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Osteoclasts are the exclusive cells of bone resorption.
Abnormally activating osteoclasts can lead to low bone
mineral density, which will cause osteopenia, osteoporosis,
and other bone disorders. To date, the mechanism of how
osteoclast precursors differentiate into mature osteoclasts
remains elusive. MicroRNAs (miRNAs) are novel regulatory
factors that play an important role in numerous cellular
processes, including cell differentiation and apoptosis, by
post-transcriptional regulation of genes. Recently, a number
of studies have revealed that miRNAs participate in bone
homeostasis, including osteoclastic bone resorption, which
sheds light on the mechanisms underlying osteoclast
differentiation. In this review, we highlight the miRNAs
involved in regulating osteoclast differentiation and bone
resorption, and their roles in osteoporosis.

Introduction

Osteoporosis is caused by an imbalance between osteoblastic
bone formation and osteoclastic bone resorption.1 Osteoclasts,
the sole cell type capable of bone resorption in the human body,
originate from haematopoietic progenitors which can also

differentiate into monocytes and macrophages.2 The process of
osteoclast differentiation is regulated by a variety of cytokines,
growth factors and hormones, including M-CSF, RANKL, sex
hormones, and parathyroid hormone (PTH). Of these signaling
molecules, RANKL binds the membrane receptor RANK on
osteoclast precursors, activates downstream signaling pathways,
such as the MAPK, PI3K and NF-kB pathways, and regulates
the expression of various transcription factors, including c-Fos,
PU.1, Fra-1 and NFATc1.3-5 These pathways and transcription
factors modulate osteoclast differentiation, maturation and sur-
vival. Investigation of the molecular mechanisms that mediate
osteoclastic differentiation as well as the regulation of their path-
ological function will contribute to a better understanding of the
pathogenesis of osteoporosis and the development of new treat-
ment strategies for this disease.

MicroRNAs (MiRNAs), a class of noncoding RNAs 19–25
nucleotides in length, control gene expression at the post-tran-
scriptional level.6 Since 1993, when the first miRNA, named lin-
4, was discovered in Caenorhabditis elegans,7 numerous miRNAs
have been identified in different organisms. The latest miRBase
release (v20, June 2013) contained 24,521 miRNA loci from
206 species that can produce 30,424 mature miRNA products.8

A number of miRNAs regulate various pathophysiological events,
including organ development, haematopoietic function, organo-
genesis, apoptosis, proliferation and tumorigenesis. MiRNAs are
also involved in bone cell differentiation and function, bone
development and diseases. MiR-223, which is almost exclusively
expressed in mouse bone marrow, is regulated by the enhancer
modulators PU.1 and CAAT.9,10 In addition, miR-125b,11 miR-
26a,12 miR-133 and miR-135 13 have all been implicated in the
differentiation of osteoblasts. The expression pattern of miRNAs
throughout the differentiation of osteoclast precursors into
mature osteoclasts has also been explored, and the expression of
44 miRNAs increased by more than 2-fold.14 Moreover, the
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involvement of Dicer (part of the Rnase III family, cleaves dou-
ble-stranded RNA or pre-microRNA into short double-stranded
RNA fragments) in regulating osteoclastic bone resorption indi-
cates that miRNAs are novel regulatory factors of osteoclastogen-
esis.15 Therefore, miRNAs may represent new therapeutic targets
for the pharmacological control of bone diseases. Recently, some
researchers reviewed the importance of miRNAs in post-tran-
scriptional regulation of skeletal development.16-18 The functions
of miR-21, miR-155 and miR-223 in osteoclast differentiation
have been summarized in previous reviews.19,20 In this paper, we
reviewed the role of all relevant miRNAs in osteoclasts and
related bone diseases, such as osteoporosis (Table 1).

MiR-21

Mature miR-21, which is encoded by a single gene, is conserved
in mammals. The mouse miR-21 includes miR-21a, miR-21b and
miR-21c, of which the genes are mapped to chromosome 11, chro-
mosome 3 and chromosome 8 respectively. As to human miR-21,
of which the gene is located in chromosome 17 between the stop
codon and poly A signal of the 3’-UTR (3’ untranslated region) of
transmembrane protein 49 (TMEM49).21,22 MiR-21 is involved
in the RANKL-induced differentiation of osteoclasts derived from

mouse bone-marrow macrophages (BMMs). Transcription factors
for osteoclastogenesis, such as c-Fos and PU.1, trigger miR-21 tran-
scription via the AP-1 and PU.1 binding sites in the miR-21 pro-
moter.22 Sugatani et al. reported that miR-21 regulates osteoclast
formation through a positive feedback loop that involves c-Fos/
miR-21/PDCD4 (programmed cell death 4). In this process, the
osteoclastogenesis transcription factor c-Fos upregulates the expres-
sion of miR-21. miR-21 then downregulates PDCD4 protein
expression, which in turn represses the PDCD4-induced inhibition
of c-Fos and thereby promotes RANKL-induced osteoclastogene-
sis.23 Sugatani and colleagues also discovered that miR-21 plays a
critical role in estrogen-controlled osteoclastogenesis. Notably,
estrogen inhibits osteoclastogenesis and induces osteoclastic apo-
ptosis.24 Estrogen downregulates miR-21 biogenesis so that protein
levels of FasL (Fas ligand), a target of miR-21, are elevated post-
transcriptionally and thus induce osteoclastic apoptosis.25 Wear
particles induce aggressive osteoclastic bone resorption after joint
replacement, which causes aseptic loosening.26 Zhou et al. found
that miR-21 was markedly upregulated in particle-induced osteoly-
sis (PIO) model animals and knockout miR-21 in particle-stimu-
lated tissue could ameliorate the symptoms of osteolysis.27 In short,
the upregulation of miR-21 plays an important role in the patho-
logical processes underlying osteoporosis and osteolysis during
aseptic implant loosening in joint replacement patients.

Figure 1. Schematic regulatory networks of miRNAs regulating osteoclast differentiation. MiRNAs can directly (solid lines) or indirectly (dotted lines)
repress transcriptional factors, and affect osteoclast differentiation, apoptosis, or phenotype. Bold dotted lines indicate the promotion of cellular pro-
cesses, dotted boxes indicate osteoclast specific genes, and dotted ovals indicate cellular processes or phenotypes.
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MiR-29

The miR-29 family includes miR-29a, miR-29b and miR-
29c. MiR-29b is represented by 2 members, miR-29b-1 and
miR-29b-2. MiR-29a was first discovered in cervical cancer
cells (HeLa).28,29 Based on seed sequence target prediction,
miR-29 family members may regulate >6,000 gene expres-
sions.30 An earlier study by Mott et al. has suggested that
NF-kB activation suppresses miR-29b-1 and miR-29a pro-
moter function, and the expression of mature miR-29b is
mediated via the recognition of NF-kB binding sites.31 As
NF-kB is an important regulator of osteoclast differentiation,
researchers have started to focus on whether miR-29a is active
in osteoclasts. Several studies confirmed that miR-29 is a key
mediator of osteoclast differentiation. Gong et al. reported
that miR-29a was down expressed in SBC-5 small-cell lung
cancer cells in bone metastases. However, the downregulation
of miR-29a had no correlation with osteolytic lesions.32

Wang et al. discovered that osteoporosis caused by glucocorti-
coids was associated with reduced expression of miR-29a, and
a gain of miR-29a function reduced glucocorticoid-induced
osteoclast differentiation in vitro. Pre-miR-29a precursor
treatment in rats significantly alleviated glucocorticoid-
induced bone loss, while knockout miR-29a accelerated bone
resorption by osteoclasts, cortical bone porosity and bone fra-
gility. Moreover, they demonstrated that miR-29a might be
involved in the Wnt and Dkk-1 signaling pathways to pro-
mote osteoblast differentiation and mineral deposition in
bone.33 Consistent with this finding, Rossi et al. showed that
miR-29b expression decreased progressively in the differentia-
tion of CD14C haematopoietic stem cells to osteoclasts stim-
ulated by RANKL and M-CSF in vitro. Furthermore, the
overexpression of miR-29b has pronounced negative effects
on the TRAP expression, collagen degradation and lacunae
generation, which are all characteristics of osteoclast activ-
ity.34 However, others have reported contradictory results.
Franceschetti et al. demonstrated that miR-29 family mem-
bers are positive regulators of osteoclast formation by target-
ing mRNAs encoding NFI-A and the calcitonin receptor
(Calcr), both of which are important for cytoskeletal organi-
zation, commitment, and osteoclast resorption and survival.
The expression of miR-29 family increases during osteoclast
differentiation, while the inhibition of miR-29a, miR-29b
and miR-29c suppresses the formation of TRAP-positive
multinucleated osteoclasts. MiR-29a knockdown generates
smaller osteoclasts from both primary bone marrow cells and
the monocytic cell line RAW264.7. MiR-29 knockdown also
impaired commitment and migration of osteoclast precursors.
However, miR-29 knockdown does not influence cell viabil-
ity, actin ring formation, or apoptosis in mature osteoclasts.
NFI-A is a negative regulator of the M-CSF receptor in
osteoclasts and downregulation of the NFI-A mRNA by
miR-29 may play a role in promoting osteoclastogenesis.35 In
short, the miR-29 family plays a critical role in osteoclast dif-
ferentiation, although there are conflicting reports as to their
mechanisms of action.

MiR-31

MiR-31 is encoded by a single locus and is expressed in a wide
variety of tissues and cells in humans and mice. In addition, miR-
31 is the only member of a broadly conserved miRNA ‘seed fam-
ily’ that is present in vertebrates and Drosophila.36 Corresponding
target predications using bioinformatic analyses showed that miR-
31 targeted >200 different mRNAs in animal cells. Genes encod-
ing proteins that are active in cell motility, including cell polarity,
cytoskeletal dynamics and cell adhesion, were significantly
enriched in these predicted targets. In in vitro assays, miR-31
directly inhibited at least 6 mRNAs that are important for the pro-
gression of tumors, including RhoA, RDX (radixin), MMP16
(matrix metallopeptidase 16), M-RIP (myosin phosphatase-Rho
interacting protein), ITGA5 (integrin a5) and Fzd3 (frizzled 3).37

Mizoguchi et al. found that RANKL treatment enhanced miR-31
expression by up to 18-fold in bone marrow cells in mice, and
miR-31 inhibition with specific antagomirs inhibited RANKL-
induced bone resorption and osteoclast formation. However, cell
fusion was not affected by miR-31. Therefore, they suggested that
cytoskeleton disorganization caused impaired bone resorption and
the formation of osteoclasts resulting from the inhibition of miR-
31. The same research group also demonstrated that RhoA, a
molecular switch that transduces extracellular signals to actin and
the microtubule cytoskeleton, might be a target of miR-31 in
osteoclasts.38 Therefore, miR-31 inhibits osteoclastic bone resorp-
tion by the repression of osteoclast formation.

MiR-124

Many overexpression and loss-of-function studies in vertebrates
suggest that miR-124, a highly abundant brain-enriched miRNA,
is a progenitor self-renewal inhibitor and enhancer of neuronal dif-
ferentiation.39 MiR-124 has also been shown to regulate the myo-
genic and adipogenic differentiation of bone marrow-derived
mesenchymal stem cells.40,41 Lee et al. demonstrated that osteo-
clastogenesis from mouse BMMs is regulated by miR-124 via the
suppression of NFATc1 expression. The inhibition of osteoclasto-
genesis by miR-124 was prevented by overexpression of a constitu-
tively active form of NFATc1. The motility and proliferation of
osteoclast precursors were also found to be affected by miR-124.
These changes coincided with reduced levels of RhoA and Rac1
expression, both of which are central actors in motility.42 In sum-
mary, miR-124 inhibits osteoclast formation through the suppres-
sion of differentiation and the migration of osteoclast precursors.

MiR-133a

MiR-133a was initially considered to be a muscle-specific
miRNA involved in the regulation of muscle-cell differentiation
and the pathogenesis of myogenic disease and heart disease.43 A
recent study confirmed that miR-133a plays a key role in skeletal
system regulation. Mesenchymal cells have been shown to express
miR-133a in a lineage-related pattern. This miRNA was shown to
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directly target the Runx2 gene 3’-UTR when overexpressed in
MC3T3, an osteoblast cell line, and suppress ALP (alkaline phos-
phatase, a marker of osteoblast formation) production and osteo-
blast differentiation.44 Ji et al. determined that miR-133a is
downregulated in primary human osteosarcoma tissues and osteo-
sarcoma cell lines and these changes significantly correlated with
tumor progression.45 In addition, miR-133a has also been shown
to be involved in osteoclast regulation. Wang et al. compared
miR-133a expression in PBMCs (peripheral blood monocytes)
between postmenopausal female Caucasians with normal or low
bone mineral density (BMD) and found that miR-133a expression
in the low BMD group was significantly higher than in the high
BMD group. Bioinformatics target gene analysis demonstrated
that miR-133a negatively regulates 3 potential osteoclast-related
target genes, CXCL11 [chemokine (C-X-C motif) ligand 11],
CXCR3 [chemokine (C-X-C motif) receptor 3] and SLC39A1
[solute carrier family (zinc transporter), member 1], although it
appears that all the 3 genes do not have significant roles in osteo-
clast differentiation.46 Therefore, miR-133a is an important regu-
lator of circulating monocytes in postmenopausal women and
may serve as a biomarker for postmenopausal osteoporosis.

MiR-146a

MiR-146a was initially found in a human acute monocytic leu-
kemia cell line called THP-1. In THP-1, the elevation of miR-
146a expression by LPS (lipopolysaccharides) stimulation depends
on NF-kB, which controls Toll-like receptor and cytokine signal-
ing via a negative feedback loop and suppression of the protein lev-
els of TRAF6 (TNF receptor-associated factor 6) and IL-1
receptor-associated kinase 1.47,48 Both TRAF6 and NF-kB are
important molecules in osteoclastogenesis. RANKL treatment
causes the time-dependent downregulation of miR-146a expres-
sion, while miR-146a is highly expressed during osteoclast differen-
tiation in TNF-a/RANKL-treated cells relative to RANKL-treated
cells.14 Nakasa et al. transfected PBMCs from healthy volunteers
with double-stranded miR-146a, cultured them in the presence of
M-CSF and either TNF-a or RANKL, and found that miR-146a
inhibits the differentiation of PBMCs into osteoclasts in a dose-
dependent manner in both osteoclastogenesis culture stimulation
systems. At the same time, c-Jun, NF-ATc1, PU.1, and TRAP
expression levels were also downregulated. The intravenous injec-
tion of miR-146a prevented bone erosion in mice with collagen-
induced arthritis, although this treatment did not completely ame-
liorate the associated inflammation49 These investigations suggest
that miR-146a expression induced by TNF-a/RANKL treatment
may serve as a negative regulator of osteoclastogenesis.

MiR-223

MiR-223 is almost exclusively expressed in bone marrow and is
specifically expressed in CD11bC myeloid cell lineages.9 Although
a preliminary study could not detect an increase in myeloid output
from the bone marrow upon miR-223 expression, subsequent

studies have suggested a profound role for miR-223 in myelopoie-
sis.50 Moreover, IKK-a, an important regulator of the NF-kB
pathway, has been confirmed as a regulated target of miR-223.51

In vitro studies showed that the differentiation of human mono-
cytes into macrophages with GM-CSF was accompanied by a
reduction in the expression of miR-223, which led to a substantial
increase in IKK-a protein expression levels and eventually inhib-
ited the NF-kB signaling pathway.51 These results indicated that
miR-223 influences the differentiation of monocytes/macrophages.
As osteoclasts differentiate from monocytes/macrophages, osteo-
clast differentiation would be likely to be a target of miR-223 reg-
ulation. Further investigations by Sugatani et al. using
RAW264.7, a mouse osteoclast precursor cell line, demonstrated
that miR-223 plays a critical role in osteoclast differentiation.
Overexpression of miR-223 completely inhibited TRAPC multi-
nucleated cell formation. However, these researchers were unable
to identify the miR-223 target mRNA during RAW264.7 osteo-
clast precursor differentiation.52 In a subsequent study, Kagiya
et al. used microarrays to screen for the expression of mature miR-
NAs in RAW264.7 cells treated with a combination of TNF-a
and RANKL and found that miR-223 was downregulated during
osteoclast differentiation using qRT-PCR.14 When miR-223 was
overexpressed in PBMCs, the number of TRAPC multinucleated
osteoclasts decreased. NFI-A is confirmed as a validated miR-223
target gene, and thus the expression of this gene was not detected
when miR-223 was overexpressed. Although no significant differ-
ence was observed in the expression of NFI-A mRNA between the
ds-miR-223 and non-specific dsRNA groups, Western blotting
demonstrated that NFI-A protein was still downregulated by miR-
223, which suggested a mechanism by which miR-223 suppresses
osteoclastogenesis.53 In summary, miR-223 is downregulated dur-
ing osteoclast differentiation, and therefore it is possible to inhibit
osteoclast differentiation and maturation and ultimately reduce
bone erosion through the upregulation of miR-223 expression.

MiR-503

MiR-503 was first identified in human retinoblastoma tissues
using the miRNA microarray technique.54 These methods demon-
strated that miR-503 expression was upregulated in human para-
thyroid and adrenocortical carcinomas.54-56 MiR-503 influences
the proliferation, migration, adhesion, and network formation of
endothelial cells.57 MiR-503 is transcribed as a polycistronic mes-
sage when monocytes differentiate into macrophages and targets
an overlapping set of cell cycle regulators to induce G1 arrest.58

Chen et al. reported that, when compared with healthy postmeno-
pausal women, miR-503 expression was significantly reduced in
the circulating progenitors of osteoclast-CD14C PBMCs from
postmenopausal women with osteoporosis. When miR-503 was
overexpressed in human PBMCs, RANKL-induced osteoclast dif-
ferentiation was significantly inhibited, while the silencing of miR-
503 promoted osteoclastogenesis. In the same study, RANK was
shown to be a target of miR-503. In the OVX (ovariectomy)
mouse, a miR-503 antagonist was able to increase the expression
of the RANK protein, which led to enhanced bone resorption and
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a reduction in BMD. Therefore, mimicking overexpression of
miR-503 by using agomir inhibited bone resorption and pre-
vented osteoporosis in OVX mice.59 Taken together, these find-
ings suggest that miR-503 may play an important role in the
pathogenesis of postmenopausal osteoporosis.

MiR-378

MiR-378 is generally considered to be a tumor suppressor and
is downregulated in gastric, colon and throat cancer tissues.60,61

In a test of bone marrow from patients with myelodysplastic syn-
drome, Dostalova et al. determined that miR-378 expression was
downregulated in patients with a deletion of the long arm of
chromosome 5, which indicated that miR-378 may play a role in
the regulation of bone marrow cells.62 Furthermore, in a study
by Kahai et al., miR-378 was shown to affect osteoblast differen-
tiation by regulating the expression of nephronectin.63 MiR-378
expression increased by 59-fold in TNF-a/RANKL-treated
RAW264.7 cells.14 EII et al. reported that miR-378 was associ-
ated with bone metastases in cancer. MiR-378 expression was ele-
vated during osteoclast differentiation in the serum of mice with
bone metastases. Moreover, miR-378 regulated the expression of
sICAM1 in serum, while sICAM1 was secreted by bone meta-
static cancer cells and activated the NF-kB signaling pathway.64

Therefore, the upregulation of miR-378 appears to play a regula-
tory role in the erosion of tumor bone metastases by affecting the
NF-kB signaling pathway.

MiR-125a

In human cells, miR-125 consists of 3 homologs, miR-125a,
miR-125b-1, and miR-125-2. A number of genes, including
matrix-metalloproteases, transcription factors, members of Bcl-2
family and others are targets of miR-125, and changes in these
genes could lead to enhanced metastasis, proliferation, and inva-
siveness. Moreover, the ectopic expression of miR-125a was
shown to inhibit the proliferation and metastasis of hepatocellu-
lar carcinoma by targeting MMP11 and VEGF.65,66 In addition,
miR-125a is downregulated during osteoclast differentiation
stimulated by M-CSF and RANKL.67 Guo et al. discovered that
CD14C PBMCs were prevented from differentiating into osteo-
clasts by miR-125a overexpression, which then suppressed the
levels of TRAP and NFATc1 mRNA. They also observed that
transfecting antagomirs of miR-125a into PBMCs promoted
osteoclast formation. TRAF6 is a target gene of miR-125a, and
NFATc1, a downstream target of TRAF6, binds to the promoter
of miR-125a to modulate the expression of miR-125a.68 Thus,
miR-125a forms a negative feedback loop with TRAF6 and
NFATc1 to modulate osteoclast differentiation and maturation.

MiR-148a

MiR-148a is expressed aberrantly in normal tissue, and the
expression of miR-148a is significantly altered in some neoplastic

and non-neoplastic diseases. To elaborate, miR-148a was found
to be significantly upregulated in plasma of patients with multi-
ple myeloma, and high levels of miR-148a have been related to
shorter relapse-free survival durations.69 Cheng et al. found that
miR-148a was dramatically upregulated during M-CSF- and
RANKL-induced osteoclast differentiation from CD14C

PBMCs. They also showed that patients with lupus experienced
significantly elevated levels of miR-148a in CD14C PBMCs, a
process that resulted in enhanced osteoclastogenesis and lower
BMD. Overexpression of miR-148a promotes the formation of
osteoclasts, whereas the inhibition of miR-148a attenuates their
formation. OVX mice that were intravenously injected with anta-
gomirs of miR-148a decreased bone resorption and increased
bone mass. These regulatory functions of miR-148a were
achieved by binding the 3’-UTR of MAFB (V-maf musculoapo-
neurotic fibrosarcoma oncogene homolog B) mRNA and inhibit-
ing MAFB protein expression.67 Furthermore, MAFB negatively
regulates RANKL-induced osteoclastogenesis by attenuating
DNA binding of 3 key regulators, NFATc1, c-Fos, and Mitf.70

Therefore, the miR-148a-induced modulation of MAFB regu-
lates NFATc1, c-Fos, and other regulatory factors that ultimately
modulate osteoclast differentiation.

MiR-155

MiR-155, which is highly specifically expressed by haemato-
poietic cells, plays a regulatory role in a variety of cancers, includ-
ing leukemia, lymphoma, liver cancer, lung cancer, and breast
cancer.6,71 MiR-155 also regulates various inflammatory cyto-
kines in rheumatoid arthritis (RA). The expression of miR-155 is
elevated in the PBMCs, synovial tissue, synovial fluid, and fibro-
blasts of patients with RA and thus plays an important role in
bone destruction.72-74 In a model of K/BxN serum-transfer
arthritis that requires only innate effector mechanisms, a signifi-
cant reduction of localized bone destruction was observed in
miR-155-/- mice, and this observation was linked to reduced oste-
oclast generation.75 Compared to WT (wild type) mice, osteo-
clast-specific Dicer deficient mice had increased bone mass and
trabecular thickness, decreased osteoclast formation, and reduced
expressions of TRAP and NFATc1. MiR-155 levels in BMMs
from Dicer-deficient mice were inhibited by RANKL treatment.
In contrast, miR-155 levels in WT cells were not significantly
changed by RANKL treatment. When bone marrow-derived
macrophages from osteoclast-specific Dicer-deficient mice were
stimulated with RANKL, TRAPC-cells grown in Dicer-deficient
bone-marrow cell culture were typically smaller in size than WT
cells. Determining the number of multinucleated TRAPC-cells
showed that Dicer-deficient osteoclasts inhibited the RANKL-
induction of TRAPC-cell development. This study also showed
that Dicer-deficient osteoclasts inhibited Trap mRNA expression
and slightly suppressed the level of Nfatc1 mRNA. These
researchers speculated that miR-155 was suppressed by Dicer
deficiency upon RANKL treatment, which may then cause the
upregulation of SHIP, an osteoclast inhibitor.15 Mann et al.
found that miR-155 expression increased rapidly during the
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process of RAW264.7 differentiating into macrophages, and
miR-155 inhibited the osteoclast differentiation of RAW264.7
cells by inhibiting MITF (microphthalmia-associated transcrip-
tion factor), which is a transcription factor essential for osteoclast
differentiation.76 Zhang et al. reported that IFN-b induced
miR-155 and mediated IFN-b-induced suppression of osteoclast
differentiation by interacting with MITF and SOCS1, positive
regulators of osteoclastogenesis.77Taken together, these findings
demonstrate that miR-155 regulates osteoclastogenesis via target-
ing several essential transcriptional factors.

MiR-422a

MiR-422a plays an important role in human diseases, such as
colon cancer and multiple sclerosis and has been shown to inhibit
pathways that stimulate tumor cell proliferation in osteosar-
coma.78 In the field of skeletal research, one study has shown that
miR-422a was down-regulated by peptide-15 (analog of the
sequence766GTPGPQGIAGQRGVV780 in the collagen a 1 (I)
chain), which is known to increase bone formation.79 In osteo-
clasts, Cao et al. discovered that miR-422a is significantly upre-
gulated in a low BMD group of postmenopausal women relative
to a high BMD group. Moreover, several target genes were pre-
dicted to be related to osteoclastogenesis, including CBL (Casitas
B-lineage lymphoma proto-oncogene), CD226 (cluster of differ-
entiation 226), IGF1 (insulin-like growth factor 1), PAG1 (phos-
phoprotein associated with glycosphingolipid microdomains),
and TOB2 (transducer of ERBB2). This group also demonstrated
an apparent negative correlation between each of these 5 genes
and miR-422a, although none of the correlations reached statisti-
cal significance.80 These studies suggest that miR-422a is possibly
involved in the regulation of postmenopausal osteoporosis and
might be a potential biomarker of osteoporosis.

Others

During the differentiation and maturation of osteoclasts, there
are other miRNA expression changes in addition to the ones dis-
cussed above. Kaiya et al. found 52 mature miRNAs with expres-
sion changes when RAW264.7 cells were treated with RANKL
during osteoclast formation. In addition to the miRNAs already
discussed, expression levels of miR-483, miR-680, miR-689,
miR-714, and miR-721 were shown to be elevated in a time-
dependent fashion, while miR-23b and miR-342-3p expression
levels decreased. Notably, miR-26a, miR-199a-3p, and miR-
1224 expression levels declined at 24 h after treatment and then

increased 82 h after treatment with RANKL. EII et al. cultured
the RAW264.7 cells with tumor-conditioned media, and
detected increased expression levels of 42 miRNAs that were
upregulated by more than 2-fold; they also found that 45 miR-
NAs were downregulated.64 However, the molecular mechanism
and function of these miRNAs in osteoclasts remain unclear.

Conclusions

Bone homeostasis is maintained by a balance between osteo-
blastic bone formation and osteoclastic bone resorption. Meta-
bolic bone disorders, such as osteopenia, osteoporosis, and RA-
related bone destruction, occur when osteoclastic bone resorption
exceeds osteoblastic bone formation. The treatment of osteoporo-
sis is typically focused on inhibiting the excessive activation of
osteoclasts. Therefore, understanding the mechanisms of osteo-
clast differentiation and maturation will assist in developing
treatments for osteoporosis. The discovery of the OPG/RANK/
RANKL pathway in osteoclast differentiation and maturation is
a major landmark in osteoporosis research. However, more stud-
ies are necessary regarding the molecular mechanism underlying
osteoclast differentiation. MiRNAs have been shown to be
important regulators of many biological functions. The studies
reviewed here show that miRNAs are deeply involved in the regu-
lation of osteoclast differentiation and bone resorption (Fig. 1).
The overexpression or inhibition of specific miRNAs effectively
inhibits osteoclast differentiation and bone resorption. MiRNA-
based therapeutics have shown some promise for the treatment of
osteoporosis. However, further studies are required if miR-based
therapeutics are to be used in the clinic, and many more ques-
tions are raised. For example, what other important miRNAs can
regulate osteoclasts? What specific pathways are regulated by
miRNAs in osteoclasts? What side effects would occur with the
regulation of osteoclasts by miRNAs in clinic? How can miRNAs
be effectively delivered in vivo? All of these questions will need to
be answered in the future.
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