-eQTLs
may facilitate the identification of circulating noncoding RNAs linked to cancer risk.

Keywords: gallbladder cancer; lncRNAs; eQTLs; genetic association study; molecular phenotypes

1. Introduction

Gallbladder cancer (GBC; International Classification of Diseases, 10th Revision, di-
agnosis code C23) is an aggressive malignancy responsible for around 85,000 deaths each
year worldwide [1]. GBC early symptoms are unspecific, and less than 20% of patients are
candidates for curative surgery at diagnosis. This translates into 5-year survival rates of 5%
to 30%, depending on the country at diagnosis [2–5]. GBC incidence and mortality vary
widely around the world, with about 65% of cases occurring in less developed countries [6].
Risk factors include the presence of gallstones (GS), female sex, high body mass index, and
Native American ancestry [7,8]. As GBC develops over 10–20 years, generally following
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the sequence of gallstones “GS→ dysplasia (Dys)→ GBC”, there is ample opportunity for
prevention [9].

Despite the large potential for primary prevention and early GBC diagnosis, especially
considering the possibility of prophylactic surgical removal of the gallbladder (cholecystec-
tomy), few studies have been conducted to identify GBC risk biomarkers.

Long noncoding RNAs (lncRNAs) are transcripts of more than 200 nucleotides that are
not translated into proteins [10]. More and more studies are reporting that lncRNAs play
crucial roles in the regulation of gene transcription, post-transcriptional and translational
processes, and epigenetic modifications [11]. Altered lncRNA expression has been shown
to be tightly correlated with the risk of multiple diseases, including cancer, and lncR-
NAs may have good potential to serve as biomarkers for risk prediction and therapeutic
intervention [12–14].

The expression of particular lncRNAs seems to depend on the individual genotype to
a certain extent. Single-nucleotide polymorphisms (SNPs) that modulate the expression
of molecular phenotypes are denominated expression quantitative trait loci (eQTL). They
may modulate the expression of chromosomally close (cis-eQTL) or distant transcripts
(trans-eQTL). Recently, an increasing number of studies have attempted to infer mRNA
expression based on genomewide SNPs, but the prediction of lncRNA expression relying
on individual genotypes is still at a very early stage [15–17].

In the present study, which is based on three independent Chilean datasets—Chile
shows one of highest GBC mortalities worldwide—we apply a three-stage approach to
identify circulating lncRNAs as GBC risk biomarkers that may inform current prevention
programs. We first preselect lncRNAs based on expression changes in gallbladder tissue
along the sequence “GS→ Dys→ GBC”. Then, we identify and validate lncRNA-eQTLs
in a second dataset. We finally predict the expression levels of circulating lncRNAs in a
third independent dataset and estimate the association between genotype-based lncRNA
expression and GBC risk.

2. Materials and Methods

To identify circulating lncRNAs associated with GBC risk, we applied a three-stage
approach that integrated three separated datasets with different information on lncRNA ex-
pression and individual genotypes. The first dataset (lncRNA preselection dataset) included
only data on lncRNA expression that was used to identify lncRNAs with monotonically
increasing or decreasing expression levels in gallbladder tissue along the model of GBC
development “GS → Dys → GBC”. A second, independent dataset that included both
lncRNA expression and genotype data (lncRNA-eQTL validation dataset) was used to
identify and validate genetic variants associated with the expression of the preselected
lncRNAs in serum (cis-lncRNA-eQTLs). Finally, the genotype-based expression in serum
was predicted in a third dataset with individual genotype information only (lncRNA-GBC
association dataset), and the association between GBC risk and predicted lncRNA serum
expression was quantified. Figure 1 represents the datasets used and the methods applied
in the present study.

2.1. RNA Extraction and Small RNA Sequencing

Formalin-fixed, paraffin-embedded (FFPE) gallbladder tissue specimens were obtained
from 98 patients in total (n = 31 GS; n = 35 Dys; n = 32 GBC). RNA was extracted from FFPE
sections using the AllPrep FFPE kit following Qiagen’s recommendations, and RNA quality
was controlled (High Sensitivity Genomic DNA, Advanced Analytical, United States, and
FFPE quality control kits, Illumina).

The NEBNext Small RNA kit (NEB) was used to produce RNA sequencing libraries,
which were sequenced on the HiSeq 2500 platform (Illumina, San Diego, CA, USA) to an
average depth of 18 M reads per sample. The applied RNA sequencing protocol has been
previously described in detail [18]. Briefly, our protocol enabled us to capture lncRNA
mapped fragments in the size range up to 47 base pairs. First, reads from the HiSeq 2500
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platform were adapter-trimmed (AdapterRemoval v2.1.7) [19]. Then, adapter-trimmed
reads were mapped to the human genome (hg38) by a Bowtie2 v2.2.9 aligner [20]. HTSeq
was used to count reads mapped to lncRNA regions in GENCODE v26 annotations [21,22].

Figure 1. Flowchart representing the three-stage approach used in the study.

2.2. DNA Extraction and Genotyping

Genomic DNA was extracted from peripheral blood or saliva using standard commer-
cial kits and following standard laboratory procedures. Intraplate and interplate replicates
and blinded duplicates were included (at 5%) as quality control measures. Study partic-
ipants were genotyped with Illumina’s OmniExpress or Global Screening arrays. Both
arrays included more than 700,000 genomewide SNPs. Genotypes were imputed with the
minimac4 imputation software and the TOPMed reference sample via the TOPMed impu-
tation server, accessible at https://imputation.biodatacatalyst.nhlbi.nih.gov/ (accessed on
1 August 2021) [23].

2.3. Patients and Statistical Analyses for lncRNA Preselection

Chilean patients with GS (those who underwent cholecystectomy without GBC find-
ings), Dys, and GBC were invited to participate. Except for two patients with GBC and
missing GS information, all the patients with GBC and Dys in the study carried GS. Upon
written informed consent, the patients were interviewed by the study coordinators, who
retrieved tissue samples and clinical information using standardized case report forms.
Samples stored for >5 years and patients with porcelain gallbladder, polyps, noncholesterol

https://imputation.biodatacatalyst.nhlbi.nih.gov/
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stones, or pancreatic/bile duct abnormalities were excluded. This cohort of patients has
previously been described in detail [24].

Read counts were transformed to log2 transcripts per million. Log2 expression values
with low variability (median absolute deviation (MAD) = 0) were excluded from subse-
quent statistical analyses. Quantile normalization was first applied to GS, Dys, and GBC
expression values separately, and then to the complete dataset. Principal component analy-
sis (PCA) was performed for an unsupervised examination of the global expression profiles
and identification of potential patients with outlying expression profiles. After PCA, the
Mahalanobis depth (MD) was calculated, and 5% of the samples with the lowest MD were
excluded. The R package “stats” was used for PCA and MD calculation [25].

LncRNA preselection relied on both nonparametric and machine learning (ML) tech-
niques, which were simultaneously performed to improve the robustness of our findings.
Nonparametric two-sided Jonckheere–Terpstra (J–T) tests with n = 5000 permutations were
conducted to identify lncRNAs with monotonically increasing or decreasing expression
levels in gallbladder tissue along the model of GBC development “GS→Dys→ GBC” using
the “JonckheereTerpstraTest” function of the R package “DescTools” [26]. Multiplicity-
corrected p-values were transformed into false discovery rates (FDRs).

The extreme gradient boosting (XGBoost) algorithm was used to train three-class
classification ML models. We utilized the R implementation (v3.5.3) of this algorithm
in the h2o R package (v3.32.1.5) [27]. A complete dataset was randomly separated into
training (n = 77) and test (n = 21) sets. The classes were balanced in the training dataset by
upsampling, resulting in 27 GS, Dys, and GBC samples per group. Fivefold cross validation
was utilized to tune hyperparameters of the model using only the training dataset. A
random grid search approach was applied. After cross validation, the best model with
the lowest mean per class error was selected. Then, the best model’s performance was
measured on the test dataset using both mean per class error and area under the ROC
curve (AUC) for multinomial models (i.e., weighted average AUC). Relative importance
values were extracted using the function “h2o.varimp”. Model parameters, R code, and
seed values are provided in the Supplementary Materials.

Figure 1 depicts the criteria applied to preselect the lncRNAs, which included: (i) J–T
FDR < 0.05 and relative importance higher than the median, (ii) they were annotated as
lncRNAs and were not duplicated, (iii) nonzero MAD log2 expression in the lncRNA-eQTL
validation dataset, and (iv) information available in the ncRNA-eQTL database.

2.4. Individuals and Statistical Analyses for lncRNA-eQTL Validation

The dataset used for the identification and validation of cis-lncRNA-eQTLs included
both genomewide genotype and serum lncRNA expression data for 110 participants in
two Chilean studies on chronic obstructive pulmonary disease (COPD, n = 22) and Cha-
gas disease (n = 88). Information on GS and cancer history was not available, but the
incidence of GS and cancer in the two studies should be representative of the general
Chilean population.

A preliminary list of cis-lncRNA-eQTLs potentially associated with our preselected
candidates was obtained from the ncRNA-eQTL database: http://ibi.hzau.edu.cn/ncRNA-
eQTL/ (accessed on 1 August 2021).

LncRNA read counts were log2-transformed and quantile-normalized. Genetic vari-
ants were filtered to exclude SNPs with a missing call rate higher than 5% or a minor allele
frequency (MAF) below 1%. Samples with a missing call rate over 5% were also filtered out.
Identity by descent (IBD) kinship coefficients between pairs of individuals were calculated,
and individuals within each related pair (IBD > 0.1) with the lowest call rate were conse-
quently eliminated. After linkage disequilibrium (LD) pruning at r2 > 0.1, 36,175 variants
from the GSA array were used for the subsequent genetic PCA, and MDs were calculated
to exclude participants with departing genotypes (5% of individuals with the lowest sta-
tistical depth). MAF and call rates were calculated using the R functions “col.summary”
and “row.summary” available at Bioconductor’s package “snpStats” [28]. The R pack-

http://ibi.hzau.edu.cn/ncRNA-eQTL/
http://ibi.hzau.edu.cn/ncRNA-eQTL/
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age “SNPRelate” was used to calculate IBD kinship coefficients and perform LD pruning
(functions: “snpgdsIBDMoM”, “snpgdsLDpruning”) [29]. Genetic PCA was conducted
using the eigenstrat function available at: www.popgen.dk/software/index.php/Rscripts
(accessed on 1 August 2021).

Cis-lncRNA-eQTL associations found in the ncRNA-eQTL database were validated
using our own lncRNA-eQTL validation dataset. Robust linear regression models were
fitted considering the individual age and gender and the first 10 genetic PCs:

log2 expression ∼ SNP + age + gender + 10PCs (1)

Four penetrance models were investigated for each genetic variant in the linear regres-
sion models: Additive (count of major alleles), Three-Genotype (genotype as a categorical
variable), Dominant (at least one affect allele vs. the other genotype), Recessive (two affect
alleles vs. the other genotypes).

After considering genetic variants separately, we included combinations of the iden-
tified cis-lncRNA-eQTLs in the fitted robust linear regression models in addition to age,
gender, and the first 10 PCs. The model with the lowest robust Akaike’s information
criterion (RAIC) was selected for subsequent prediction of log2 expression levels in serum.

Robust linear regression models were fitted using the function “rlm” in the R package
“MASS” [30]. The corresponding p-values were obtained using the function “rob.pvals”
from the R package “clickR” [31]. RAIC for each model was calculated using the function
“AIC” in the R package “AICcmodavg” [32].

2.5. Patients and Population-Based Controls and Statistical Analyses on the Association between
Genotype-Based lncRNA Expression and GBC Risk

Serum lncRNA expression was predicted based on individual genotype data from
540 Chilean GBC patients and 2397 population-based controls. GBC patients were recruited
between 2014 and 2020. Except for a few patients who were diagnosed without undergoing
cholecystectomy, the majority of the GBC patients (77%) were diagnosed after surgical
removal of the gallbladder. Population-based controls were selected from the Chilean
subset of the Consortium for the Analysis of the Diversity and Evolution of Latin America
(CANDELA) and from Chilean studies on COPD and Chagas disease with GS and cancer
incidences representative of the general Chilean population [7,8,33].

Individual lncRNA log2 serum expression levels were predicted considering the
effect estimates from the linear robust regression models fitted to the lncRNA-eQTL val-
idation dataset (βi) and the individual genotype (Ai) encoded according to the selected
penetrance model:

Predicted log2 serum expression =
k

∑
i=1

βi Ai (2)

Note that, due to the discrete nature of individual genotypes, predicted expression
levels are also discrete.

Finally, the association between genotype-based serum lncRNA expression and GBC
risk was assessed by robust logistic regression models using a tuning constant c in Hu-
ber’s psi-function equal to 1.2, considering the individual age and gender, and the first
10 genetic PCs:

GBC status ∼ Predicted log2 serum expression + age + gender + 10PCs (3)

Robust logistic regression models were fitted using the function “glmrob” from the
R package “robustbase” [34]. Plots were generated using the R package “ggplot2” [35].
Analyses were all conducted in R, version 4.0.3.

www.popgen.dk/software/index.php/Rscripts
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3. Results
3.1. Preselected lncRNAs

We detected a total of 7500 lncRNAs in the preselection dataset. Among them,
7168 lncRNAs showed a MAD of 0 and were excluded. PCA results considering the
remaining 332 lncRNAs are shown in Figure 2A. Five individuals with the lowest statis-
tical depth consistent with outlying global expression profiles were also excluded. The
final preselection dataset comprised 332 lncRNAs and 93 samples (n = 28 GS, n = 34 Dys,
n = 31 GBC).

Multiplicity-corrected p-values from two-sided J–T tests identified 36 lncRNAs with
monotonically increasing or decreasing expression levels (FDR < 0.05) along the sequence
“GS→ Dys→ GBC” (Figure 2B, Table S1).

The ML model separated between GS, Dys, and GBC with an AUC of 0.88 and a mean
per class error of 0.23. The best model selected 76 lncRNAs as class predictors. Among them,
39 lncRNAs with relative importance higher than the median were selected (Figure S1).

1 
 

 

  
Figure 2. LncRNA preselection. (A) PCA based on normalized log2 expression counts for lncRNAs
with a nonzero MAD expression in the preselection dataset. (B) Volcano plot for the lncRNAs with
nonzero MAD expression investigated in the lncRNA preselection dataset. The y-axis shows −log10
p-values from J–T tests. The black line represents the applied threshold (FDR = 0.05). The red dots
highlight lncRNAs preselected according to both J–T tests and ML, which showed low expression
variability (MAD = 0) in serum samples. The blue dots show the six candidates that fulfilled both
J–T and ML preselection criteria, with nonzero MAD expression in serum samples. (C) Dot-and-box
plots of log2 expression in GS, Dys, and GBC tissue samples for the three preselected lncRNAs.
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Eighteen lncRNAs fulfilled both nonparametric J–T test and ML selection criteria.
All were annotated as lncRNAs, and none was duplicated. Six out of the 18 lncRNAs
showed a nonzero MAD log2 expression in serum samples from the cis-lncRNA-eQTL
validation dataset. Among them, 3 lncRNAs (AC084082.3, LINC00662, and C22orf34) were
found in the ncRNA-eQTL database and consequently fulfilled all the preselection criteria
for subsequent lncRNA-eQTL validation (Figure 1). The expression of AC084082.3 and
LINC00662 monotonically increased with advancing malignancy, while the expression
level of C22orf34 decreased in the sequence from GS to GBC (Figure 2C).

Table 1 shows the expression of AC084082.3, LINC00662, and C22orf34lnc in GS, Dys,
and GBC tissue samples. With the exception of LINC00662, larger average expression
differences were found between GS and GBC than between GS and Dys. As expected, the
investigated patients included more women than men. Age-stratified analyses revealed
larger expression differences for LINC00662 in younger patients and larger expression
differences for C22orf34lnc in older patients, although the differences in differences did not
reach statistical significance (overlapping 95% confidence intervals).

Table 1. FFPE tissue expression of the three preselected lncRNAs in the complete dataset and stratified
results by gender and age.

Subgroup lncRNA FDR *

log2 Expression in
GS Samples

Median
(5th; 95th

Percentiles)

log2 Expression
Difference †

Dys vs. GS
Estimate
(95% CI)

log2 Expression
Difference †

GBC vs. GS
Estimate
(95% CI)

All AC084082.3 0.009 8.23 (1.45–9.93) 0.51 (0.04; 0.99) 0.76 (0.09; 1.44)
n = 28 GS; n = 34 Dys; LINC00662 0.009 1.48 (0.55–4.38) 1.09 (0.62; 1.56) 0.86 (0.30; 1.42)

n = 31 GBC C22orf34 0.04 1.44 (0.48–3.68) −0.24 (−0.49; 0.005) −0.28 (−0.54; −0.01)
Women AC084082.3 0.04 8.23 (1.45–9.78) 0.67 (0.18; 1.15) 0.89 (0.15; 1.63)

n = 26 GS; n = 20 Dys; LINC00662 0.01 1.47 (0.54–4.07) 1.09 (0.61; 1.56) 1.01 (0.45; 1.57)
n = 24 GBC C22orf34 0.02 1.44 (0.48–3.80) −0.30 (−0.57; −0.03) −0.34 (−0.63; −0.04)

Men AC084082.3 0.99 10.01 −0.52 (−1.02; −0.03) −0.30 (−2.19; 1.59)
n = 1 GS; n = 8 Dys; LINC00662 0.99 4.53 −0.52 (−1.24; 0.21) −1.09 (−2.85; 0.68)

n = 6 GBC C22orf34 0.99 0.49 0.43 (−0.66; 1.53) 0.27 (−0.19; 0.72)
Age < 60 AC084082.3 0.43 8.23 (1.45–10.19) 0.73 (0.13; 1.33) 0.64 (−0.22; 1.50)

n = 18 GS; n = 11 Dys; LINC00662 0.51 1.81 (0.58–4.33) 0.93 (0.30; 1.55) 0.66 (−0.13; 1.45)
n = 9 GBC C22orf34 0.58 1.43 (0.47–3.08) −0.35 (−0.72; 0.02) −0.29 (−0.67; 0.09)
Age > =60 AC084082.3 0.17 8.96 (1.47–9.86) 0.29 (−0.33; 0.90) 0.84 (−0.10; 1.77)

n = 9 GS; n = 16 Dys; LINC00662 0.05 1.46 (0.78–3.84) 1.24 (0.67; 1.81) 1.06 (0.36; 1.77)
n = 18 GBC C22orf34 0.17 1.46 (0.50–3.44) −0.18 (−0.52; 0.16) −0.34 (−0.68; 0.006)

* FDR: false discovery rate from two-sided Jonckheere–Terpstra test. Small p-values suggest monotonically
increasing or decreasing expression levels. † Average log2 expression differences were estimated using robust
linear regression.

3.2. Validated lncRNA-eQTLs

In the lncRNA-eQTL validation dataset, 460,632 SNPs with low MAF, 4 individu-
als with a low call rate, and 8 related individuals (IBD coefficient > 0.1) were excluded.
Figure 3A shows the results from the genetic PCA. After exclusion of 5 outlying individuals
with the lowest statistical depth, the final dataset included 93 individuals.

According to the ncRNA-eQTL database, 161 cis-lncRNA-eQTLs were associated with
AC084082.3 expression. Ten of them were excluded due to a low MAF or call rate, and ro-
bust linear regression did not identify any association with the expression of AC084082.3 in
the lncRNA-eQTL validation dataset considering the four investigated penetrance models.
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Figure 3. LncRNA-eQTL validation. (A) Genetic PCA based on LD-pruned genotypes from the
lncRNA-eQTL validation dataset. (B,C) Measured vs. predicted log2 expression for LINC00662 and
C22orf34, respectively.

Among the 1576 cis-lncRNA-eQTLs associated with LINC00662 expression according
to the ncRNA-eQTL database, 1388 SNPs were available in the lncRNA-eQTL validation
dataset, fulfilled quality control criteria, and were retained for subsequent analyses. Robust
linear regression identified 2 cis-LINC00662-eQTLs: rs11083486 (associated with the four
penetrance models) and rs142521755 (dominant association). Rs11083486 and rs142521755
are not in LD (r2 = 0.001), which indicates independent associations. The best model to
predict LINC00662 expression (lowest RAIC = 357) included rs11083486 (additive pene-
trance) and rs142521755 (dominant penetrance). We examined the relative relevance of the
SNPs for the prediction of LINC00662 expression by comparing the coefficient of multiple
determination (r2) for the selected full regression model versus a reference model that
only included age, gender, and the first 10 PCs. The proportion of variance in LINC00662
expression explained by the full regression model was r2 = 0.26, compared with r2 = 0.17
for the reference model.

A total of 396 cis-lncRNA-eQTLs were associated with C22orf34 expression according
to the ncRNA-eQTL database, but 18 SNPs did not fulfill quality control criteria. We
reproduced the association between 45 SNPs and C22orf34 expression in the lncRNA-
eQTL validation dataset. A total of 42 SNPs were excluded after LD pruning, resulting
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in 3 cis-C22orf34-eQTLs: rs5770650 and rs9628049 (both associated with the additive and
dominant models) and rs6009824 (three-genotype model). The best model for C22orf34
prediction (lowest RAIC = 214.5) included rs5770650 (additive penetrance), rs9628049
(additive penetrance), and rs6009824 (three-genotype). Additionally, for the prediction of
C22orf34 expression, the proportion of variance explained by the full regression model was
r2 = 0.24, compared with r2 = 0.06 for the reference model without cis-C22orf34-eQTLs.

Panels B and C in Figure 3 compare the measured log2 expression with the genotype-
based expression of LINC00662 and C22orf34, respectively. All identified cis-lncRNA-
eQTLs are shown in Table S2, and the validated cis-lncRNA-eQTLs are shown in Table 2.

Table 2. Identified and subsequently validated cis-lncRNA-eQTLs for the three preselected lncRNAs.

lncRNA

log2
Expression
in Serum
Median

(5th; 95th
Percentiles)

Chromosomal
Location (GRCh38)

No. of
Candidate

cis-lncRNA-
eQTLs in the
ncRNA-eQTL

Database

No. of
Validated

cis-lncRNA-
eQTLs

No. of
cis-lncRNA-

eQTLs Used as
Predictors

Adjusted
r2 for the Best

Prediction
Model

AC084082.3 6.59 (1.74; 9.06) chr8:66112667–66115207 161 - - -
LINC00662 3.40 (0.35; 5.60) chr19:27684580–27793940 1576 2 2 0.26

C22orf34 0.58 (0.03; 2.65) chr22:49414524–49657542 395 45 3 0.24

3.3. LncRNAs with Genotype-Based Plasma Expression Associated with GBC Risk

The final goal of this study was the identification of circulating lncRNAs that may
serve as biomarkers for GBC risk prediction. We thus investigated the association between
predicted genotype-based lncRNA expression levels and GBC risk for LINC00662 and
C22orf34 in an independent dataset with 540 GBC patients and 2397 population-based
controls (lncRNA-GBC association dataset, Figure 1). Six expression levels were predicted
for LINC00662 (additive model 3 categories × dominant model 2 categories) and 10 levels
for C22orf34 (additive model × additive model × three-genotype), but not all categories
were represented (Figures 4 and S2).

In agreement with expression measurements in gallbladder tissue, genotype-based
expression of LINC00662 in serum was higher in GBC patients than in population-based
controls, translating into a 25% increased risk of GBC per log2 expression unit (OR = 1.25,
95% CI = 1.04–1.52, p-value = 0.02, Table 3 and Figure 4).

Table 3. Predicted genotype-based log2 expression of LINC00662 and C22orf34 and their association
with GBC risk in the lncRNA-GBC association dataset.

lncRNA Median Predicted
log2 Expression OR * (GBC) 95% CI † p-Value

LINC00662 1.27 1.25 1.04; 1.52 0.02
C22orf34 0.39 0.90 0.61; 1.32 0.59

* OR: odds ratio, adjusted by age and gender. † CI: confidence interval.

The genotype-based expression of C22orf34 was lower in GBC patients than in
population-based controls, but the GBC risk increase did not reach statistical significance
(OR = 0.90, 95% CI = 0.61–1.32, p-value = 0.59, Table 3 and Figure S2).
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Figure 4. Predicted genotype-based log2 LINC00662 expression in the lncRNA-GBC association
dataset. Rhombuses represent the average genotype-based log2 expression in population-based
controls and GBC patients.

4. Discussion

In the present study, we aimed at the identification of circulating lncRNAs as poten-
tial biomarkers for GBC prevention utilizing genotype-based lncRNA expression levels.
GBC is relatively rare in high-income countries, but common in several low- and middle-
income countries and extremely aggressive. The disease develops over the course of 10 to
20 years, facilitating the implementation of primary and secondary personalized preven-
tion strategies. Individual estimates of GBC risk would guide surveillance and aid personal
decisions on the possible benefit of prophylactic cholecystectomy for persons at high risk
(e.g., first-degree relatives of GBC patients, severely obese women, and patients with large
GS). A reduction in the number of unnecessary cholecystectomies, while simultaneously
detecting GBC with high sensitivity, would be particularly relevant in low-income regions
with high GBC incidences and limited financial and clinical resources.

We thus applied a multistage approach through a combination of three independent
Chilean datasets with information on (1) lncRNA expression only, (2) lncRNA expression
and genotype information, and (3) genotype information only. Using both nonparametric
(J–T test) and ML (XGBoost algorithm) techniques, we preselected three lncRNAs that
showed gradual changes in tissue expression along the sequence of GS, Dys, and GBC.
AC084082.3 and LINC00662 showed increasing expression levels with advancing malig-
nancy, while the expression of C22orf34 decreased along the sequence from GS to GBC.
Then, we were able to identify and validate two cis-LINC00662-eQTLs and three cis-
C22orf34-eQTLs. Finally, in our last independent dataset with genotype information only,
we predicted the expression of LINC00662 and C22orf34 relying on individual genotypes.
Results from robust logistic regression revealed an association between the genotype-based
expression in serum of LINC00662 and GBC risk.

The use of lncRNAs as biomarkers for predicting GBC holds great potential, as lncRNA
expression has been shown to play an important role in tumorigenesis and metastasis of
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many human cancers [12–14]. Moreover, lncRNAs are highly stable in serum even under
extreme temperature and pH conditions and long-term storage. Therefore, they are good
candidates for predicting GBC risk and preventing GBC in low-income regions.

Whereas, to our knowledge, the roles of AC084082.3 and C22orf34 in tumors have not
been reported in the literature to date, several studies indicate that the preselected candidate
LINC00662, which showed a genotype-based expression in serum associated with GBC
risk, might be a promising biomarker for cancer diagnosis and therapy. LINC00662 was
first reported to be highly expressed in patients with lung squamous cell carcinoma [36].
Another study on lung cancer highlighted that the expression of LINC00662 promotes
cell invasion and contributes to cancer stem cell-like phenotypes in lung cancer cells [37].
Bioinformatics analysis in gastric cancer suggested that LINC00662 overexpression is tightly
related to poor patients’ prognosis [38]. Furthermore, overexpression of LINC00662 has
also been observed in other types of tumors, including breast, cervical, and prostate cancers
and chordoma, glioma, and hepatocellular carcinoma [39]. LINC00662 has been shown to
participate in regulating mRNA stability as a mediator of gene expression, and to participate
in different signaling pathways [39]. Unfortunately, the ncRNA-eQTL database does not
include specific information on lncRNA-eQTLs for GBC; however, some of our validated
lncRNA-eQTLs are linked to other cancer types [40]. Interestingly, the association between
the expression of LINC00662 and rs11083486 was also observed in patients with bladder
carcinoma, whereas rs5770650 was found to be associated with C22orf34 expression in
hepatocellular carcinoma.

Overall, our results confirm that exploiting individual genotype data to predict ncRNA
expression has good potential. The novelty of our approach relies on the combination of
three independent datasets, in which we performed (1) lncRNA candidate preselection,
(2) cis-lncRNA-eQTL validation, and (3) association analysis between genotype-based
lncRNA expression and GBC risk. Instead of using standard statistical methods to detect
differentially expressed lncRNAs, we combined nonparametric and ML techniques and
considered only lncRNAs preselected through both methods. Adjustment for potential
confounders and a population substructure in the lncRNA-eQTL stage represented another
strength of our study. The potential of our approach is also demonstrated by the association
found in the prediction stage. Only the genotype-based expression of LINC00662 was
associated with GBC risk, and the consistent results in the preselection stage (based on
FFPE tissue samples) and prediction stage (based on individual genotypes) add plausibility
to our findings.

The small sample size of the preselection and cis-lncRNA-eQTL validation datasets
was a limitation of our study. With a larger number of patients, we probably could have
validated more associations and possibly preselected more lncRNA candidates. The low
number of validated associations compared with those identified in the ncRNA-eQTL
database may also be related to differences in genetic background between the Chilean
individuals in our three datasets and the investigated patients in the ncRNA-eQTL database.
In addition, molecular and genetic differences between datasets can translate into inability
to validate some promising candidates. For example, many of the preselected lncRNAs
showed a highly variable expression in FFPE tissue but low variability in serum samples
and were therefore excluded from subsequent analyses. A limitation, but also a strength, of
the present study was the directionality of the associations investigated. Predicting lncRNA
expression based on individual genotypes allows the association “lncRNA→ GBC” to be
examined, and associations identified in this direction are particularly relevant for risk
prediction and disease prevention. However, the reverse association “GBC→ lncRNA”
cannot be investigated using the approach described in this study.

5. Conclusions

GBC is relatively rare in high-income countries and understudied. Furthermore,
genetic studies on molecular phenotypes are mostly based on individuals of European
descent, and lncRNA and genotype data from Latin Americans are still limited. In this



Cancers 2022, 14, 634 13 of 15

study, we aimed to identify risk biomarkers for GBC prevention in Chile, which has one
of the highest GBC mortality rates in the world. We identified LINC00662 as a potential
candidate, but the increased LINC00662 expression in serum samples from GBC patients
needs to be validated in independent studies. In addition, it would be interesting to
examine the potential of LINC00662 as a GBC risk biomarker in other world populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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dataset; Table S1: 36 preselected lncRNA candidates using J–T tests; Table S2: Identified and validated
cis-lncRNA-eQTLs for the three preselected candidates.
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