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1  |  INTRODUC TION

Comparison among genomes of allopatric and parapatric popula-
tions may show heterogeneous levels of differentiation, depending 
on the level of divergence (Nosil et al., 2009), and may provide insight 

into the evolution and maintenance of adaptive divergence despite 
gene flow (Graham et al., 2018; Monnahan et al., 2015). Studies of 
nonmodel species indicate that selection at specific genome regions 
may allow local adaption even in the presence of gene flow (Barth 
et al.,  2017; Dennenmoser et al.,  2017). Regions of significantly 
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Abstract
Patterns of genetic differentiation across the genome can provide insight into selec-
tive forces driving adaptation. We used pooled whole genome sequencing, gene anno-
tation, and environmental covariates to evaluate patterns of genomic differentiation 
and to investigate mechanisms responsible for divergence among proximate Pacific 
cod (Gadus macrocephalus) populations from the Bering Sea and Aleutian Islands and 
more distant Washington Coast cod. Samples were taken from eight spawning lo-
cations, three of which were replicated to estimate consistency in allele frequency 
estimation. A kernel smoothing moving weighted average of relative divergence (FST) 
identified 11 genomic islands of differentiation between the Aleutian Islands and 
Bering Sea samples. In some islands of differentiation, there was also elevated ab-
solute divergence (dXY) and evidence for selection, despite proximity and potential 
for gene flow. Similar levels of absolute divergence (dXY) but roughly double the rela-
tive divergence (FST) were observed between the distant Bering Sea and Washington 
Coast samples. Islands of differentiation were much smaller than the four large inver-
sions among Atlantic cod ecotypes. Islands of differentiation between the Bering Sea 
and Aleutian Island were associated with SNPs from five vision system genes, which 
can be associated with feeding, predator avoidance, orientation, and socialization. We 
hypothesize that islands of differentiation between Pacific cod from the Bering Sea 
and Aleutian Islands provide evidence for adaptive differentiation despite gene flow 
in this commercially important marine species.
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elevated differentiation have been referred to as ‘genomic islands 
of differentiation’ (Wolf & Ellegren,  2017) or ‘genomic islands of 
speciation’ (Turner et al., 2005). We use the phrase ‘genomic islands 
of differentiation’ because here we focus on local adaptation rather 
than speciation and these regions are not necessarily associated 
with speciation.

Natural selection in different environments may influence the 
emergence and persistence of islands of differentiation, resulting 
from a complex range of mechanisms (Yeaman, 2013). Islands of dif-
ferentiation can arise from chromosomal rearrangements, selection 
with hitchhiking, and background selection. Low recombination in 
regions of genomic rearrangements may facilitate the evolution of 
islands of differentiation, because genetic linkage reduces recombi-
nation of adaptive combinations of alleles (Via, 2012; Yeaman, 2013). 
Chromosomal rearrangements, or inversions, restrict recombination 
in heterokaryotypes and can be adaptive or neutral (Lotterhos, 2019; 
Noor & Bennett, 2009). Background selection can result in increased 
levels of differentiation due to selection against deleterious alleles 
at linked loci (Charlesworth et al., 1993). Selection with hitchhiking 
occurs when regions of the genome subject to strong selection pro-
mote secondary changes in gene frequencies in closely linked re-
gions (Smith & Haigh, 1974; Wolf & Ellegren, 2017).

The capacity for local adaptation rests on a balance between 
the strength of selection and gene flow, or migration–selection 
balance (Graham et al., 2018). During the emergence of local adap-
tation among connected populations, the majority of the genome 
is thought to be subject to gene flow and few divergent clusters 
are expected (Nosil et al.,  2009; Via,  2012). Stronger selection 
is thought to cause islands of differentiation to increase in size 
(Graham et al., 2018; Nosil et al., 2009; Yeaman & Whitlock, 2011). 
Background selection against strongly deleterious mutations can 
also lead to nonneutral distortions in the allele frequency spectrum 
(Charlesworth et al., 1993; Cvijović et al., 2018; Good et al., 2014). 
In a region in which the deleterious mutation rate is elevated, there 
will be an excess of rare alleles because selection cannot act instan-
taneously (Cvijović et al., 2018; Good et al., 2014). As such, distin-
guishing background selection from positive selection and selection 
with hitchhiking might not be possible because they may both lead 
to an excess of rare alleles in the site frequency spectrum (Cvijović 
et al., 2018). Nevertheless, a comparison of relative (FST) and abso-
lute (dXY) differentiation between populations with Tajima's D and 
nucleotide diversity within populations may provide insights into the 
relative importance of selection and migration in shaping patterns of 
genome variability.

Selection in connected populations is particularly relevant in 
marine species supporting commercial fisheries to understand the 
biological basis behind established management units. Genetic pop-
ulation structure has been documented among parapatric groups 
of Pacific cod that spawn in ecologically and biophysically different 
regions across their range (Drinan et al.,  2018; Spies,  2012; Spies 
et al., 2020). In Alaska, Pacific cod are managed in three manage-
ment units corresponding to the Gulf of Alaska, Aleutian Islands, and 
eastern Bering Sea. A general pattern of isolation by distance among 

spawning groups of Pacific cod (Cunningham et al.,  2009; Drinan 
et al., 2018; Spies, 2012) is punctuated by locally pronounced genetic 
differentiation between the Aleutian Islands and eastern Bering Sea 
(Spies, 2012) and between the western and eastern Gulf of Alaska 
(Drinan et al., 2018; Spies et al., 2021). However, divergence across 
the genome between Aleutian Islands and eastern Bering Sea cod 
has not been examined. Such data may further elucidate levels of 
connectivity as well as mechanisms of local adaptation in these 
areas, which support the largest cod fishery in the United States, 
with an average annual gross value of $379 million between 2016 
and 2020 (Fissel et al., 2020).

Examination of adaptive divergence in Pacific cod is also mer-
ited given differences observed in physical environment and prey 
of cod in these two regions. The Bering Sea contains a prominent 
and broad (500 km) continental shelf adjacent to a deep-sea basin 
that stretches from the Alaska Peninsula to the Bering Strait. In con-
trast, the Aleutian Islands consist of a narrow steep shelf formed 
by an 1800 km long chain of volcanic mountaintops (Logerwell 
et al., 2005). While Pacific cod occurs in the western and eastern 
Bering Sea (O'Leary et al.,  2022), we focus on Pacific cod in the 
United States management region of eastern Bering Sea (Stevenson 
& Lauth, 2019). The eastern Bering Sea (EBS) continental shelf con-
sists of three depth regions: the inner (0–50 m depth), middle (50–
100 m), and outer domain (100–180 m; Stabeno et al.,  2012). The 
extent of sea ice in the Bering Sea during winter varies interannually, 
but has declined in recent years (Grebmeier et al., 2006; Stevenson 
& Lauth, 2019). The timing of the maximum ice extent and its retreat 
affects the species composition across a range of taxa from the zoo-
plankton community to higher trophic level predators (Stevenson 
& Lauth, 2019). The physical environment of the Aleutian Islands is 
dynamic; islands are separated by passes that allow the transfer of 
water from the North Pacific Ocean northward and the water qual-
ity and species distributions change along the chain in response to 
shifting currents and passes (Hunt Jr & Stabeno,  2005; Logerwell 
et al.,  2005). For example, there is an abrupt shift in the physical 
environment and species composition at Samalga Pass (169° W), an 
area that divides warmer, nutrient-poor coastal waters of the Alaska 
Coastal Current to the east and the colder, nutrient-rich oceanic 
Alaskan Stream to the west (Hunt Jr & Stabeno, 2005).

These distinct physical environments, and the resulting shifts in 
ecological communities, drive diet differences between Pacific cod 
in the Aleutian Islands and EBS. Walleye pollock (Gadus chalcogram-
mus) are a major diet component of Pacific cod in the EBS (26%), 
but in the Aleutians, Atka mackerel (Pleurogrammus monopterygius) 
and sculpins are the predominant fish prey (15% each), while pol-
lock comprise only 5% (Aydin et al., 2007). Snow and tanner crab 
(Chionoecetes opilio and C. bairdi) make up 9% of cod diets in the EBS, 
but less than 3% in the Aleutian Islands. In contrast, squids comprise 
over 6% of cod diets in the AI but are a negligible proportion of diets 
in the EBS. Myctophids (family Myctophidae) are also found only in 
cod diets in the Aleutian Islands, but not in the EBS even though they 
are present in the diets of other EBS fish species (Aydin et al., 2007; 
Lang & Livingston, 1996).



    |  1909SPIES et al.

Lessons from the congeneric Atlantic cod (Gadus morhua) may help 
inform the genomics of Pacific cod; in Atlantic cod, several ecotypes 
are known, including Northeast Arctic cod (NEAC) and the Norwegian 
coastal cod (NCC). The genomic basis of these ecotypes appears to 
be related to inversions on linkage groups 1, 2, 7, and 12 (Árnason & 
Halldórsdóttir, 2019; Barth et al., 2017; Hemmer-Hansen et al., 2013). 
Genes within these inversions appear to be responsible for maintain-
ing selective differences related to habitats and life history (Barth 
et al., 2017; Kirubakaran et al., 2016). It is currently unknown if such 
inversions also drive population structure in Pacific cod.

Some knowledge of the demographic history of Pacific cod is valu-
able for interpreting genomic differences. Pacific cod are believed to 
have originated from an Atlantic cod ancestor that moved into the 
Pacific Ocean 3.8 million years ago (Árnason & Halldórsdóttir, 2019). 
During Pleistocene glaciations, water levels fluctuated and the 
Bering Sea shelf was exposed during several time periods, form-
ing the Bering land bridge as recently as 30,000–18,000 years ago 
(Elias et al., 1996). Glaciers extended from the Alaska Peninsula to 
the Aleutian chain through the southern extent of Alaska to north-
western Canada southward to Puget Sound (Batchelor et al., 2019), 
during which time cod likely migrated southward. Cod recolonized 
the North Pacific as glaciers receded, as recently as 14–15 kyr before 
present (Mann & Hamilton, 1995; Menounos et al., 2009). Analysis 
of the putative zona pellucida gene is consistent with this scenario, 
as the present-day southern populations are more closely related to 
Atlantic cod and more northerly populations are more derived at this 
locus (Spies et al., 2021).

The aim of this study was to compare genomic patterns of dif-
ferentiation among proximate versus distant Pacific cod popula-
tions from ecologically distinct regions and evaluate regions of the 
genome that may be subject to local adaptation. We applied Pool-
Seq to Pacific cod from the ecologically different Aleutian Islands 
and Bering Sea among which gene flow may occur, and to allopat-
ric groups (EBS and Washington Coast), between which migration 
has not been observed despite thousands of tagging records (Bryan 
et al.,  2021; Rand et al.,  2014; Shimada & Kimura,  1994). These 
parapatric and allopatric groups were selected to provide exam-
ples across several levels of population divergence (Stankowski & 
Ravinet, 2021; Wolf & Ellegren, 2017). At the time this study was 
initiated, individual-based whole genome sequencing was not a cost-
effective option. The power to identify departures from panmixia 
in marine fish with large effective population sizes increases with 
the number of genetic markers and individuals (Kalinowski,  2005; 
Vendrami et al.,  2017; Waples & Gaggiotti,  2006). Therefore, we 
selected Pool-Seq, which offers the capacity to sequence the ge-
nome more thoroughly than sequence capture (Harvey et al., 2016) 
or reduced representation sequencing (e.g., RAD-seq, Andrews 
et al., 2016), and at a lower cost than individual-based sequencing. 
Pool-Seq also provides the combined contributions of individuals in 
the pool and has been shown to provide robust and reliable allele 
frequencies (Anand et al.,  2016). The disadvantages to Pool-Seq 
stem from the need to calculate allele frequencies over all pooled 
samples, which masks individual genotypes and precludes its utility 

for tests of linkage disequilibrium or population assignment (Dorant 
et al., 2019). In addition, unequal contributions of individuals in the 
pool can increase the error of allele frequency estimates (Rode 
et al., 2018). Nonetheless, Pool-Seq has been used to successfully 
examine adaptive divergence and genetic population structure in a 
range of species (Dennenmoser et al., 2017; Dorant et al., 2019; Han 
et al., 2020; Kurland et al., 2019). This study was also well suited to 
Pool-Seq because previous studies have defined genetic population 
structure and spawning units, and all cod were presumed to be in or 
near spawning stage (Cunningham et al., 2009; Spies et al., 2020).

A primary hypothesis was that genomic divergence between 
eastern Bering Sea and Aleutian Islands cod would manifest as a lim-
ited number of highly differentiated clusters if selection were suffi-
ciently high, because gene flow is thought to be limited (Spies, 2012; 
Spies & Punt, 2015; Yeaman & Whitlock, 2011). We also expected 
that temperature would play a role in local adaptation, as winter bot-
tom temperatures in the Aleutian Islands are roughly 2°C warmer in 
the winter than the Bering Sea, and cod are adapted to a relatively 
narrow temperature range at all life stages (Barbeaux et al.,  2020; 
Hurst et al., 2010; Laurel et al., 2008). For example, in the Gulf of 
Alaska, Pacific cod has suffered recent declines in abundance due to 
the impact of marine heatwaves, and increased ocean temperatures 
are predicted under climate change (Barbeaux et al., 2020; Capotondi 
et al., 2012). Specifically, we hypothesized that (1) genetic differenti-
ation between parapatric groups which may be subject to gene flow 
would vary across their genomes, while differentiation would be both 
more pronounced and more widespread across the genomes of allo-
patric groups, (2) regions of elevated divergence may provide clues 
to the selective mechanisms responsible for divergence among the 
parapatric Aleutian Islands and Bering Sea, and (3) genes underlying 
local adaptation of parapatric groups may be correlated with the en-
vironmental factors to which adaptation occurred, with temperature 
most likely to play a role. To address the first two hypotheses, we 
examined the parapatric and allopatric sets of samples for FST outlier 
regions and calculated nucleotide diversity (π), dXY, and Tajima's D to 
inform the level of gene flow and potential mechanisms shaping di-
vergent regions. To address the final hypothesis, we identified four 
environmental covariates considered to impact Pacific cod: salinity, 
bottom temperature, surface chlorophyll, and current velocity, and 
quantified correlations between environmental covariates and allele 
frequencies. In addition, we screened for annotated genes within is-
lands of differentiation among the Aleutian Islands and Bering Sea 
and measured light transmission to the seafloor in the Bering Sea and 
Aleutian Islands through bottom optical depth.

2  |  METHODS

2.1  |  Sample preparation and sequencing

We analyzed Pacific cod fin clips from eight known spawning sites 
from the Aleutian Islands, EBS, Gulf of Alaska, and Washington 
Coast collected during February–May between 2003 and 2017 
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(Table 1, Figure 1). Studies of genetic stock structure in Pacific cod 
are typically limited to spawning fish because populations may inter-
mingle outside the spawning season (Cunningham et al., 2009; Drinan 
et al., 2018; Rand et al., 2014). While Pacific cod typically spawn be-
tween January and April (Neidetcher et al.,  2014), the Zhemchug 
sample, taken May 9, 2017, was considered close enough to that time 
window to be considered a late spawning sample. Individual gonadal 
condition was not recorded, but all samples were from adult cod that 
were taken from known spawning areas during spawning season and 
likely to be reproductively mature and in spawning condition. DNA 
from tissues stored in 95% ethanol from 88 to 96 individuals from 
each unique collection location and year (Table  1) were extracted 
using the DNeasy 96-well Blood & Tissue Kits (Qiagen Inc.). The ex-
tracted DNA was quantified using Quant-iT PicoGreen for double-
stranded DNA (Invitrogen) and visualized on a 1% agarose gel.

DNA pools were constructed of 43–48 individuals with an equi-
molar concentration of DNA from each individual and a total of 
750 ng of DNA per pool. In three spawning areas, we included DNA 
replicates to examine the accuracy of SNP calling. We included a 
temporal replicate sampled off Kodiak Island in 2003 (pool A) and 
2005 (pool B) that were not genetically different at 11 microsatel-
lites, with a statistically nonsignificant FST = −0.0006 (Cunningham 
et al., 2009). Two pools from Pervenets Canyon consisted of 95 in-
dividuals taken at a single location with longline gear were included 
to determine the effect of lower versus higher DNA concentration. 
These samples were split by DNA quantity into pool A (48 samples 
with the highest concentration of DNA, 47–72 ng/μl) and pool B (47 
samples with the lowest DNA concentration, 25–47 ng/μl) to deter-
mine whether DNA concentration would affect Pool-Seq results. 
Finally, two pools (A & B) of the Washington Coast samples con-
tained the same 43 individuals, with five additional samples in pool 
B included to test sensitivity to 10% additional samples. These eight 
spawning locations with three replicates resulted in a total of eleven 
pools that were sequenced.

DNA libraries were prepared by and sequenced at the Northwest 
Genomics Center at the University of Washington (https://www.
nwgs.gs.washi​ngton.edu/). Pooled samples were sheared using 
a Covaris LE220 focused ultrasonicator targeting an insert size of 
350–380 base pairs (bp). The resulting sheared DNA was cleaned 
with Agencourt AMPure XP beads to remove sample impurities prior 
to library construction. A two-sided AMPure cleanup was then per-
formed in order to further restrict the fragment sizes to the desired 
range. End-repair, A-tailing, and ligation were performed as directed 
by the KAPA Hyper Prep Kit (KR0961 v1.14) protocol without am-
plification. A final AMPure cleanup was performed after ligation in 
order to remove excess adapter dimers from the library. All library 
construction steps were automated on a Janus Automated worksta-
tion (Perkin Elmer, Inc.).

Final library concentration prior to sequencing was deter-
mined by triplicate qPCR using the KAPA Library Quantification Kit 
(KK4824), and molecular weight distributions were verified using an 
Agilent Bioanalyzer (Agilent Technologies). Samples were sequenced 
on a HiSeq X using Illumina's HiSeq X Ten Reagent Kit (v2.5). Cluster 
generation was performed on a cBot modified for use with the HiSeq 
X flow cells, and flow cells were loaded onto the HiSeq X machine 
for sequencing.

2.2  |  Bioinformatics pipeline

The pipeline we used deviated from the standardized pipeline 
to account for pooled sequences, the nonmodel species, and 
the alignment of our sequence data to the reference genome 
of a related species (Atlantic cod). Within GATK (v4), we used 
the GenomeAnalysisToolkit v. 4.1.2.0 to identify a set of single-
nucleotide polymorphisms (SNPs) and to estimate allele fre-
quencies for each pool. We designed and built a variant calling 
pipeline, including filtering for minimum and maximum read depth, 

TA B L E  1  Collection location of samples used in each pool, month and year of collection, latitude, longitude, and the number of individuals 
in collection (n)

Location Month/year Latitude Longitude n Superpool RD1 RD2

Adak Island Mar. 2006 51.32 −176.23 48 AI 71 63

Kiska Island Mar. 2005 51.89 177.47 48 AI 60 50

Kodiak Island Mar. 2003 57.92 −152.30 46 EBS 70 62

Kodiak Island Mar. 2005 57.92 −152.30 48 EBS 79 70

Near Island Feb. 2005 52.60 174.40 47 AI 60 51

Pervenets Canyon (A) Mar. 2016 59.21 −177.15 48 EBS 98 87

Pervenets Canyon (B) Mar. 2016 59.21 −177.15 47 EBS 88 79

Pribilof Island Apr. 2017 57.78 −172.12 48 EBS 84 76

Washington Coast (A) Feb. 2005 48.27 −125.00 43 WA 87 81

Washington Coast (B) Feb. 2005 48.27 −125.00 48 WA 81 66

Zhemchug Canyon May 2017 58.27 −173.80 48 EBS 71 63

Note: Duplicate pools from Pervenets Canyon and Washington State were assigned to “A” and “B” collections because they were collected during 
the same year. Pools were grouped into three superpools, abbreviated as follows: Aleutian Islands (AI), Bering Sea (EBS), and Washington coast (WA). 
Mean read depth prior to filtering (RD1) and postfiltering (RD2) are presented, rounded to the nearest whole read.

https://www.nwgs.gs.washington.edu/
https://www.nwgs.gs.washington.edu/
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missing data, and variant SNPs using the GATK best practices 
workflow (germline short variant discovery, SNPs + Indels, Poplin 
et al.,  2018; Van der Auwera et al.,  2013). Base calls generated 
on the HiSeq X instrument (RTA 2.7.6) were demultiplexed and 
converted to unmapped BAM files using the Picard programs 
ExtractIlluminaBarcodes and IlluminaBasecallsToSam in GATK. 
BAM files for each pool were then aligned to the Atlantic cod ref-
erence genome assembly, GadMor2 (Tørresen et al.,  2017) using 
BWA-MEM (Burrows-Wheeler Aligner; v0.7.10). SNPs were identi-
fied using maximum likelihood expectation (MLE) to estimate the 
allele frequency rather than the observed read count (allele fre-
quency) method in GATK v4. We assumed exactly 20 alleles per 
pool at each locus (ploidy), so that the minimum allele frequency 
for a variable SNP was 0.05 and the allele counts for each SNP 
summed to 20. This option was selected due to computational 
constraints and because maximum likelihood methodology was 
considered a good choice for allele frequency estimation. A single 
set of minimum and maximum read depth filters were applied to 
data that aligned to the GadMor2 linkage groups and scaffolds. 
A second set of filters was applied to remove SNPs exceeding set 
ranges for read depth per pool. The minimum read depth was 20× 
for the linkage group and scaffold data, and the maximum read 
depth was 2% of the total reads of each pool. The second filtering 
step removed any loci with missing data in any of the pools and re-
tained only biallelic and variant SNPs. The full pipeline is described 
in more detail in the Appendix S1.

2.3  |  Assessing patterns of genetic differentiation

Lin's  (1989, 2000) concordance correlation coefficient, ρc, was cal-
culated to measure relative agreement and validate results between 
the estimated allele frequencies among duplicated pools, using the R 
package epiR (Stevenson, 2020). More closely related pools were ex-
pected to have higher correlation. This statistic, which ranges from 0 
to 1, with larger values indicative of higher concordance, compares 
allele frequency calls between two pools to determine deviation 
from perfect concordance:

where μx and μY are the means of the allele frequencies in pools X and 
Y, and �X and �Y are the corresponding variances. The concordance 
correlation coefficient, ρc, was calculated for the three duplicated 
pools (Washington, Pervenets, and Kodiak) to determine the relative 
correlation among them, as well as all other pools for comparison. The 
allele frequency matrix with the full filtered set of 1,944,780 variant 
SNPs was used for this analysis.

FST and dXY were used to screen genomic regions of elevated 
divergence. FST is a relative measure of genetic differentiation 
(Wright,  1931) whose expectation is inversely correlated with ge-
netic variation in one or both populations under comparison. Elevated 
pairwise FST may be due to lower within-group genetic variation, 
rather than divergence among groups (Cruickshank & Hahn, 2014). 
Therefore, an absolute measure of divergence, dXY, whose expec-
tation is independent of genetic variation was also used. The sta-
tistic dXY summarizes the average number of nucleotide differences 
between pools of samples using an equation for unphased data: 
dXY =  (pX*qY) + (qX*pY), where pX is the proportion of the reference 
allele in pool X and pY is the proportion of the reference allele in 
pool Y, qX = 1 − pX, qY = 1 − pY (Dennenmoser et al., 2017; Schirrmann 
et al., 2018). Pairwise FST was calculated globally between all pools 
and per-SNP between the three superpools described below (EBS, 
AI, and WA). FST was calculated in PoPoolation2 (Kofler et al., 2011) 
using Nei's (1973) formula,

where ĤT is the expected heterozygosity in combined pools/super-
pools and ĤS is the expected heterozygosity in each pool/superpool 
(Hivert et al., 2018). The components ĤT and ĤS were calculated using 
Hivert et al. (2018), equations 17 and 18. While this measure of FST is 
considered biased (Hivert et al., 2018), the bias was consistent among 
pools because we retained similar read depth and sample size per pool 
(Table 1).

Pooled data were grouped into superpools according to the pre-
viously identified patterns of genetic differentiation between cod 
spawning in those regions (Drinan et al.,  2018; Spies et al.,  2020) 
and patterns identified in the principal components analysis (PCA) 
described below. Collections from Kodiak Island were included in 
the Bering Sea superpool based on these criteria. Three superpools 

�c =
2��X�Y

�2
X
+ �2

Y
+
(

�X +�Y

)2
,

FST =
ĤT − ĤS

ĤT

,

F I G U R E  1  Spawning locations included 
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from the Bering Sea (Pervenets, 
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were formed: the eastern Bering Sea superpool (“EBS”), the Aleutian 
Islands superpool (“AI”), and the Washington Coast (“WA”) superpool 
(Table 1). The Washington coast samples were designated as a third 
superpool due to their genetic distinctiveness. Allele frequencies for 
superpools were calculated as the arithmetic mean of the pool allele 
frequencies.

2.4  |  Sliding window analysis and islands of 
differentiation

A Gaussian kernel smoothing moving weighted average (KSMWA) 
approach was used to assess genome-scale patterns of differen-
tiation based on all identified loci. This analysis required pairwise 
comparisons between two sets of data; therefore, KSMWA was 
performed twice, on two pairs of superpools: (1) the Bering Sea su-
perpool compared with the Washington coast superpool (EBS-WA), 
and (2) the Bering Sea superpool compared with the Aleutian Islands 
superpool (EBS-AI). This allowed for a relatively proximate, parapat-
ric comparison (EBS-AI) and a spatially distant, allopatric comparison 
(EBS-WA) of genomic differentiation. Weighted average FST and dXY 
was computed for all 29,825 consecutive windows along the ge-
nome for each superpool comparison.

We adapted the methodology of Hohenlohe et al.  (2010) and 
Waters et al.  (2018) for the KSMWA to accommodate pooled 
whole genome sequence data. The window was shifted along 
the genome by a step size that allowed the windows to overlap. 
We evaluated a range of step sizes from 7 to 50 kb and choices of 
window size sigma (σ) from 10 to 80 kb to balance smoothing the 
variation in FST, the number of SNPs per window, and reducing 
noise along the window. The contribution of the SNP at position 
p to the region average was weighted by the Gaussian function 
exp(−[p-c]2/2σ2), where c is the window center and σ is a parameter 
for window size, so that SNPs in the center of the window received 
the highest weight according to a normal (μ  =  0, σ) distribution. 
Sliding window analysis used a step size of 20 kb and σ = 30 kb, as 
described in the results section. The statistic dXY was reported as 
the weighted average over all 180 k SNPs in each window, whereas 
weighted average FST was only calculated for variable positions, as 
it is undefined for invariable positions.

The significance of each sliding window's empirical Gaussian 
weighted average FST was determined by comparison to a set of 
bootstrap distributions generated from the entire genome (EBS-AI 
or EBS-WA). To reduce computational load, we generated a ref-
erence set of 2000 bootstrap distributions for each of the two 
KSMWA we performed. Each bootstrap distribution consisted of 
106 random draws with replacement of size n from the empirical per-
SNP FST estimates across the genome for that pairwise comparison, 
for n in 1–2000. One million bootstrap replicates were selected be-
cause this number sufficiently sampled the range of values of FST. A 
Gaussian weighted average was calculated for each of the 106 draws, 
arranged in random order. p-values for each window were estimated 
as the proportion of bootstrap replicates higher or equal than the 

empirical weighted mean FST's. Statistics were adjusted for multiple 
tests using the Benjamini–Hochberg false-discovery rate method 
(Benjamini & Hochberg, 1995).

Windows with kernel-weighted FST averages considered signifi-
cant based on the false-discovery rate are hereafter referred to as 
FST outlier windows. Sliding window dXY values were calculated in an 
analogous fashion.

Outlier regions with at least four consecutive windows with 
weighted mean FST >0.03 were considered islands of differentia-
tion. The FST >0.03 threshold was selected because it contained 
the upper 10% of weighted average FST values, provided an in-
flection point above which FST values reached an asymptote, and 
was generally a threshold above which outlier windows appeared 
prominent (Figure  S1). Outlier regions of interest were defined 
by the center points of full windows that shifted by step sizes of 
20,000 bp. Therefore, the size of outlier regions was allowed to 
be smaller than full window sizes (180,000 bp). The coefficient 
of variation of the number of significant FST outlier windows per 
linkage group was also quantified for the EBS-WA and the EBS-AI 
superpool comparisons.

Weighted mean dXY and FST, and mean nucleotide diversity 
(π), and Tajima's D (TD, Tajima,  1989) were summarized over all 
FST outlier and nonoutlier windows for each KSMWA comparison 
(EBS-AI and EBS-WA) and for each EBS-AI island of differentia-
tion. Islands of differentiation for EBS-WA comparisons were not 
included due to the much larger scale of differentiation among 
these superpools. For islands of differentiation between EBS-AI 
superpools, we quantified the presence of windows with dXY 
greater than the upper 5% quantile over all windows and windows 
with dXY greater than the genome-wide average. In early stages of 
population differentiation, dXY may not be a reliable indicator of 
reduced gene flow (Cheng et al., 2021; Dennenmoser et al., 2017; 
Feulner et al.,  2015). Therefore, for the EBS-AI superpool com-
parison, Tajimas's D provided information on whether selection 
or reduced gene flow may be implicated in regions of increased 
divergence, and nucleotide diversity was used to assess genetic 
variation (Nei, 1986). Reduced nucleotide diversity (π) can result 
from strong directional selection, as well as background selection 
and selective sweeps (Booker & Keightley, 2018). Nucleotide di-
versity (π) was estimated in each of the 29,825 windows for each 
superpool as:

where j is the derived allele count ( j  =  the reference allele fre-
quency × ploidy), C is the ploidy, or (20) × the number of pools in 
each superpool, summation takes place over all sites (including 
monomorphic sites) in each window, and n is the size of the window 
(180,000 bp). Tajima's D was also estimated in each sliding window 
as:

� =
∑ 2j(C − j)

C(C − 1)
∕n,

D =
� − �W

√

var
(

� − �W
)

,
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where �W =
Sn

∑C

i=1
1

i

. Here, Sn = the number of SNPs in each sliding win-
dow. Note that each superpool had the same number of SNPs per win-
dow, but the number of SNPs per window varied.

Principal components analysis (PCA) was performed using all 
1,944,780 SNPs in the full dataset using the R package PCAdapt (Luu 
et al., 2017) to visualize the genetic relationships among pools. The 
optimum number of principal components retained for analysis was 
determined based on Cattell's rule (Cattell, 1966).

We used fst-sliding.pl in PoPoolation2 to estimate the global 
pairwise comparison of FST among all pools using the following op-
tions [pool-size 20, min-count 1, min-coverage 1, max-coverage 500, 
window-size 5,800,000, step-size 0]. For this calculation, the posi-
tion for each SNP was renumbered sequentially and a window size 
that exceeded the total number of SNPs (5,800,000) was specified 
over this large region to calculate FST over the entire genome. The 
pool size was 20 alleles for each pool, reflecting a ploidy of 20. 
The option min count 1 represents the minimum count of the minor 
allele and specifies that at least one pool must have an alternate 
allele to identify the position as a SNP, and SNPs were identified 
considering all populations simultaneously. Minimum and maxi-
mum coverage criteria applied to each pool were 1 and 500 reads, 
to ensure that no data were excluded. Secondly, PoPoolation2 fst-
sliding.pl was used to estimate the pairwise per-SNP FST between 
superpools using the following options [--pool-size 120:60:40 
–min-count 1 –min-coverage 1 –max-coverage 500 –window-size 1 
--step-size 1]. The pool size for that analysis reflected the number 
of pools per superpool multiplied by 20 (a ploidy of 120 for the 
EBS superpool, 60 for the Aleutian Islands superpool, and 40 for 
the Washington superpool).

2.5  |  Gene annotations

The 11 EBS-AI islands of differentiation were aligned with all 
four GadMor2 annotation files (https://osf.io/4qsdw/; Tørresen 
et al.,  2017) using the Bioconductor package GenomicRanges 
(Lawrence et al.,  2013, Table  2). Only Bering Sea versus Aleutian 
Islands KSMWA comparisons were annotated, in line with the goals 
and hypotheses described above. Genes with known function were 
recorded if they contained one or more SNPs from the EBS-AI data-
set. The number of SNPs and mean FST over all SNPs within these 
proteins were also recorded, as well as a summary of gene function 
(www.unipr​ot.org).

2.6  |  Environmental correlation

We selected four environmental covariates (salinity [psu], bottom 
temperature [°C], chlorophyll [mg/m3], and current velocity [m/s]) 
that are considered to be of impact to Pacific cod. Salinity, and par-
ticularly the interaction between salinity and temperature, affects 
growth, egg fertilization, and regulation of fish growth hormone dur-
ing exposure to stress (Bœuf & Payan, 2001; Deane & Woo, 2009). 

Chlorophyll has been widely used as a proxy for marine productivity 
because it is indicative of phytoplankton biomass, and zooplankton, 
the prey of larval fish, forage on phytoplankton (Boyce et al., 2014; 
Hughes et al., 2018; Kristiansen et al., 2011). Recruitment in Pacific 
cod is more correlated with flow along and across the Bering Slope 
than other groundfish species, indicating that current velocity and 
direction are significant factors in Pacific cod early life history 
(Vestfals et al., 2014).

These four covariates were downloaded from the Copernicus 
Marine Environment Monitoring Services (CMEMS, https://resou​
rces.marine.coper​nicus.eu/), and values for each region were aver-
aged over the cod spawning months January–April over the years 
in our study, 2003–2017. CMEMS is a global ocean eddy-resolving 
(1/12° horizontal resolution, 50 vertical levels) reanalysis covering 
the period 1993 until present day. The reanalysis assimilates exist-
ing satellite and ocean vertical observations of temperature, salinity, 
and sea level and represents the state-of-the-art in ocean models 
(Lellouche et al., 2018). Model simulations were extracted using the 
nearest grid point of the sample locations that was not on land with 
a “find nearest grid point” routine, which shifted the location by 
4.5 km or less. The exception was the Adak Island sample for which 
the depth was outside the biological range of Pacific cod (3220 m); 
therefore, the sample location latitude was shifted slightly from 
51.32° N to 51.62° N (33 km). Chlorophyll was extracted for surface 
values, but all other covariates were taken from the ocean bottom. 
Scalar current velocity was calculated from the east (u) and north (v) 
velocity components (m/s), w =

√

u2 + v2.
We used BayPass v.2.2 (Gautier, 2015) to identify SNPs that were 

correlated to environmental variables within a Bayesian framework. 
The BayPass analysis was performed separately for the EBS-WA and 
EBS-AI comparisons, though for each comparison all pools were con-
sidered separately, not grouped as superpools. For the BayPass anal-
yses, the Pribilof pool was excluded because it displayed a skewed 
allele frequency distribution with more SNPs with low minor allele 
frequencies than any other pool. The Pribilof sample was retained 
for all other analyses because the elevated number of low-frequency 
SNPs had no noticeable effect on the allelic composition in super-
pools. The core BayPass model was run three times, with default 
parameters, to test for convergence. The auxiliary covariate model 
of BayPass associates allele frequencies with an environmental co-
variate while accounting for population structure. This was run with 
default settings, using the scaled mean values of the four covariates. 
To facilitate parallel computing, we used the function pooldata.sub-
set() from the R package poolfstat (Hivert et al., 2018) to create 20 
sets of 97,239 SNPs from our dataset. The auxiliary model was run 
three times for each covariate on the 20 sets of SNPs. The resulting 
per-SNP XTX (a Bayesian measure of the deviation of population allele 
frequencies from expected values) and log10(Bayes factors) statistics 
were compared over replicated runs for each covariate by calculat-
ing Pearson's correlation coefficient among the three possible com-
parisons for each covariate, to ensure convergence before averaging 
values over runs. The average of the three scaled covariance matrices 
was used in the auxiliary covariate model. We considered all SNPs 

https://osf.io/4qsdw/
http://www.uniprot.org
https://resources.marine.copernicus.eu/
https://resources.marine.copernicus.eu/
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with an averaged log10(Bayes factor) in decibans (dB, the correspond-
ing weights of evidence) greater than 30 associated with the covariate 
to be significant, a conservative threshold under which the alternative 
hypothesis is 1030 times more likely than the null hypothesis (Baldwin-
Brown & Long, 2020). We quantified the number of outlier SNPs in 
FST outlier windows for each covariate.

Finally, we plotted near-bottom (2–7 m above the sea floor) optical 
depth for the Aleutian Islands and EBS shelf during summer (June–
July) to evaluate differences in water clarity between regions during 
2006, 2010, 2012, 2014, 2016, and 2018. Optical depth is a natural 
logarithmic ratio that characterizes how much downwelling irradiance 
just below the sea surface reaches a given depth. Optical depth was 
calculated from 6657 irradiance profiles obtained during NMFS bot-
tom trawl surveys using light-sensitive archival tags connected to the 
trawl net. Data were collected during years when both summer sur-
veys (Aleutian Islands and EBS) were conducted and light data were 
collected. Methods for collecting irradiance data and calculating near-
bottom optical depth are described in Rohan et al. (2021). To quantify 
differences among regions, we fit a generalized additive model (GAM) 
to near-bottom optical depth (response variable) using a penalized 
cubic regression spline of depth and region (Aleutian Islands or EBS 
shelf) as predictor variables. For a given depth, higher near-bottom 
optical depth is associated with lower water clarity (i.e., less light 
transmission to the seafloor). Every 2.303 units of optical depth cor-
respond with an order of magnitude difference in light transmission.

3  |  RESULTS

There were 13,993,143 SNPs in the raw dataset, which included 
13,348,645 SNPs that aligned to the 23 GadMor2 linkage groups, 
1740 SNPs that aligned to mitochondrial DNA, and 644,498 SNPs to 
scaffolds (Table A1). Initial average read depth per pool ranged from 
60 to 98 (Table 1). Following filtering, the total number of SNPs that 
aligned to linkage groups was 1,944,780, while 161 SNPs aligned to 
mtDNA, and 21,546 SNPs aligned to scaffolds. Average read depth 

after filtering ranged from 50 to 87 per pool (Table 1). We retained 
the 1,944,780 SNPs that aligned to linkage groups for downstream 
analysis, hereafter referred to as the “full dataset”.

The concordance correlation coefficient showed that the high-
est similarity among all pairwise sample comparisons was between 
Washington Coast Pool A and Pool B (ρc = 0.9912383), followed by the 
Pervenets Pool A and Pool B (ρc = 0.9906341, Table A2). Samples taken 
in different years off Kodiak Island had the sixth highest concordance 
correlation coefficient (out of 46 comparisons), preceded by Pervenets 
Pool A compared with Kodiak Pool B, Zhemchug, and Kodiak Pool A, 
respectively (Table A2). Estimates of pairwise FST confirmed that Pool-
Seq genotypes were sensitive to the level of similarity among duplicate 
pools. Pairwise FST between duplicate pools increased in the inverse 
order as the ρc, with lowest FST between Washington Coast pools A 
and B (FST = 0.0179), followed by Pervenets pools, (FST = 0.0181), and 
finally Kodiak (FST = 0.0205, Table 3). Estimates of FST between nearly 
duplicated pools are expected to be near zero, and elevated levels of 
pairwise FST among duplicated pools indicated some level of upward 
bias in FST. The highest levels of pairwise FST were observed between 
the most distant comparisons, Near Island versus Washington Coast 
replicate pools A and B (FST = 0.0377, 0.0362), whereas more prox-
imate samples exhibited smaller pairwise FST (e.g., Adak vs. Kiska 
FST = 0.0261). Therefore, FST appeared to be a robust measure of ge-
netic differentiation in a relative sense, albeit positively biased.

A PCA generated with all 1,944,780 filtered loci was optimized 
using only one principal component, which explained 13.3% of the 
variance, as indicated by Cattell's rule applied to the scree plot 
(Figure S2). The Aleutian Islands and Bering Sea samples clustered 
together, with Aleutian Islands pools to the left of Bering Sea pools 
(Figure 2). Aleutian Islands samples ordered by longitude in the PCA, 
with the furthest west, Near Islands, to the left, followed by Kiska, 
then Adak. The Bering Sea pools were closely grouped, and follow-
ing the longitudinal pattern, Kodiak samples were furthest to the 
right of the cluster that included Pervenets, Pribilof, and Zhemchug. 
Washington pools were distant, and some separation was observed 
between the two Washington pools.

TA B L E  3  Pairwise FST between samples for all data combined, Wash. = Washington, Zhem. = Zhemchug, Perv. = Pervenets

Near Kiska Adak Perv. (A) Perv. (B) Zhem. Pribilof
Kodiak 
2003

Kodiak 
2005 Wash. (A)

Near –

Kiska 0.0250 –

Adak 0.0262 0.0261 –

Perv. (A) 0.0229 0.0228 0.0238 –

Perv. (B) 0.0236 0.0235 0.0245 0.0181 –

Zhemchug 0.0249 0.0248 0.0257 0.0197 0.0204 –

Pribilof 0.0250 0.0248 0.0258 0.0195 0.0202 0.0219 –

Kodiak 2003 0.0248 0.0245 0.0255 0.0199 0.0204 0.0216 0.0219 –

Kodiak 2005 0.0243 0.0242 0.0250 0.0193 0.0200 0.0212 0.0215 0.0205 –

Wash. (A) 0.0377 0.0371 0.0364 0.0317 0.0322 0.0334 0.0333 0.0321 0.0314 –

Wash. (B) 0.0362 0.0358 0.0361 0.0298 0.0303 0.0315 0.0316 0.0301 0.0296 0.0179
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3.1  |  Sliding window analysis and islands of 
differentiation

For the FST sliding window analysis, a step size of 20 kb and σ = 30 kb 
was selected for the Gaussian kernel smoothing moving weighted 

average (KSMWA) because it optimized between SNPs per window, 
variation in FST, and reduced noise within windows (Figure S3 and 
Table A3). This resulted in 29,825 windows.

The pattern and extent of FST outlier windows differed between 
the EBS-AI and the EBS-WA superpool comparisons; the EBS-AI 

F I G U R E  2  Principal components 
analysis for all pools and all (1,944,870) 
SNP loci. One principal component was 
the optimal choice to represent the data, 
which explained 13.3% of the variance; 
plots are shown along a single axis only.

Kodiak (A)

Washington (B)

Near

Pervenets (A)

Pervenets (B)Kiska

Kodiak (B)Pribilof

Zhemchug

Washington (A)Adak

-0.03 0.00 0.03 0.06 0.09
PC1, 13.3% variance explained

All 1,944,780 SNPs, all LGs

F I G U R E  3  Weighted average FST for all SNPs aligned to GadMor2 in 180 kbp windows that overlap with a step size of 20,000 bp between 
the Bering Sea and Aleutian Islands superpools (upper panel), and the Bering Sea and Washington Coast superpools (lower panel). FST outlier 
windows are colored in red shades. Islands of differentiation identified in Table 2 are highlighted with gray bars. The island on linkage group 
12 is not filled because it was not present in the EBS-WA comparison.
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comparison showed fewer outlier windows (829) than the EBS-WA 
comparison (4347), and the highest EBS-WA outlier FST windows 
peaked at FST = 0.2, approximately double that of the highest EBS-AI 
outlier windows (Figure 3). Furthermore, the coefficient of variation 
of the number of outlier windows per linkage group was higher for 
the EBS-AI comparison (CV = 0.026) than for EBS-WA (CV = 0.015), 
indicating more uneven distribution of outlier regions in the EBS-AI 
comparison. The distribution of weighted average FST values for all 
windows was higher in EBS-WA than in EBS-AI outlier and nonout-
lier windows, indicative of a generally higher FST between allopatric 
than parapatric Pacific cod (Table 2, Figure 4). In contrast, mean dXY 
was identical between EBS-WA and EBS-AI comparisons in nonout-
lier regions, and slightly higher (0.00059 vs. 0.00053) in the EBS-WA 
comparisons than in the EBS-AI comparison (Table 2).

Mean Tajima's D was generally negative across all outlier and 
nonoutlier regions across all EBS-AI and EBS-WA superpool com-
parisons, but lower in outlier regions versus nonoutlier regions 
(Table  2). Tajima's D was similar between the EBS among outlier 

versus nonoutlier regions (EBS-WA comparison), but remained neg-
ative. Nucleotide diversity, π, was lower in the EBS and Aleutian 
Islands outlier than nonoutlier regions, and EBS pools showed higher 
nucleotide diversity than Washington coast or Aleutian Island pools, 
particularly on LG06 and LG19 islands of differentiation (Table 2).

The largest EBS-AI FST outliers were on linkage groups (LG) 8 and 
12, and smaller islands of differentiation were present on linkage 
groups 2, 6, 14, 16, 18, 19 and 22 (Table 2, Table A4, Figure 3). In one 
of these 11 islands of differentiation (LG16), dXY exceeded the upper 
5% quantile of observed over all EBS-AI in 2/10 windows, and in 
five islands of differentiation (LG02_1, LG12_1, LG16_1, LG18_1, and 
LG22_1), dXY exceeded the genome-wide average (Table 2). Most is-
lands of differentiation with elevated dXY showed no evidence for 
significantly reduced Tajima's D, with the exception of LG12_01, 
the largest FST outlier window, in which three windows (position 
15,300,000–15,520,000) contained reduced Tajima's D. This region 
of reduced Tajima's D occurred at one end of the window, whereas 
the region of high dXY occurred at the other end. Reduced Tajima's 
D was observed at LG06_1 in the Aleutian Islands (in 4/10 windows) 
and at LG08_1 in the EBS samples (in 3/6 windows). Reduced nuclear 
diversity was present in both the EBS (5/6) and AI (1/6) at LG08_1, 
although the results do not rule out background selection in both 
regions. In LG14_1, there was reduced Tajima's D in 25 out of 27 EBS 
windows and 20 out of 27 AI windows.

3.2  |  Gene annotations

Within the 11 islands of differentiation, we identified 68 regions 
with similarity to known genes (Table 4 and Table A5, Figure 5). The 
genes were responsible for a variety of functions, but notably there 
were five genes related to vision were identified within FST outlier 
regions (Table A5): CRB1 (LG8_1), OPN3 (LG08_3), rpe65c (LG12_1), 
PDE6G (LG18_1), and Gprc5c (LG18_1). PDE6G and Gprc5c were 

F I G U R E  4  Density plot of normalized FST within and outside FST 
outlier windows for the Bering Sea vs. Aleutian Islands comparison 
(EBS-AI) and the Bering Sea vs. Washington comparison (EBS-WA).
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LG, number Region (Mb)
Gene 
name Description

8_01 2.18–2.19 CRB1 Plays a role in photoreceptor morphogenesis in 
the retina

8_03 4.03–4.04 OPN3 G-protein coupled receptor which selectively 
activates G proteins via ultraviolet A (UVA) 
light-mediated activation in the skin. Opsins 
are light-absorbing genes

12_1 15.47–15.48 rpe65c Retinal Mueller cells isomerohydrolase. 
Catalyzes forms of retinoic acid to meet the 
high demand for the chromophore by cones

18_1 21.22–21.23 PDE6G Retinal rod rhodopsin-sensitive cGMP 
participates in transmission, amplification of 
visual signal

18_1 21.24–21.25 Gprc5c Retinoic acid-inducible G-protein coupled 
receptor; RA shapes the developing eye 
and is essential for normal optic vesicle and 
anterior segment formation

Note: This table represents a subset of the 68 gene regions; a complete list is in Table A5.

TA B L E  4  Annotated genes within 
which FST outlier SNPs regions were found
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located adjacent to the FST outlier on LG18 in a region of above-
average dXY and were therefore considered potentially relevant.

3.3  |  Environmental correlation

Salinity, temperature, current velocity, and chlorophyll patterns 
differed among regions (Figure  S4 and Table  A6). The lowest 
chlorophyll was typically found in Bering Sea sampling areas, 
Zhemchug and Pervenets. Salinity was highest at the Washington 
Coast site and lowest off Kodiak. Temperature was highest off the 
Washington Coast (~8°C) and lowest in Bering Sea sites, 2–3°C. 
The highest current velocities were found in the Aleutian Islands, 
with Adak the highest, followed by Near and Kiska. BayPass 
results were significantly correlated over each set of three 
independent runs (Table  A7); therefore, results were averaged 
over each set of three runs. Among the EBS-AI comparisons, the 
most notable increase in Bayes factors in regions identified as 

islands of differentiation was found in linkage group 12 (Figure 
S5). Tabulation of the correlates most strongly correlated with 
allele frequencies indicated that in LG12_1, velocity had the 
largest effect, with 135 SNPs with Bayes factors >30 (Table  2). 
Velocity was the biggest covariate in LG08_1, with 38 SNPs 
strongly correlated. The second most significant correlate after 
velocity was salinity, with 29 strongly correlated SNPs in LG08_1 
(Table 2). In the EBS-WA BayPass analysis, results were tabulated 
over all data due to the increased number of high FST regions. In 
this comparison, the highest number of strongly correlated Bayes 
factor SNPs was correlated with salinity (36%) and velocity (32%), 
versus temperature (20%) and chlorophyll (12%, Table 2).

The EBS shelf has lower water clarity than the Aleutian Islands 
at ~20–160 m bottom depths during summer, based on near-bottom 
optical depth, meaning that less surface-incident irradiance reaches 
the seafloor in the EBS than in the Aleutian Islands at those depths 
(Figure 6a). Based on GAM fitted means, the maximum difference 
in optical depth between the EBS and Aleutian Islands is at ~70 m 

F I G U R E  5  Weighted average FST and dXY (the latter multiplied by 10 for visualization) in the six linkage groups containing FST outlier 
regions: linkage groups 2, 8, 12, 16, 18, and 22, labeled corresponding to FST outlier regions in Table 2. Shaded vertical lines represent 
outlier regions within which linkage groups with FST outliers are greater than 0.030 and pairwise dXY is greater than the genome average 
(0.000539 × 10, horizontal black line). Blue points represent the upper 5% quantiles for dXY, and pink dots indicate FST outlier windows. 
Orange triangles represent locations of annotated genes within FST outlier windows, which are labeled corresponding to the gene number in 
Table A5, and vision gene names are listed.
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depth, where light transmission to the seafloor in the Aleutian 
Islands is slightly more than an order of magnitude higher than the 
EBS (difference in near-bottom optical depth: 2.45). In addition, 
there is an east–west break in GAM residuals in the Aleutian Islands 
around Samalga Pass (169°28′W), where bottom optical depth is 
higher (“darker”) than predicted to the east of Samalga Pass than to 
the west (Figure 6b).

4  |  DISCUSSION

While Pacific cod from the Aleutian Islands and EBS are suffi-
ciently genetically differentiated to merit separate management 
units (Drinan et al., 2018; Spies, 2012; Spies & Punt, 2015), there 
is little information on the mechanisms driving these differences. 
We examined how genomic patterns of differentiation and envi-
ronmental covariates differed among these proximate and distant 
comparisons, inferred processes by which differentiation occurs 
across the genome, and examined genetic factors that may play a 
role in divergence within islands of differentiation between Aleutian 
Island and Bering Sea cod. A primary finding was a pattern of het-
erogeneous genomic differentiation between Pacific cod from the 
Aleutian Islands and EBS. We identified 11 genomic islands of dif-
ferentiation in nine (of 23) linkage groups between the proximate 
EBS and Aleutian Islands, and the presence of many more FST outlier 
regions between the EBS and Washington coast (Table 2; Figure 3). 
The EBS-AI islands of differentiation ranged in size from 60,000 to 
940,000 bp, and weighted average FST over these 11 islands ranged 
from 0.023 to 0.067 (Figure  3; Table  A4). The limited number of 
EBS-AI islands of differentiation interspersed with regions of low 
FST were consistent with emergent local adaptation among popula-
tions experiencing migration–selection balance, similar to our first 
hypothesis, although alternative explanations and limitations are 
discussed below.

High FST and elevated dXY in five of the 11 genomic islands, par-
ticularly on LG12 and LG16 (Figure  5; Table  2), may indicate local 
adaptation or inversions (Lotterhos,  2019), but the Pool-Seq data 
preclude further examination of the nature of the outlier regions. 
There was evidence for selection in the Aleutian Islands region of 
LG06_1 and in the EBS region of LG08_1. In LG08_1, reduced nucle-
otide diversity in the EBS and Aleutian Islands could alternatively be 
a result of background selection or directional selection with hitch-
hiking in both regions. In LG14_1, reduced Tajima's D and reduced 
nucleotide diversity provided evidence for background selection, 
although it is not always possible to distinguish between back-
ground selection and directional selection with hitchhiking (Booker 
& Keightley, 2018). Higher nucleotide diversity in EBS pools could be 
a result of selection on Aleutian Islands or Washington Coast cod, 
or due to the disproportionately larger size of the EBS cod stock, as 
larger population sizes may lead to higher nucleotide diversity (Spies 
et al., 2020; Subramanian, 2019).

The pairwise FST between the EBS and Washington coast was 
roughly double that between the Aleutian Islands and Bering Sea 
spawning populations (Table  3; Figure  3). This may be consistent 
with a framework in which gene flow acts to homogenize allele fre-
quencies between EBS and Aleutian Islands at most of the genome, 
except the few regions affected by selection, while lower gene flow 
or longer time since divergence between the EBS and Washington 
Coast allows for FST to increase. However, the similar absolute di-
vergence (dXY) in nonoutlier regions and slightly smaller dXY in the 
EBS versus Aleutian Islands outlier regions compared with EBS 
versus Washington indicate a similar number of nucleotide differ-
ences and are consistent with a scenario in which EBS and Aleutian 
Islands populations began diverging soon after they colonized the 
region following the recession of the last glacial maximum (Canino 
et al., 2010).

Most EBS-AI FST outlier regions were also present in the EBS 
vs. Washington comparison (Figure 3), indicating that these EBS-AI 

F I G U R E  6  Generalized additive model (GAM) fitted between depth (meters) and near-bottom optical depth data in the Aleutian Islands 
(AI) and eastern Bering Sea from summer (June–July) 2006–2018. Panels show: (a) GAM fitted mean (line) ± 1 standard error (shading), (b) 
AI GAM residuals by longitude, mean residual based on LOESS regression (line) ± 1 standard error (shading), and position of Samalga Pass 
(~169°29′W). Point and line colors denote region (AI and EBS).
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outlier regions may be important for EBS cod. Regions of elevated 
differentiation due to hitchhiking with genes under selection start as 
smaller regions that grow into wider regions over time and tend to be 
more pronounced in small populations where linkage is higher (Feder 
& Nosil, 2010). In contrast, islands of differentiation that are the re-
sult of genomic inversions are more likely to emerge in high gene 
flow species with strong selective pressure (Schaal et al., 2022). The 
divergent region on linkage group 12, the most predominant island 
of differentiation with the highest EBS-AI mean FST, was not pres-
ent in the EBS-WA comparison, suggesting that this outlier region 
may have developed relatively recently if EBS and AI populations 
diverged more recently (Figure 3).

While there is no clear evidence for the mechanism leading to the 
island of differentiation observed on LG12 in Pacific cod, it is slightly 
less than 1 megabases in size, much smaller than four large inver-
sions that have been identified in Atlantic cod between Northeast 
Arctic and Norwegian Coastal ecotypes (Berg et al., 2017; Sodeland 
et al., 2016). In Atlantic cod inversions on linkage groups 1, 2, 7, and 
12 were 17, 5, 9.5, and 13 megabases long, respectively (Kirubakaran 
et al., 2016; Sodeland et al., 2016). While the island of differentia-
tion in Pacific cod is on the same linkage group as one inversion in 
Atlantic cod (linkage group 12), it appears located between 15 and 
16 mB and is outside the range suggested by previous studies (0.4–
0.6 mB—14mB) which aligned to GadMor2 (Barth et al., 2017), and 
GadMorCeltic (Kirubakaran et al., 2016).

We hypothesized that temperature would be the most signifi-
cant environmental correlate to genomic variation; however, current 
velocity and vision stood out as potential factors leading to islands 
of differentiation but temperature did not. Strong correlation with 
velocity based on BayPass results indicated that genes located 
within linkage group 12 outliers were associated with different en-
vironments of the EBS and AI, although the precise relationship is 
not clear (Table 2, Figure S4). Furthermore, the finding of five genes 
related to vision in outlier regions differentiating the Aleutian Islands 
and Bering Sea may be an indication of the genes underlying selec-
tion. However, identifying targets of selection within islands of dif-
ferentiation is difficult because the lack of recombination, whether 
due to inversions or selection with hitchhiking, can link true targets 
selection with false positives (Berg et al.,  2017). Visual systems 
have been shown to be under strong natural selection in several 
fish species including Atlantic cod in which differential expression 
of visual opsins and the rhodopsin rhI gene varies by ecotype (Berg 
et al.,  2017; Hofmann & Carleton,  2009; Pampoulie et al.,  2015; 
Valen et al., 2018). In other species, visual systems have evolved in 
response to environment; for example, the visual system of Midas 
cichlids (Amphilophus cf. citrinellus) has rapidly evolved to adapt 
to the clear water in crater lakes from more ancestral turbid lakes 
(Torres-Dowdall et al., 2017).

Our analysis of near-bottom optical depth suggests there are 
depth-associated differences in water clarity among cod habitat 
in the EBS and Aleutian Islands, as well as differences within the 
Aleutian Islands chain itself (Figure 6). The break in water clarity con-
ditions at Samalga Pass is presumably due to higher concentrations 

of chlorophyll (Mordy et al., 2005), chromophoric dissolved organic 
matter, and nonalgal particulate in the Alaska Coastal Current than 
in the more ocean-influenced waters to the west. Specific genes 
identified in outlier regions for Pacific cod included CRB1, which 
plays a role in photoreceptor morphogenesis in the retina, two genes 
related to retinoic acid (rpe65c and Gprc5), a gene related to reti-
nal rod rhodopsin (PDE6G) and an opsin receptor (OPN3), and are 
consistent with life history strategies and adaptation associated with 
vision (Table 4). While the association between vision genes and is-
lands of differentiation in Pacific cod is not evidence for causation, 
research in other teleosts and the commonality with Atlantic cod 
in which vision genes are differentially expressed among ecotypes 
provides a basis for further exploration of potential effects of forag-
ing, predator avoidance, orientation, and social behavior (Hofmann 
& Carleton, 2009; Valen et al., 2018).

The data passed multiple checks, confirming the reliability Pool-
Seq methodology for genotyping. Biological replicate pools have 
been used in other studies too as a quality check for accurate sample 
contribution and allele frequency calling (Dorant et al., 2019; Guirao-
Rico & González, 2021; Hivert et al., 2018). Read depth (50–100) was 
within the range that is considered sufficient for resolution of the 
allele frequency spectrum, distinguished evolutionary patterns, and 
provided sufficient power for Tajima's D (Ferretti et al., 2013), while 
the number of samples per pool (43–48) was sufficient to reduce 
experimental bias (Dorant et al., 2019; Kofler et al., 2011). High rel-
ative agreement in allele frequencies among the Washington Coast 
pools was consistent with expectations that pools consisting of the 
same or similar individuals would produce highly correlated allele 
frequencies. The PCA also confirmed similarity among duplicate 
and proximate samples (Figure  2), although allele frequencies dif-
fered between the two Washington replicated pools by only adding 
five individuals (Figure 2). In the case of the Pervenets pools, high 
correlation indicated that pooling based on concentration of DNA 
within the observed ranges did not impact the results. FST estimates 
decreased with increasing concordance correlation coefficients, 
providing a second line of evidence for genotype similarities among 
pools (Table 3). The concordance correlation coefficient between the 
two Kodiak samples taken in different years was relatively high (6th 
highest out of 55 comparisons), but was lower than several compari-
sons between Kodiak and EBS spawning cod. The similarity between 
Kodiak and Pervenets samples is confirmed by pairwise FST; FST be-
tween temporal replicates from Kodiak were higher (indicating less 
similar) than any pairwise comparisons between Kodiak 2003/2005 
and Pervenets Pool A or B. We do not completely understand the 
level of connectivity between western Gulf of Alaska spawning cod 
and those from the Bering Sea shelf, although the PCA is consistent 
with isolation by distance observed in previous studies (Figure  2; 
Cunningham et al., 2009). Similarly, several previous studies found 
similarity among Kodiak samples and Unimak spawning cod from the 
EBS (Table A2; Cunningham et al., 2009; Drinan et al., 2018).

While this was the first population genomics study of Pacific cod 
using whole genome sequencing, the pooled WGS platform posed 
some drawbacks. Without individual-level data, there was no insight 
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into linkage disequilibrium, which could provide evidence for ge-
nomic inversions. Further, ploidy was limited to 20 per pool, so dif-
ferences among pools could only be observed in increments of 0.05, 
and subtle differences among pools may have been lost, although 
this is unlikely given the large number of SNPs. High replicability 
between pools provided confidence that the underlying measures 
of population allele frequencies were accurate. While the patterns 
observed in the PCA appear sound, the nature of Pool-Seq limited 
the number of principal components in the data to 10, and the re-
sulting PCA was optimized with only a single principal component 
that explained 13.3% of the variance. We also acknowledge that 
our analyses were performed over large window sizes (σ  =  30 kb, 
step size = 20 kb), which could reduce the possibility of finding the 
effects of single genes. Another concern was that while alignment 
to the genome of a congeneric species is routine among nonmodel 
species, chromosomal rearrangements may not have aligned and 
could have been missed. Therefore, we anticipate that our approach 
laid the groundwork for future studies to examine outlier regions in 
Pacific cod in more detail. Future work that includes low coverage 
whole genome sequencing (lcWGS) on an individual basis will pro-
vide further understanding of the outlier regions identified here, as 
well as identifying whether outlier regions represent inversions or 
regions of linked selection (Lou et al., 2021).

Overall, data provided new evidence for heterogeneous differ-
entiation across the genome between spawning populations of cod 
from the EBS and Aleutian Islands, which we hypothesize may be 
the result of local adaptation despite some low level of gene flow. 
Furthermore, we found more extensive levels of relative differenti-
ation but similar levels of absolute divergence among cod from the 
allopatric EBS vs. Washington coast. These results indicate that the 
EBS and Aleutian Islands may have started diverging soon after cod 
recolonized the North Pacific following the last glacial maximum. 
The presence of 11 islands of differentiation, five of which showed 
some level of elevated dXY, and evidence for directional selection 
and background selection on two other islands of differentiation in-
dicate that local adaptation has occurred between cod from these 
different environments. Results also indicate that these spawning 
groups are in migration–selection balance and that selection may be 
strong enough to balance the effects of gene flow. While our study 
was not designed to provide direct evidence of genes responsible for 
adaptation, annotated genes suggested that vision may play a role in 
adaptation to the distinct ocean environments of the Bering Sea and 
Aleutian Islands. Results build upon previous studies indicative of 
divergence between EBS and Aleutian Islands Pacific cod.
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