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e topology prediction of transmembrane protein is a hot research �eld in bioinformatics and molecular biology. It is a typical
pattern recognition problem. Various prediction algorithms are developed to predict the transmembrane protein topology since
the experimental techniques have been restricted by many stringent conditions. Usually, these individual prediction algorithms
depend on various principles such as the hydrophobicity or charges of residues. In this paper, an evidential topology prediction
method for transmembrane protein is proposed based on evidential reasoning, which is called TOPPER (topology prediction of
transmembrane protein based on evidential reasoning). In the proposed method, the prediction results of multiple individual
prediction algorithms can be transformed into BPAs (basic probability assignments) according to the confusion matrix. en, the
�nal prediction result can be obtained by the combination of each individual prediction base on Dempster’s rule of combination.
e experimental results show that the proposed method is superior to the individual prediction algorithms, which illustrates the
effectiveness of the proposed method.

1. Introduction

According to the present genome data, roughly 20–30% of the
genes in a typical organism code for𝛼𝛼-helical transmembrane
(TM) protein [1–3]. Transmembrane protein is the principal
executives of the biomembrane’s functions and plays many
important roles in cell such as substance transportation,
and energy conversion. In order to explore the structure,
function, and transmembranemechanism of transmembrane
protein, the topology prediction of transmembrane protein
has been a hot �eld in bioinformatics and molecular biology
[1, 2, 4].

e topology of transmembrane protein [5], that is,
the number and position of the transmembrane helixes
and the in/out location of the N and C terminal of the
protein sequence, is an important issue for the research of

transmembrane proteins. For a protein sequence, if both
transmembrane helixes and location of the N and C terminal
have been predicted correctly, the topology of the protein
sequence is said to be predicted correctly. Recently, informa-
tion science and technology are widely used in the biology
and medicine [6–8]. In essence, the topology prediction of
transmembrane protein is a typical pattern recognition prob-
lem. As shown in Figure 1, given a protein sequence, the task
is to determine the class label for each residue among these
three classes of “i” (intracellular), “M” (transmembrane), and
“o” (extracellular). At present, the most accurate methods to
determine the topology of transmembrane protein are some
experimental techniques, such as nuclearmagnetic resonance
(NMR) and X-ray crystal diffraction. However, these exper-
imental techniques usually require strict conditions so that
they cannot be applied on a large scale.ey cannot meet the
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needs of the increasing protein sequences. erefore, various
computational methods have been developed to predict the
topology of transmembrane protein [9–11].

Generally speaking, in a previous study theremainly exist
three primary kinds of algorithms to predict the topology of
transmembrane protein.e �rst kind of algorithms is on the
basis of the chemical or physical properties of amino acids,
for example, the hydrophobicity of residues or the charges
of residues in different location. Some classical prediction
algorithms are TopPred [2], and so on [12, 13]. e second
kind of algorithms for the topology prediction is based
on the statistical analysis on a huge amount of structure
known as transmembrane proteins, such as MEMSAT [14],
TMAP [10], and PRED-TMR [15]. In the third kind of
algorithms, various machine learning technologies such as
hidden Markov model (HMM) and support vector machine
(SVM) have been introduced to the prediction of transmem-
brane protein topology. A series of algorithms have been
developed, for example, HMMTOP [11], PHDhtm [16, 17],
and so forth [18–21].

According to the mentioned above, even though there
exists many algorithms for the prediction of transmembrane
protein topology, however, different algorithms depend on
different principles, and their applicable scopes are different.
To a prediction system, if more information have been taken
into consideration, the prediction ability of the system must
be much more stronger. Essentially, it is a viewpoint of
ensemble learning [22–25]. Using this idea to the topology
prediction of transmembrane protein, various prediction
algorithms have been treat as basic predictors; the task is the
combination of multiple predictors to obtain a combination
predictor which has a better performance than basic pre-
dictors. Within this process, there are two critical problems,
that is, the representation of each predictor’s prediction
results and the combination method of combining multiple
predictors. In regard to the representation of predictor’s
prediction results, as Xu et al. [23] pointed three types of
output information can be utilized for different prediction
algorithms, namely, the information in the abstract level,
rank level, and measurement level, respectively. As to the
combination method, traditional methodologies are usually
on the basis of the framework of probability theory. To some
degree, it is very effective, especially for the randomness.
However, in the real world there are various uncertainties,
not only the randomness but also the fuzziness and incom-
pleteness, and so forth [26, 27].

As a theory of evidential reasoning under the uncertain
environment, the Dempster-Shafer theory of evidence [28,
29] has an advantage of directly expressing various uncertain-
ties and has been widely used in many �elds [30–37]. It pro-
vides a general and effective framework for the representation
and combination of multiple individual algorithms. In this
paper, a new topology prediction method of transmembrane
protein based on evidential reasoning approach, called TOP-
PER, has been proposed. In the proposed TOPPER method,
the prediction results of basic predictor are represented by
basic probability assignment (BPA) which has been con-
structed in terms of the confusion matrix of the predictor.
en, various basic predictors are combined by using the

Dempster’s rule of combination. Finally, the topology of a
transmembrane protein sequence are determined according
to the combination prediction results. In this paper, an
experiment demonstrates the effectiveness of the propose
prediction method.

e rest of this paper is organized as follows. Section 2
introduces some basic concepts about the Dempster-Shafer
theory of evidence. In Section 3 the proposed method
is presented. Section 4 gives experimental veri�cation to
demonstrate the effectiveness of the proposed method. Con-
clusions are given in Section 5.

2. Preliminaries

In this section, a few concepts commonly in the Dempster-
Shafer theory of evidence will be introduced.

e Dempster-Shafer theory of evidence [28, 29], also
called the Dempster-Shafer theory or evidence theory, is used
to deal with uncertain information. As an effective theory
of evidential reasoning, the Dempster-Shafer theory has an
advantage of directly expressing various uncertainties. is
theory needs weaker conditions than the Bayesian theory
of probability, so it is oen regarded as an extension of the
bayesian theory. For completeness of the explanation, a few
basic concepts are introduced as follows.

Let Ω be a set of mutually exclusive and
collectively exhaustive, indicted by

Ω = 𝐸𝐸1, 𝐸𝐸2,… , 𝐸𝐸𝑖𝑖,… , 𝐸𝐸𝑁𝑁 . (1)

e set Ω is called frame of discernment. e power set ofΩ
is indicated by 2Ω, where

2Ω=∅,𝐸𝐸1 ,… ,𝐸𝐸𝑁𝑁,𝐸𝐸1, 𝐸𝐸2 ,… ,𝐸𝐸1, 𝐸𝐸2,… , 𝐸𝐸𝑖𝑖 ,…,Ω .
(2)

If 𝐴𝐴 𝐴 2Ω, 𝐴𝐴 is called a proposition.

For a frame of discernment Ω, a mass function
is a mapping𝑚𝑚 from 2Ω to [0, 1], formally de�ned by

𝑚𝑚 𝑚 2Ω ⟶ [0, 1] , (3)

which satis�es the following condition�

𝑚𝑚(∅) = 0, 
𝐴𝐴𝐴2Ω

𝑚𝑚 (𝐴𝐴) = 1. (4)

In the Dempster-Shafer theory, a mass function is also
called a basic probability assignment (BPA). If𝑚𝑚(𝐴𝐴) 𝑚 0,𝐴𝐴 is
called a focal element, the union of all focal elements is called
the core of the mass function.

For a proposition 𝐴𝐴 𝐴 Ω, the belief function
Bel 𝑚 2Ω → [0, 1] is de�ned as

Bel (𝐴𝐴) = 
𝐵𝐵𝐴𝐴𝐴

𝑚𝑚 (𝐵𝐵) . (5)
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F 1: Topology prediction of transmembrane protein.

e plausibility function Pl ∶ 2Ω → [0, 1] is de�ned as

Pl (𝐴𝐴) = 1 − Bel 𝐴𝐴 = 
𝐵𝐵𝐵𝐴𝐴𝐵𝐵

𝑚𝑚 (𝐵𝐵) , (6)

where 𝐴𝐴 = Ω − 𝐴𝐴.
Obviously, Pl(𝐴𝐴) 𝐴 Bel(𝐴𝐴); these functions Bel and Pl

are the lower limit function and upper limit function of
proposition 𝐴𝐴, respectively.

Consider two pieces of evidence indicated by two BPAs
𝑚𝑚1 and 𝑚𝑚2 on the frame of discernment Ω; the Dempster’s
rule of combination is used to combine them. is rule
assumes that these BPAs are independent.

�e�nition �. eDempster’s rule of combination, also called
orthogonal sum, denoted by 𝑚𝑚 = 𝑚𝑚1⨁𝑚𝑚2, is de�ned as
follows:

𝑚𝑚(𝐴𝐴) =




1
1 − 𝐾𝐾

∑
𝐵𝐵𝐵𝐵𝐵=𝐴𝐴

𝑚𝑚1 (𝐵𝐵)𝑚𝑚2 (𝐵𝐵) , 𝐴𝐴𝐵𝐵𝐴

0, 𝐴𝐴 = 𝐵,
(7)

with

𝐾𝐾 = 
𝐵𝐵𝐵𝐵𝐵=𝐵

𝑚𝑚1 (𝐵𝐵)𝑚𝑚2 (𝐵𝐵) . (8)

Note that the Dempster’s rule of combination is only
applicable to such two BPAs which satisfy the condition𝐾𝐾 𝐾
1.

3. ProposedMethod

In this section, a new transmembrane protein topology pre-
diction method is proposed based on evidential reasoning.
For the sa�e of convenience, it is brie�y written down as
TOPPER (Topology prediction of transmembrane protein
based on evidential reasoning). e proposed prediction
method TOPPER is on the basis of the combination of
multiple individual prediction algorithms. In order to obtain
the combination predictor, the process is presented step by
step as follows.

3.1. e Selection of Basic Predictor. Because the proposed
topology prediction method is the combination of mul-
tiple individual prediction methods, the basic predictors

should be constructed �rst. Here, �ve individual prediction
algorithms, OCTOPUS [3], PRO-TMHMM and PRODIV-
TMHMM [38], SCAMPI-msa, and SCAMPI-seq [13], have
been selected to construct these basic predictors. In pattern
recognition, the prediction performance of each predictor is
expressed by confusion matrix. In the topology prediction
of transmembrane protein, since there are only three classes
“i” (intracellular), “M” (transmembrane), and “o” (extracel-
lular), the confusion matrix is formulated by

𝐵𝐵𝜑𝜑 = 



𝑛𝑛ii 𝑛𝑛iM 𝑛𝑛io
𝑛𝑛Mi 𝑛𝑛MM 𝑛𝑛Mo
𝑛𝑛oi 𝑛𝑛oM 𝑛𝑛oo




, (9)

where each item 𝑛𝑛𝑝𝑝𝑝𝑝 is the number of residues belonging to
the class 𝑝𝑝 but predicted as the class 𝑝𝑝 according to the basic
predictor 𝜑𝜑.

3.2. e Representation of the Basic Predictor’s Prediction
Results. In the combination of multiple predictors, the rep-
resentation of the basic predictor’s prediction results is a
critical problem. In this paper, BPA is used to represent these
prediction results. But the next is how to construct BPAs. For
example, a residue in a protein sequence has been predicted
that it belongs to transmembrane helix (i.e., class “M”) by a
basic predictor. However, due to that the prediction is not
100% correct, how can we represent this uncertainty. Here,
a classical and effective method proposed by Xu et al. [23]
has been adopted to construct BPAs. In Xu et al.’s method,
the output was treated as single class labels, and the source of
evidence for the propositions of interest was de�ned on the
basis of the performance of predictors in terms of recognition,
substitution, and rejection rates which are generated from
confusion matrix. Brie�y spea�ing, it is a BPA construction
method based on confusion matrix.

To a predictor of transmembrane protein topology 𝜑𝜑with
confusion matrix 𝐵𝐵𝜑𝜑, according to Xu et al.’s method [23], a
BPA can be constructed for each class 𝑝𝑝 by

𝑚𝑚𝜑𝜑
𝑝𝑝 𝑝𝑝 = 𝑅𝑅

𝜑𝜑
𝑐𝑐 , ∀𝑝𝑝 𝑝 Ω,

𝑚𝑚𝜑𝜑
𝑝𝑝 𝑝𝑝 = 1 − 𝑅𝑅

𝜑𝜑
𝑐𝑐 , ∀𝑝𝑝 𝑝 Ω, 𝑝𝑝 =

Ω
𝑝𝑝

,
(10)
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with

𝑅𝑅𝜑𝜑𝑐𝑐 =
∑𝑝𝑝𝑝𝑝𝑝𝑝𝑝=𝑝𝑝 𝑛𝑛𝑝𝑝𝑝𝑝
∑𝑝𝑝𝑝𝑝 ∑𝑝𝑝𝑝𝑝 𝑛𝑛𝑝𝑝𝑝𝑝

𝑝 (11)

where𝑝 = {i𝑝M𝑝 o}.
For a residue in a protein sequence, the constructed BPA

is 𝑚𝑚𝜑𝜑
i if the prediction result shows that the residue belongs

to class i. In two other situations of M and o, the constructed
BPAs are𝑚𝑚𝜑𝜑

M and𝑚𝑚𝜑𝜑
o , respectively.

3.3.e Combination ofMultiple Predictors. Once all BPAs of
each predictor have been constructed, the prediction results
of multiple predictors can be combined. In this paper, these
prediction results of basic predictors have been treated as
various evidences coming from different sources.e various
prediction results can be combined by using the Dempster’s
rule of combination, as shown in Figure 2.

Assume there are 𝑁𝑁 basic predictors in the evidential
prediction system, 𝑆𝑆𝜑𝜑 is the set of constructed BPAs for all
classes from basic predictor 𝜑𝜑, and 𝑆𝑆𝜑𝜑 = {𝑚𝑚𝜑𝜑

i 𝑝 𝑚𝑚
𝜑𝜑
M𝑝 𝑚𝑚

𝜑𝜑
o}. 𝑔𝑔𝑔𝑆𝑆

𝜑𝜑)
is an operation used to obtain the matched BPA for a residue
predicted by 𝜑𝜑. e combination of multiple predictors to
predict the class of residue 𝑟𝑟 can be expressed by

𝑚𝑚𝑟𝑟 = 𝑔𝑔 𝑆𝑆
𝜑𝜑1𝑔𝑔𝑆𝑆𝜑𝜑2⋯𝑔𝑔𝑆𝑆𝜑𝜑𝑁𝑁 . (12)

3.4.e Determination of Topology. rough the above steps,
the combination prediction result has been derived for each
residue in a transmembrane protein sequence. It is indicated
by a BPA 𝑚𝑚𝑟𝑟. In order to get the �nal class that the residue
belongs to, the BPA will be translated into a probability
distribution by using the so-called pignistic probability trans-
formation (PPT) function, proposed by Smets and Kennes in
the transferable belief model (TBM) [39]. e PPT function
[39] is de�ned as follow.

Let 𝑚𝑚 be a BPA on a frame of discernment 𝑝, a pignistic
probability transformation function Bet𝑃𝑃𝑚𝑚 ∶ 𝑝 → [0𝑝 1]
corresponding to𝑚𝑚 is

Bet𝑃𝑃𝑚𝑚 𝑔𝑥𝑥) = 
𝐴𝐴𝐴𝑝𝑝𝑥𝑥𝑝𝐴𝐴

1
|𝐴𝐴|

𝑚𝑚 𝑔𝐴𝐴)
1 − 𝑚𝑚 𝑔∅)

𝑝 𝑚𝑚 𝑔∅) ≠ 1𝑝 (13)

where |𝐴𝐴| is the cardinality of proposition 𝐴𝐴.
By using PPT function, the BPA𝑚𝑚𝑟𝑟 can be translated into

a probability distribution 𝑝𝑝𝑟𝑟. en the class of the residue
𝑟𝑟 can be determined according to the maximum value of
the probability distribution 𝑝𝑝𝑟𝑟. At last, the topology of a
transmembrane protein can be determined when the classes
of all residues in the protein sequence have been deter-
mined. For each protein, the transmembrane orientation is
determined by the location of the �rst residue, and each
transmembrane region whose length exceeds a threshold
consists of these residues labelled as class “M.” According to
the topology, all transmembrane helixes and the orientation
of each transmembrane helix can be derived.

T 1: Confusion matrices of residue prediction for various
algorithms.

Truth Algorithm Prediction
i M o

OCTOPUS 7655 389 839
PRO 7574 450 859

i PRODIV 7323 442 1118
SCAMPI-msa 7655 389 839
SCAMPI-seq 7359 455 1069
TOPPER 7636 358 889
OCTOPUS 1877 9785 1458

PRO 1922 9588 1610

M PRODIV 1819 9884 1417
SCAMPI-msa 1877 9785 1458
SCAMPI-seq 1907 9628 1585
TOPPER 1799 9817 1504
OCTOPUS 1230 578 6091

PRO 1051 714 6134

o PRODIV 1117 775 6007
SCAMPI-msa 1230 578 6091
SCAMPI-seq 1101 564 6234
TOPPER 916 518 6465

In this paper, a data set of 125 transmembrane protein
sequences with known topology is collected from the data
set of MPtopo [40] to verify the effectiveness of the proposed
method TOPPER.

In order to re�ect the performance of combination
predictor faithfully and to avoid over�tting, the experiment
is performed using tenfold cross-validation. For each fold,
it roughly contains 12-13 transmembrane proteins and their
homology has been reduced to 30% below by using cd-hit
program [41].

In order to assess the prediction performance of trans-
membrane regions (i.e., transmembrane helixes without con-
sidering orientation) of different algorithms, an evaluation
method developed by Tusnády and Simon [11] is adopted
in this paper. To a transmembrane region, the prediction
is considered successful when the overlapping region of
predicted and observed transmembrane region contains at
least 9 amino acids. e total numbers of predicted and
real observed transmembrane regions are indicated by 𝑁𝑁prd
and 𝑁𝑁obs, respectively. e overlapping predicted and real
observed transmembrane regions are indicated by 𝑁𝑁cor.
e efficiency of the transmembrane regions prediction is
measured by𝑀𝑀 = 𝑁𝑁cor/𝑁𝑁obs and𝐶𝐶 = 𝑁𝑁cor/𝑁𝑁prd.eoverall
prediction power is de�ned by

𝑄𝑄 = √𝑀𝑀 𝑀 𝐶𝐶 𝑀 100%. (14)

Besides, if all transmembrane regions and orientation
of a transmembrane protein sequence have been predicted
correctly, the topology of the transmembrane protein is said
to be predicted correctly.
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TM protein

F 2: e combination of multiple predictors.

T 2: Prediction performance of various algorithms in residue
level.

Algorithm Class Recall
(%)

Precision
(%) 𝐹𝐹 score Accuracy

(%)
i 86.18 71.13 0.7793

OCTOPUS M 74.58 91.01 0.8198 78.69
o 77.11 72.62 0.7480
i 85.26 71.81 0.7796

PRO M 73.08 89.17 0.8033 77.91
o 77.66 71.30 0.7434
i 82.44 71.38 0.7651

PRODIV M 75.34 89.04 0.8162 77.63
o 76.05 70.32 0.7307
i 86.18 71.13 0.7793

SCAMPI-msa M 74.58 91.01 0.8198 78.69
o 77.11 72.62 0.7480
i 82.84 70.98 0.7646

SCAMPI-seq M 73.38 90.43 0.8102 77.66
o 78.92 70.14 0.7427
i 85.96 73.77 0.7940

TOPPER M 74.82 91.81 0.8245 80.00
o 81.85 72.98 0.7716

T 3: Prediction performance of various algorithms in trans-
membrane region level.

Algorithm 𝑁𝑁obs 𝑁𝑁prd 𝑁𝑁cor 𝑀𝑀 (%) 𝐶𝐶 (%) 𝑄𝑄 (%)
OCTOPUS 515 512 500 97.09 97.66 97.37
PRO 515 512 498 96.70 97.27 96.98
PRODIV 515 524 503 97.67 95.99 96.83
SCAMPI-msa 515 512 500 97.09 97.66 97.37
SCAMPI-seq 515 507 494 95.92 97.44 96.68
TOPPER 515 507 500 97.09 98.62 97.85

In the rest of this section, various prediction algorithms
will be compared from three aspects, namely, the prediction
performance of residue level, transmembrane region level,
and topology level, respectively.
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F 3: e comparison of residue’s prediction accuracy between
the proposed method and other algorithms.

In the level of residue prediction, the confusion matrix
of residue prediction for each algorithm is shown in Table 1.
According to these confusion matrices, Table 2 shows some
indexes to measure the performance of residue prediction,
including the recall rate, precision rate, F score of each class,
and the prediction accuracy of residues. In TOPPER, the
prediction accuracy of residue is 80.00%, while in other
algorithms they are 78.69%, 77.91%, 77.63%, 78.69%, and
77.66%, respectively. e proposed method has the highest
prediction accuracy of residue, shown in Figure 3. In addi-
tion, investigate the F score of each class in these algorithms.
e TOPPER also has the highest value of F score no matter
to class “i”, “M”, and “o”, shown in Figure 4. Hence, it is
quite clear that the proposed TOPPER outperforms other
algorithms.

In the level of transmembrane region prediction, Table
3 shows the prediction performance of various algorithms
to the prediction of transmembrane region. According to
the overall prediction power de�ned in �11], the 𝑄𝑄 value of
TOPPER is 97.85%, while the𝑄𝑄 values of other algorithms are
97.37%, 96.98%, 96.83%, 97.37%, and 96.68%, respectively.
e𝑄𝑄 value of TOPPER is the highest, shown in Figure 5. So
TOPPER is superior to other algorithms.
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F 4:e comparison of F score between the proposed method
and other algorithms.
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F 5: e comparison of transmembrane region’s prediction
performance between the proposed method and other algorithms.

In the level of topology prediction, Table 4 shows the
prediction accuracy of topology for each algorithm. e
topology’s prediction accuracy of TOPPER is 74.4%, which
is the highest among these algorithms, shown in Figure
6. erefore, the proposed TOPPER is superior to other
algorithms.

According to the mentioned above, the proposed TOP-
PER outperforms other algorithms no matter in the level
of residue prediction, transmembrane region prediction, and
topology prediction. Hence, the effectiveness of the proposed
method has been demonstrated.

5. Conclusions

Transmembrane proteins are some special and important
proteins in cells. e topology prediction of transmembrane
protein is a foundation of the research of transmembrane
proteins. In this paper, a new topology prediction method of
transmembrane protein is proposed based on evidential rea-
soning.e proposed method is the combination of multiple
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F 6: e comparison of topology’s prediction accuracy
between the proposed method and other algorithms.

T 4: Prediction performance of various algorithms in topology
level.

Algorithm Prediction accuracy of topology (%)
OCTOPUS 71.2
PRO 70.4
PRODIV 69.6
SCAMPI-msa 71.2
SCAMPI-seq 69.6
TOPPER 74.4

individual prediction algorithms. In the proposed method,
the Dempster-Shafer theory has been used to represent and
combine the results of basic predictors. Experimental results
show that the proposed method is superior to the individual
prediction algorithms and demonstrates the effectiveness of
the proposed method.
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