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Purpose: To develop and validate a deep learning model that can transform color fundus (CF) photography
into corresponding venous and late-phase fundus fluorescein angiography (FFA) images.

Design: Cross-sectional study.
Participants: We included 51 370 CF-venous FFA pairs and 14 644 CF-late FFA pairs from 4438 patients for

model development. External testing involved 50 eyes with CF-FFA pairs and 2 public datasets for diabetic
retinopathy (DR) classification, with 86 952 CF from EyePACs, and 1744 CF from MESSIDOR2.

Methods: We trained a deep-learning model to transform CF into corresponding venous and late-phase FFA
images. The translated FFA images’ quality was evaluated quantitatively on the internal test set and subjectively on
100 eyes with CF-FFA paired images (50 from external), based on the realisticity of the global image, anatomical
landmarks (macula, optic disc, and vessels), and lesions. Moreover, we validated the clinical utility of the translated
FFA for classifying 5-class DR and diabetic macular edema (DME) in the EyePACs and MESSIDOR2 datasets.

Main Outcome Measures: Image generation was quantitatively assessed by structural similarity measures
(SSIM), andsubjectivelyby2clinical expertsona5-point scale (1 refers realFFA); intragrader agreementwasassessed
by kappa. The DR classification accuracy was assessed by area under the receiver operating characteristic curve.

Results: The SSIM of the translated FFA images were > 0.6, and the subjective quality scores ranged from
1.37 to 2.60. Both experts reported similar quality scores with substantial agreement (all kappas > 0.8). Adding
the generated FFA on top of CF improved DR classification in the EyePACs and MESSIDOR2 datasets, with the
area under the receiver operating characteristic curve increased from 0.912 to 0.939 on the EyePACs dataset and
from 0.952 to 0.972 on the MESSIDOR2 dataset. The DME area under the receiver operating characteristic curve
also increased from 0.927 to 0.974 in the MESSIDOR2 dataset.

Conclusions: Our CF-to-FFA framework produced realistic FFA images. Moreover, adding the translated
FFA images on top of CF improved the accuracy of DR screening. These results suggest that CF-to-FFA
translation could be used as a surrogate method when FFA examination is not feasible and as a simple add-
on to improve DR screening.
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Diabetic retinopathy (DR) is a retinal microvascular
complication of diabetes and a leading cause of vision loss
and blindness.1 The condition is characterized by structural
and functional abnormalities in the retinal microvasculature,
resulting in capillary occlusion, leakage, retinal ischemia,
and neovascularization. An accurate screening is essential
for the early detection and monitoring of DR.

Fluorescein angiography (FFA) is a crucial procedure for
detecting lesions of the blood-retinal barrier, guiding inter-
vention strategies, and monitoring the treatment response of
DR. However, FFA is invasive, requiring the intravenous
ª 2023 by the American Academy of Ophthalmology
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injection of a fluorescent dye, and carries a risk of severe
side effects including nausea, heart attack, and anaphylactic
shock.2 As a result, FFA is not suitable for routine
community screening for DR, and should only be
performed in settings with close monitoring and trained
technicians. Therefore, developing a noninvasive, safe,
and low-cost alternative to FFA is imperative, particularly
in regions where DR prevalence is increasing.3

Color fundus (CF) photography is a commonly used
method to screen and monitor DR. Color fundus images
share important anatomical features with FFA, making them
1https://doi.org/10.1016/j.xops.2023.100401
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a potential source for generating realistic FFA images.
Generative adversarial networks (GANs) offer a promising
framework for generating realistic images in this process.4

Multiple GAN-based models have been implemented in
ophthalmic imaging for tasks such as treatment prediction,
domain transfer, image denoising, super-resolution, data
augmentation, and image segmentation.5,6 Several
exploratory studies have demonstrated the feasibility of
using GANs for CF-to-FFA translation.7e12 Recently,
Huang et al reported a GAN model for branch retinal vein
occlusion-lesion augmented CF-to-FFA translation with a
mean structural similarity measure (SSIM) of 0.536. How-
ever, these exploratory studies were limited by small sample
sizes (usually < 100 patients) and the inability to generate
various pathological changes, such as microaneurysms,
neovascularization, and ischemia. To optimize their clinical
utility, further research is required. The recent proposal of
Gradient Variance loss13 could potentially enhance image
generation by paying closer attention to the high-
frequency components, thereby improving the integrity of
structural and lesional generation.

The main objective of our study was to create and vali-
date a GAN model that could generate realistic FFA images
from CF images by using a substantial clinical dataset. To
test our model’s reliability, we used external CF-FFA pairs.
Additionally, we aimed to evaluate its potential for
improving DR screening by using EyePACs and MESSI-
DOR2 datasets. Our method of translating CF images to
FFA images via a GAN model represents a unique and
innovative alternative to invasive FFA procedures, and has
the potential to enhance retinal disease screening.
Methods

Data

We retrospectively collected a total of 13 594 CF images and
396 232 FFA images from 4829 patients who underwent FFA
examination between 2016 and 2019 from Zhongshan Ophthalmic
Center, Sun Yat-sen University. All patient data were anonymized
and deidentified. Color fundus images were obtained using Topcon
TRC-50XF and Zeiss FF450 Plus (Carl Zeiss, Inc) cameras, with
resolutions ranging from 1110 � 1467 to 2600 � 3200. Fundus
fluorescein angiography images were obtained using Zeiss FF450
Plus and Heidelberg Spectralis (Heidelberg Engineering) cameras,
with a resolution of 768 � 768.

To validate the generalizability of our model, we retrospectively
collected 50 paired CF and FFA images with DR, from Renji
Hospital affiliated with Shanghai Jiao Tong University School of
Medicine. All images were captured using a Zeiss FF450 Plus
camera.

To validate the clinical utility of the translated FFA images, we
utilized 2 publicly available datasets commonly used in the
development and testing of DR detection: the EyePACs and
MESSIDOR2.14 These datasets were chosen to evaluate the
effectiveness of our approach in improving DR screening. The
EyePACs dataset consists of 88 702 fundus images captured
under various conditions and with various devices at multiple
primary care sites throughout California and elsewhere. The
MESSIDOR2 dataset includes bilateral images from 874 patients
(comprising 1748 images) captured using a Topcon TRC NW6
nonmydriatic fundus camera with a 45-degree field of view.
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Diabetic retinopathy was graded according to the ETDRS scale on
a scale of 0 to 4 (0 ¼ no DR, 1 ¼ mild nonproliferative DR,
2 ¼ moderate nonproliferative DR, 3 ¼ severe nonproliferative
DR, and 4 ¼ proliferative DR, based on ETDRS grading15) in both
datasets, with MESSIDOR2 also containing labels for diabetic
macular edema (DME). Our analysis was restricted to gradable
images from both datasets. Table 1 presents the dataset
characteristics.

The study adheres to the tenets of the Declaration of Helsinki.
The institutional review board approved the study
(No.2021KYPJ164-3) and individual consent for this retrospective
analysis was waived.

CF and FFA Matching

We performed a matching of CF and FFA images from the same
eye and visit. To achieve pixel-level image matching, we extracted
retinal vessels from CF images using the retina-based microvas-
cular health assessment system16 and vessels from FFA images
using a deep learning model.17 First, FFA images from the same
eye were registered, and then they were registered with CF
images. Key points were detected from the corresponding vessel
map using the AKAZE (Accelerated KAZE) key point detector18

for feature matching, and random sample consensus19 was used
for generating homography matrices and outlier rejection. To
exclude erroneously registered pairs, we added a validity
restriction that restricted the value of the rotation scale to 0.8 to
1.3 and the absolute value of the rotation radian to < 2 before
the warping transformation. We also filtered out image pairs with
poor registration performance, i.e., dice coefficient < 0.5, which
was set empirically based on the dataset in our experiments.

CF to FFA Translation

We used CF images as the input and corresponding real venous and
late-phase FFA images as the ground truth to train the model. To
reduce variation, we used the cut-off range of 40 seconds to 1.5
minutes for venous-phase and 5 to 6 minutes for late-phase FFA.
The images were split at a ratio of 8:1:1 for training, validation, and
testing on a patient level. During training, the images were resized
to 512 � 512 and fed into pix2pixHD,20 which is a popular GAN
model that can translate images into different domains using a
minimax game during training, where the generator G tries to
generate a realistic-looking FFA image to fool the discriminator
D, while the discriminator D aims to distinguish the generated
image from the real one. The generator was constructed with a
sequence of stacked transposed convolution layers, facilitating
incremental enhancement of image resolution. It was enriched by
integrating skip connections, and amalgamating low-level and
high-level features to uphold details and contextual information.
This strategy enabled the generator to progressively yield intricate
images resembling real FFA images. The discriminator was a
multiscale convolutional neural network that divided the image
into multiple patches and judged the fidelity patch by patch, thus
helping to generate high-resolution FFA images closer to the real
one. To enhance the generation of high-frequency components,
including retinal structure and lesions, we added Gradient Variance
loss13 as a supplementary term within the existing loss functions of
the pix2pixHD generator. As a result, the comprehensive loss
within the modified Pix2pixHD framework encompasses GAN
loss, Feature Matching loss, Content loss, and Gradient Variance
loss. To prevent overfitting, we conducted extensive data
augmentations during training, including random resized crops
(at a scale of 0.3e3.5), random horizontal or vertical flipping,
and a random rotation (0e45 degrees). We trained the models
with a batch size of 4 and a learning rate of 0.0002, and a total



Table 1. Dataset Characteristics

N No DR Mild Moderate NPDR Severe NPDR PDR

Model Development
CF-FFA pairs 66 014 28 628 (43.4%) 12 386 (18.8%) 9486 (14.4%) 4044 (6.1%) 11 470 (17.4%)

External validation
CF and FFA ex 50 2 (4.0%) 5 (10.0%) 14 (28.0%) 22 (44.0%) 7 (14.0%)
EyePACs 86 952 64 762 (74.5%) 7551 (8.7%) 10 955 (12.6%) 1943 (2.2%) 1741 (2.0%)
MESSIDOR2 1744 1017 (58.3%) 270 (15.5%) 347 (19.9%) 75 (4.3%) 35 (2.0%)

DME
yes no

1593 (91.3%) 151 (8.7%)

CF ¼ color fundus photography; DME ¼ diabetic macular edema; DR ¼ diabetic retinopathy; FFA ¼ fundus fluorescein angiography; N ¼ number of
images; NPDR ¼ nonproliferative diabetic retinopathy; PDR ¼ proliferative diabetic retinopathy.
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of 50 epochs were preset for each training. The training employed
the Adam optimizer with parameters beta1 set at 0.5 and beta2 at
0.999.
Assessment of CF-to-FFA Translation
Performance

Objective Evaluation. To assess the quality of the generated im-
ages, we used 4 standard objective measures commonly utilized in
image generation for our internal test set: Fréchet inception dis-
tance (FID),21 SSIM,22 mean absolute error (MAE), and the peak
signal-to-noise ratio (PSNR). The FID measures the distance be-
tween feature vectors calculated for real and generated images
using the Inception V3 model. The coding layer of this model is
used to capture computer-vision-specific features of an input im-
age, then these activation functions are calculated for a group of
original and generated images and summarized as multivariate
Gaussian by calculating the mean and covariance of the images.
The distances between the original and generated images are then
calculated as the Fréchet distance. A lower FID score indicates
higher quality of generated images and a score of 0.0 means the
generated images are perfectly consistent with the original ones.
Structural similarity measures is an objective image quality metric
under the assumption of human visual perception; it compares local
patterns of pixel intensities that have been normalized for lumi-
nance and contrast. The value of SSIM ranges from 0 to 1, where 1
represents complete similarity and 0 indicates no similarity.23 The
MAE is an intensity-based metric that measures the mean absolute
pixel difference for the generated image compared to the original
one. A lower MAE demonstrates better image quality, as it reflects
a smaller average difference between synthetic and real images.24

Peak signal-to-noise ratio is an engineering term for the ratio
between the maximum possible power of a signal and the power
of corrupting noise that affects the fidelity of its representation.
Peak signal-to-noise ratio is defined via the mean squared error,
describing the distortion and noise between generated and
original images. Higher PSNR suggests higher image quality
with less distortion and noise.25

Subjective Evaluation. Fifty images from each of the internal
and external test sets were randomly assigned to 2 experienced
ophthalmologists (F.S. and S.H.) for visual quality assessment. The
ophthalmologists subjectively rated the quality of the translated
images, including the overall authenticity and the validity of
anatomical structures and pathological lesions, on a scale of 1 to 5
(1 ¼ excellent, 2 ¼ good, 3 ¼ normal, 4 ¼ poor, and 5 ¼ very
poor), with score 1 referring to the image quality of the real FFA
image. Fig S1 demonstrates the grading criteria. Interrater
agreement was evaluated using Cohen’s linearly weighted kappa
score,26 which ranges from �1 to 1. It can be interpreted as
follows: 0.40 to 0.60 represents a moderate agreement, 0.60 to
0.80 represents a substantial agreement, and 0.80 to 1.00
represents an almost perfect agreement.

DR Classification. A comparative study was conducted to
assess how adopting generated FFA images may improve the ac-
curacy of DR classification. Experiments were done using the
Swin-transformer27 model under the same hyperparameter setting
to classify DR based on CF, CF plus the generated venous FFA,
and CF plus the generated venous plus late-phase FFA images.
The experiment was conducted on 2 datasets, with DR classes of
0 to 4 on both EyePACs and MESSIDOR2 datasets, and with or
without DME on the MESSIDOR2 dataset. In experiments where
the generated FFA images were added, the CF and generated FFA
images were fed into the Swin-transformer and encoded into em-
beddings of length 512, and the embeddings were concatenated
and passed through fully-connected layers and a softmax layer to
obtain the classification output. We used the Swin Transformer
model because its capacity to capture both local and global re-
lationships makes it ideal for DR classification. Its patch-based
attention mechanism accommodates the processing of high-
resolution retinal images and enables effective multiscale anal-
ysis, which is suitable for identifying microaneurysms and other
lesions. Furthermore, the Swin Transformer excels at capturing
long-range dependencies crucial for detecting lesions spanning
extensive areas. The training, validation, and test sets were divided
in a ratio of 6:2:2. Images were resized to 512*512, and augmented
with random horizontal flips and random rotations of �30 to 30
degrees during training. We used Adam optimizer with a learning
rate of 1e-5 and a batch size of 4. Each experiment was trained for
30 epochs, and the models with the highest area under the receiver
operating characteristic curve value on the validation set were used
for testing. On the test set, we calculated the F1-score, sensitivity,
specificity, accuracy, and area under the receiver operating char-
acteristic curve for assessing DR classification performance. To
obtain fine-grained class-level performance, we also provided
confusion matrixes.

We used Pytorch to develop the deep learning algorithm and
trained the models on an NVIDIA GeForce RTX 3090 card.
Results

A total of 1984 CF and 359 335 FFA images were excluded
from the analysis, including those that were not macular
centered, failed CF-FFA pairwise matching, or did not
belong to the venous or late phase. The final dataset
included 51 370 venous CF-FFA pairs and 14 644 late-phase
3



Figure 1. Flow chart of the study. CF ¼ color fundus photography; FFA ¼ fundus fluorescein angiography; GAN ¼ generative adversarial networks.
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pairs from 4438 participants for model development. The
medium (interquartile range) age of the participants was
51.47 (25.39) years, and 2430 (54.8%) were male. Of these
participants, the majority were diagnosed with eye diseases,
including DR, retinal vein occlusion, and age-related mac-
ular degeneration. Among them, 2669 (60.1%) had DR,
with 1865 at stage 1, 637 at stage 2, 366 at stage 3, and 801
at stage 4. The study flow chart is shown in Figure 1.
Characteristics of DR in the dataset are presented in
Table 1, characteristics of other eye diseases are presented
in Table S1, the diagnoses were automatically extracted
from FFA reports.

Objective Evaluation

Pixel-wise comparison between the real and CF-translated
FFA was performed on the internal test set; the MAE, PSNR,
SSIM, and FID were 111.46, 21.07, 0.61, and 46.28 respec-
tively for venous-phase FFA and 123.07, 22.11, 0.65, and
32.72 respectively for late-phase FFA. The higher the SSIM,
PSNR, and the lower the FID, the better the generated images.
For the FFAgeneration task, the reported SSIM in the literature
were generally around 0.4 to 0.6.7e12

Subjective Evaluation

Example-generated images in the internal and external test
sets are shown in Figure 2. The model efficiently mapped
the features from CF into FFA, resulting in globally,
anatomically, and lesion-consistent FFA images. Notably,
the black and white background noise sometimes present in
the real FFA was learned as unrelated and was effectively
4

excluded in the translated images. The synthesized output
images are visually very close to real ones.

Image quality assessment, which considers retinal
structure and lesions, was based on a 5-point scale (Table 2).
The mean (standard deviation) of the scores for venous-
phase FFA was 2.12 (0.77) and 2.26 (0.60) for the inter-
nal and external test set, respectively, assessed by the first
grader, and 2.10 (0.75), 2.28 (0.61) by the second grader.
The mean (standard deviation) of the scores for late-phase
FFA were 1.37 (0.53) and 2.50 (0.65) in the internal and
external test sets, respectively, assessed by the first grader,
and 1.47 (0.54), 2.60 (0.64) by the second grader. Cohen’s
kappa values indicate an excellent agreement between the 2
graders for assessing image quality, with a kappa value of
0.84, 0.81 for venous-phase FFA, and 0.80, 0.83 for late-
phase FFA in the internal and external test sets, respec-
tively. This reflects the high quality of synthesized images
for anatomical features (vessel, optic disc, and macula) and
lesions (nonperfusion, neovascularization, and macular
edema).

In the internal and external test sets, 1.8% and 4% of the
generated FFA images were of poor quality (� 4 points) due to
the following reasons: lesions that were not prominent on CF
(such as nonperfusion and microaneurysms) could be missed,
and a blurry CF could result in a blurry generated FFA.
Additionally, a blurry CF may also produce a false positive
generation of DR lesions, as demonstrated in Figs S1 and S2.

While this study primarily focused on DR, Fig S3 provides
generation examples for other diseases, such as polypoidal
choroidal vasculopathy, central serous chorioretinopathy,
normal CF, wet age-related macular degeneration, retinitis



Figure 2. Examples of real and translated fundus fluorescein angiography (FFA) images. First row, severe nonproliferative diabetic retinopathy (DR), second
row, proliferative DR, third row, DR post-laser treatment with severe nonperfusion and diabetic macula edema. First to third rows: internal test set, color
fundus photographs (CF) were registered with FFA, rotation occurs during this process. Fourth row: external test set.
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pigmentosa, and retinal vein occlusion, to further demonstrate
the model’s capabilities.

DR Classification

Table 3 and Figures 3e5 present the quantitative results of DR
classification on the EyePACs (Fig 3) and MESSIDOR2
datasets (Figs 4 and 5). The addition of generated FFA on top
of CF significantly improved the overall DR classification
accuracy, as evidenced by the improved area under the
Table 2. Subjective Evaluation of Real

Internal Test Set (N [ 50)

Rater 1
Mean (SD)

Rater 2
Mean (SD) Kap

Venous-phase FFA 2.12 (0.77) 2.10 (0.75) 0.84, P <
Late-phase FFA 1.37 (0.53) 1.47 (0.54) 0.80, P <

FFA ¼ fundus fluorescein angiography; SD ¼ standard deviation.
receiver operating characteristic curve for 5-class DR and
DME classification in Table 3. Incorporating generated FFA
images led to decreased error rates for each specific DR
category, as demonstrated in Figures 3e5.
Discussion

We developed a CF-to-FFA translation framework and
further demonstrated for the first time that this framework
and Translated FFA Image Quality

External Test Set (N [ 50)

pa
Rater 1

Mean (SD)
Rater 2

Mean (SD) Kappa

0.001 2.26 (0.60) 2.28 (0.61) 0.81, P < 0.001
0.001 2.50 (0.65) 2.60 (0.64) 0.83, P < 0.001
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Table 3. DR Classification Based on CF and CF þ Translated FFA Images on the EyePACs (n ¼ 86 952) and MESSIDOR2 Dataset
(n ¼ 1749), train:validation:test ¼ 6:2:2

Dataset F1-score Sensitivity Specificity Accuracy AUC

EyePACs
Five-class DR

CF 0.715 0.694 0.740 0.694 0.912
CF þ venous FFA 0.760 0.736 0.795 0.736 0.934
CF þ venous þ late FFA 0.775 0.757 0.795 0.757 0.939

MESSIDOR2
Five-class DR

CF 0.793 0.791 0.896 0.791 0.952
CF þ venous FFA 0.845 0.846 0.918 0.846 0.966
CF þ venous þ late FFA 0.866 0.870 0.916 0.870 0.972

DME
CF 0.698 0.763 0.941 0.922 0.927
CF þ venous FFA 0.706 0.763 0.945 0.925 0.967
CF þ venous þ late FFA 0.713 0.789 0.941 0.925 0.974

AUC¼ area under the receiver operating characteristic curve; CF¼ color fundus photography; DME¼ diabetic macular edema; DR¼ diabetic retinopathy;
FFA ¼ fundus fluorescein angiography. Highest metric values for each dataset are marked in bold.
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can reliably generate realistic FFA images that are suffi-
ciently close to the true FFA images in terms of both
anatomical structures and pathological lesions and also
proved that the generated FFA images can further improve
the accuracy of DR classification in the EyePACs and
MESSIDOR2 dataset.

Given that noninvasive imaging has become an emerging
trend in clinical practice,28 CF to FFA image translation
holds several advantages. First, FFA has been extensively
used in clinical ophthalmic practice, resulting in a large
Figure 3. Comparison of diabetic retinopathy (DR) classification results on the
fundus fluorescein angiography (FFA) on top of color fundus photography (CF
2 ¼ moderate DR, 3 ¼ severe nonproliferative DR, and 4 ¼ proliferative DR.
each model, and the second row displays the corresponding confusion matrices.
the green color highlights a reduced error rate with the addition of the generat
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number of images that can be used as training labels at a
low cost, providing a good opportunity to satisfy data-
hungry deep learning algorithms in this field.29 Second, by
mimicking the FFA images at 2 critical periods during the
dynamic circulation of the fluorescein injection, we can
leverage the advantages of FFA to obtain dynamic
information for the diagnosis and monitoring of DR.
Third, although OCT angiography is becoming an
increasingly popular option for detecting retinal
microvascular abnormalities in a noninvasive way, it may
EyePACs dataset (n ¼ 86 952) with and without the addition of translated
). The classification is based on 5 categories: 0 ¼ no DR, 1 ¼ mild DR,
The first row shows the receiver operating characteristic (ROC) curves for
The blue color in the confusion matrix represents correct predictions, while
ed FFA.



Figure 4. Comparison of diabetic retinopathy (DR) classification results on the MESSIDOR2 dataset (n ¼ 1749) with and without the addition of
generated fundus fluorescein angiography (FFA) on top of color fundus photography (CF). The classification is based on 5 categories: 0 ¼ no DR, 1 ¼ mild
DR, 2 ¼ moderate DR, 3 ¼ severe nonproliferative DR, and 4 ¼ proliferative DR. The first row shows the receiver operating characteristic (ROC) curves for
each model, and the second row displays the corresponding confusion matrices. The blue color in the confusion matrix represents correct predictions, while
the green color highlights a reduced error rate with the addition of the generated FFA.

Shi et al � Translate Color Fundus Photography to Fluorescein Angiography
not be applied to large-scale screening because of its
expensive examination fees, long scanning time, limited
scanning scope, and unstable image quality.28,30,31

Generating CF-based FFA images offers a wider field of
view, takes less than a second, and is more cost-effective
than OCT angiography. In addition, FFA remains the
most discriminative imaging that can identify more lesions
than CF or OCT angiography.17,28,32 Therefore, CF-to-FFA
translation may be a preferred approach under certain sce-
narios and warrants future investigation.

To ensure the algorithm’s generalizability, we tested it on
external datasets. When subjectively evaluated by 2 oph-
thalmologists, the translated FFA in both the internal and
external test sets achieved good image authenticity using
real FFA as references, indicating that the algorism learned
critical feature mapping instead of just memorizing the
training set samples. While our dataset is primarily
composed of patients with DR, the model’s potential for
generalization to other common retinal conditions such as
age-related macular degeneration, retinitis pigmentosa,
retinal vein occlusion, and central serous chorioretinopathy
also seems plausible, as indicated in Fig S3. This suggests
that the synthesized FFA images may serve as an
important surrogate for routine ophthalmic examinations
when traditional FFA is not available.

Under the same experimental setting for DR screening,
we observed significant improvement in DR classification
accuracy on the EyePACS and MESSIDOR2 datasets after
adding generated FFA images. The addition of venous-
phase FFA resulted in a prominent improvement in
5-scale DR classification, with a minor increase observed
after further adding late-phase FFA. This suggests that the
generated venous-phase FFA contains substantial informa-
tion for discriminating the 0 to 4 DR. For detecting DME,
the addition of late-phase FFA further increased sensitivity,
which is intuitive as late-phase FFA is characterized by
leakage and edema. Compared to previous studies,33,34 the
algorithm showed similar accuracy in DR classification,
which was further improved by incorporating generated
FFA images. As most DR screening programs are based
on conventional CF,35e37 the CF-to-FFA framework as a
new technology serves as a simple add-on to improve DR
screening accuracy with no additional cost.

This study has limitations. First, we utilized a static version
of FFA images with a field of view limited to 55�, which may
have missed some dynamic and peripheral manifestations of
retinal diseases. Future investigations should explore the gen-
eration of dynamicCF-basedFFA imageswith extended views
to improve the comprehensiveness of this method. Second,
blurryCF images could result in blurry generated FFA, or even
worse, result in false positive DR generation due to the wrong
association of blurry images with proliferative DR, which was
incorrectly learned from biased data. Therefore, patients with
suboptimal CF quality due to refractive media opacity should
be excluded and are warranted to take real-FFA examinations.
Third, indistinctive lesions on the CF such as microaneurysms
and nonperfusionmaybemissed; therefore, caution needs to be
taken using this technology. Meanwhile, the translated FFA
images should always be used in conjunction with CF. Finally,
though the subjective quality assessment of generated FFA
images in both internal and external datasets ranged from
excellent to normal, the data size of our internal and external
test datasets is limited. Further explorations should include
more data to verify and improve the algorithm’s performance
7



Figure 5. Comparison of diabetic macular edema classification results on the MESSIDOR2 dataset (n ¼ 1749) with and without the addition of translated
fundus fluorescein angiography (FFA) on top of color fundus photography (CF). The classification is based on 2 categories. The first row shows the receiver
operating characteristic (ROC) curves for 3 models, and the second row displays the corresponding confusion matrices. The blue color in the confusion
matrix represents correct predictions, while the green color highlights a reduced error rate with the addition of the generated FFA.
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and generalizability on a full spectrum of retinal diseases,
including rare conditions.
Conclusion

In this study, we developed and validated a framework for
translating CF images into realistic venous and late-phase
8

FFA images. The model showed high authenticity in
generating anatomical structures and pathological lesions,
and was proven to improve DR classification accuracy.
These results imply that this technology is a promising add-
on for large-scale DR screening and assisting in clinical
decision-making for the diagnosis and management of DR.
Future prospective validations are needed to prove its utility
in clinical practice.
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