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Infections are most common and most severe at the extremes of age, the young and the
elderly. Vaccination can be a key approach to enhance immunogenicity and protection
against pathogens in these vulnerable populations, who have a functionally distinct
immune system compared to other age groups. More than 50% of the vaccine market
is for pediatric use, yet to date vaccine development is often empiric and not tailored to
molecular distinctions in innate and adaptive immune activation in early life. With modern
vaccine development shifting from whole-cell based vaccines to subunit vaccines also
comes the need for formulations that can elicit a CD8+ T cell response when needed, for
example, by promoting antigen cross-presentation. While our group and others have
identified many cellular and molecular determinants of successful activation of antigen-
presenting cells, B cells and CD4+ T cells in early life, much less is known about the
ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to
the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of
induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition,
we review the molecular determinants of antigen cross-presentation on MHC I and
successful CD8+ T cell induction and discuss potential distinctions that can be made in
children. Finally, we discuss recent advances in development of novel adjuvants and
provide future directions for basic and translational research in this area.

Keywords: vaccine, vulnerable population, CD8, children, cross-presentation
INTRODUCTION

British physician Edward Jenner marked the beginning of vaccinology when he developed the
world’s first vaccine for smallpox in 1796 (1). His invention relied foremostly on the awareness that
dairymaids infected with cowpox were immune to outbreaks of smallpox. The next breakthrough
occurred in 1880, when the French chemist Louis Pasteur discovered the principle of attenuation
org December 2020 | Volume 11 | Article 6079771
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(2). Five years later, Pasteur produced the first laboratory-
developed vaccine which tremendously increased the speed of
vaccine development.

Most historically developed successful vaccines use weakened
or inactivated pathogens. Examples of such vaccines are whole cell
pertussis vaccine, which led to large and rapid reductions in
pertussis deaths in the United States after its introduction in
1914, (3, 4), or the inactivated polio vaccine which has successfully
eradicated poliomyelitis (Table 1) (24). More recently, however,
technological developments have shifted vaccine development
toward the production of formulations that do not contain live
material, such as nucleic acid vaccines and subunit vaccines.
Subunit vaccines are comprised of purified protein or
polysaccharide antigens, often combined with adjuvants,
immune potentiators that are capable of stimulating the
immune system (24). The first successful example is the
hepatitis B subunit vaccine, derived from the hepatitis B surface
antigen (HBsAg) (Table 1). The development of subunit
vaccines has led to improved safety profiles, inclusion of
immunostimulants to drive specific types of immune responses,
and the opportunity for vaccine component optimization.
However, the more defined composition of subunit vaccines can
lead to challenges as well, as seen in the case of pertussis
vaccination. Replacement of whole-cell pertussis vaccine (wP) by
acellular pertussis vaccine (aP), a subunit vaccine, has led to a
resurgence of pertussis due to ‘waning immunity’ (25, 26). The
efficacy of subunit vaccines often relies on appropriate type and
magnitude of immune activation by adjuvants. As the majority of
the global vaccine market is for pediatric use, there is an unmet
need to critically review the mechanism of action of these
adjuvants in a pediatric setting. Studies on adjuvant mechanism
of action in early life from our group and others thus far have
Frontiers in Immunology | www.frontiersin.org 2
focused predominantly on the induction of cytokines, antibodies
and CD4+ T cells (27–34), but much less is known about the
activation of CD8+ T cells in early life, and the ability of vaccine
formulations or adjuvants to induce these.

In vaccine development, quantitative correlates of protection are
often determined by quantification of serum antibody levels or
neutralizing ability (35, 36). In antiviral vaccine development,
however, absolute correlates of protection are not always defined,
and relief of symptoms due to eradication of viral disease is a good
indicator of vaccine success. Viruses are intracellular pathogens and
use the host cell’s machinery for internalization, translation of viral
proteins and viral genome replication (37). Upon viral infection, a
cell can use endogenously generated cytosolic viral proteins for
antigen presentation viamajor histocompatibility complex (MHC)
I molecules on its surface. MHC class I molecules can be found on
the cell surface of all nucleated cells (38). CD8+ T cells recognize
short peptides derived from antigenic proteins presented by these
molecules and, hence, play a critical role in the control and
elimination of viral infections. MHC class II molecules are
expressed on antigen presenting cells (APCs), such as dendritic
cells (DCs) (39). CD4+ T cells, which recognize peptides presented
by MHC class II molecules, promote antibody production which is
in many cases sufficient for protection against viruses. While other
APCs such as B cells and macrophages are important during
different stages of T cell activation, this review will focus on DCs
and their role in the instruction of naive T cells.

Activated CD8+ T cells can induce apoptotic death of virus-
infected cells by the production of Tumor necrosis factor-alpha
(TNF-a), Interferon-gamma (IFN-g) and the release of cytotoxic
molecules containing granzymes, perforins, and granulysin (40,
41). These effector functions directly contribute to pathogen
clearance. In childhood, when the highest risk for infection
TABLE 1 | Vaccines that are licensed in human newborns and infants in the United States.

Licensed pediatric vaccine Vaccine type Antigen(s) Type(s) of
adjuvant (5–7)

Evidence of CD8+ T cell
mediated immunity in control
of infection

Hepatitis A virus (HAV) Inactivated Inactivated hepatitis A virus
(strain HM175)

Virosomes,
aluminum hydroxide

Yes (limited data) (8–10)

Trivalent inactivated influenza vaccine (TIV) Inactivated Hemagglutinin Virosomes, MF59,
AS03

No (8, 11–14)

Inactivated poliovirus (IPV) Inactivated D antigen None Yes (15, 16)
Rotavirus (RV) Live attenuated Spike protein No adjuvant used Unclear (17, 18)
Bacillus Calmette-Guérin (BCG) Live attenuated Antigen 85 None Yes (9, 10, 19)
Measles, mumps, rubella Live-attenuated Trivalent antigen None Measles: yes (18)

Mumps: no (20)
Varicella (VAR) Live attenuated Varicella virus live None Yes (11–14, 21)
Live attenuated Influenza vaccine (LAIV) Live attenuated Hemagglutinin None Yes (11–13, 22)
Hepatitis B virus (HBV) Subunit HBsAg Virosomes, AS04 Yes (16, 23)
Diphtheria, Tetanus & acellular Pertussis (DTaP) Toxoid, subunit Tetanus toxoid, diphtheria

toxoid, detoxified pertussis
toxin

Aluminum hydroxide Yes (acellular Pertussis) (15, 19)

Pneumococcal conjugate (PCV) Conjugate Pneumococcal
polysaccharides conjugated
to a nontoxic form of
diphtheria toxin CRM197

Aluminum
phosphate

No (limited data) (21, 23)

Haemophilus influenzae type b (Hib) Polysaccharide conjugate Polysaccharide conjugated to
Hib bacterium

None or with
aluminum hydroxide

?
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exists, protective antibodies decline rapidly after primary
vaccination (42). Newborns and infants are highly susceptible
to viral infectious diseases and impaired CD8+ T cell responses
may lead to progressive or even fatal infection. For example,
there is evidence that SARS-CoV-2 virus can infect children (43–
47) and can sometimes have severe consequences, such as
multisystem inflammatory syndrome in children (MIS-C) (45,
48). SARS-CoV-2-specific CD8+ T cells are detectable in infected
and convalescent individuals, and potentially correlate with
disease outcome (49–52). Vaccine induced CD8+ T cell
priming may therefore improve the efficacy of immunization
in infants against viral pathogens (53, 54).

Nucleic acid-based vaccines and subunit vaccines do not
contain a live vector and are therefore generally more safe than
inactivated and live attenuated vaccines. However, the high
purity of the components can make these vaccines less
immunogenic and hence potentially less effective (42), if not
adjuvanted properly. Nucleic acid vaccines rely on incorporation
of the genetic material into the host antigen-presenting cell
genome, potentially resulting in endogenous transcription of
viral proteins and therefore effective presentation on MHC
class I. Subunit vaccines are composed of only antigenic viral
proteins or carbohydrates and therefore the step of genome
incorporation into the host is removed. As a consequence, the
antigen will not gain access to the cytosol, which is known to be a
critical step for MHC class I presentation and subsequent CD8+

T cell activation. In general, nucleic acid vaccines are therefore
more effective in eliciting CD8+ T cell responses (55–57). To
improve immunogenicity of subunit vaccines, adjuvants can be
added to the formulation. Adjuvants promoting CD8-mediated
immunity are therefore a key element for developing effective
subunit vaccines against viruses. This can be accomplished by the
process of cross-presentation, which enables MHC class I
presentation of viral proteins, taken up from extracellular
sources. Evidence of adjuvant-induced cross-presentation has
been described, often including a proposed mechanism of action
(58–68). However, there is to date no published data describing
whether and how adjuvants induce cross-presentation in early
life. In this review, we address the key concept of how adjuvants
can activate CD8+ T cell responses and discuss their ability to
regulate key molecular pathways relating to antigen cross-
presentation in early life (46). Understanding the functionality
of CD8+ T cells in early life and how they can be effectively
induced by adjuvants directly informs the development of
subunit vaccines for pediatric use.
CHANGES IN FREQUENCY OF CD8+ T
CELLS WITH AGE

An important parameter for the induction of an effective
antiviral response is that there is a sufficient number of CD8+

T cells available to extirpate virus-infected cells. T cell precursors
arise from hematopoietic stem cells (HSCs), which are composed
of two main cell populations: Sca-1- lymphoid-biased stem cells,
and Sca-1+ myeloid-biased stem cells. Lymphocytopoiesis in
Frontiers in Immunology | www.frontiersin.org 3
infants is distinguished by the robust production of T cells,
due to a relatively high number of lymphoid-biased HSCs.
However, these cells decline with increasing age and as a
consequence, the ratio of HSCs in adults shifts toward more
myeloid biased HSCs. These cells are less efficient in creating
common lymphoid progenitors with high proliferative capacity
compared to their counterparts, which directly contributes to the
reduction in naive T cell generation in the aged population (69).
In addition to a greater influx of HSCs with lymphoid potential
into the thymus in children, mouse studies have shown greater
efficacy in thymopoiesis in early life (70, 71), resulting in a higher
frequency of naive CD8+ T cells in the periphery (72, 73). This
latter observation is also seen in humans, as both the frequencies
of recent thymic emigrants (RTEs) (74, 75) and of naive CD8+ T
cells (76) decreases with age. Other factors that affect the
functioning of HSCs with increasing age are oxidative stress
and reduced telomerase activity, which cause the naive CD8+ T
cell compartment to shrink gradually (77, 78).

In support of the foregoing, experimental data indicate that
young infants exhibit higher frequencies of CD8+ T cells
compared to their adult counterparts. Young adults carry
roughly 1011 CD8+ T cells (79). Absolute values of neonatal
CD8+ T cells in human are absent, but limiting dilution studies
have shown that the precursor frequency of CD8+ cytolytic T
cells in neonates is comparable to that in adults (80). In fact,
Thome et al. observed that infants (0 – 2 years) express
significant higher percentages of CD8+ naive T cells compared
to young adults (15–25 years) in circulation, lymphoid and
mucosal tissues (81).
PHENOTYPIC AND FUNCTIONAL
DIFFERENCES OF CD8+ T CELLS
BETWEEN AGE GROUPS

Phenotypic Differences
In addition to distinctions in frequency of total as well as naive
CD8+ T cells with age, the expression of certain cell surface
receptors can differ between age groups as well, potentially
affecting vaccine response to infection or to vaccination (Table
2). The main distinctions observed in receptor expression relate
to the maturity or activation status of the CD8+ T cells. In
accordance with findings that newborns and infants have higher
levels of naive CD8+ T cells, a higher percentage of CD8+ T cells
express CD28. CD28 serves as a co-stimulator for T-cell
activation and survival and is expressed on all naive T cells in
newborns (87). In elderly cells, CD28 expression is diminished
and sometimes even lost (Table 2). This likely contributes to
impaired immune responses in elderly. Nevertheless, CD28- T
cells express higher levels of effector molecules such as perforin
and granzyme B and therefore show improved cytotoxicity (92).
This supports the difference in cytotoxicity level between adults
and infants, as will be discussed in the next paragraph.

Another activation marker, CD38 is also more frequently
expressed on neonatal or infant CD8+ T cells compared to adult
CD8+ T cells (Table 2). CD38 is expressed early in ontogeny and
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is suggested to play an important role during T cell activation
(93). In the context of human immunodeficiency virus (HIV)
infection, high proportions of CD38+CD8+ T cells are associated
with virologic worsening (88). However, there are studies that
have observed opposite findings in children (94, 95). Thus, the
significance of CD38 distinctions in the CD8 compartment with
age still remains unclear and needs to be further examined in
different age groups.

At baseline, children age 6–15 and age 16–17 have similar levels
of central memory CD8+ T cells compared to adults, but
significantly less effector memory CD8+ T cells (96). Upon
activation with staphylococcal enterotoxin B (SEB), the increase
in expression of activation marker CD69 was significantly reduced
in these cells, in particular in the 6–15 age group.

Effector CD8+ T cells can be distinguished by Killer cell
Immunoglobulin-like Receptors (KIR) expression. KIR+ cells
are estimated to represent approximately 5% of the CD8+ T
cells in adults and can increase up to 30% in elderly individuals
(89). In contrast, roughly 1.67% of CD8+ T cells express KIRs in
cord blood (97). CD8+ T cells acquire KIRs when differentiating
into effector molecules (98). This confirms that neonates have
more naive T cells than their adult counterparts. The biological
functions of KIRs on T cells remain poorly understood although
it has been shown that these receptors enhance the efficiency of
HLA class I-mediated CD8+ T cell responses (99) and therefore
could positively influence the outcome of viral infections.

Upon activation, CD8+ T cells can introduce the expression of
inhibitory molecules aiming to prevent an immoderate immune
response. One of these receptors is CD300a, a transmembrane
protein with immunoreceptor tyrosine-based inhibitory motifs
(ITIMs) capable of conduct inhibitory signaling (100). In a
comparative study exploring the CD300a expression on human
neonatal versus adult immune cells, significant differences in
presence of CD300 receptors on CD8+ T cells derived from cord
blood and adult blood were observed. The research group
showed that naive and memory CD8+ T cells from cord blood
exhibited significant lower levels of CD300a when compared to
adult T cells (91).

In summary, expression profiles of activation CD8+ T cell
markers correlate with age, displaying more activated T cells
when older, due to repeated antigen exposure.

Functional Differences
Neonatal and adult lymphocytes exhibit differential expression of
genes involved in T cell receptor (TCR) signaling. Notably, with
Frontiers in Immunology | www.frontiersin.org 4
regards to the neonatal TCR pool, it has been proposed that
neonatal T cells may be less dependent on TCR recognition than
their adult counterparts (101). TCRs are integral membrane
proteins, which control T cell activation through recognition of
specific peptides presented by MHCmolecules (102). Neonatal T
cells exhibit a less diverse TCR repertoire than adult T cells due
to a lag in expression of the enzyme terminal deoxynucleotidyl
transferase (TdT) (101). TdT is responsible for adding
nontemplated (N) nucleotides in V, D, and J gene segments of
TCRs (103) and hence plays an important role in diversifying
these receptors. Diversification in TCR signaling is of essence,
because a larger pool of different TCRs increases the possibility of
recognizing all kinds of peptide antigens. Interestingly, the
diverse TCR repertoire of adult CD8+ T cells diminishes with
increasing age, which contributes to increased susceptibility to
viral infections (104).

Upon TCR stimulation, newborn CD4+ T cells favor the
secretion of IL-8 but less IFN-g secreting T-helper 1 cells are
observed as compared to adult CD4+ T cells (101). This is a result
of impaired production of type-1-polarizing cytokines by
neonatal DCs in response to stimulation through Toll-like
Receptors (29, 105). This also affects the CD8 compartment,
resulting in CD8+ T cells with a more type-2 phenotype (Tc2),
which can exacerbate allergy-type reactions in asthma or
infection with respiratory syncytial virus (RSV) (106–
109).Thus, the immune response generated by neonatal T cells
is more of an innate nature, whereas adults produce cytokines
that are typically associated with adaptive immune responses.
Furthermore, neonatal T cells are less likely to secrete multiple
cytokines simultaneously (110). In other words, neonatal T cells
are less polyfunctional, which could subsequently lead to less
potent T cell responses (96). In a recent study on HIV-1
responses by CD8+ T cells, the results showed that HIV-1
specific adult CD8+ T cells with high frequencies of
CD300a were more polyfunctional (111). These observations
are in line with the difference in CD300a expression
levels between adults and neonates, as described in the
previous paragraph.

Galindo-Albarrán et al. have observed that neonatal T
lymphocytes are less cytotoxic than adult CD8+ T cells due to
lower expression of IFN-g, a signature molecule for activating the
cytolytic pathway (112). Furthermore, they showed that certain
enhancers of cytotoxic genes were only expressed in adults and
that neonatal CD8+ T cells express only low numbers of
granzyme producing cells. Interestingly, expression levels of
TABLE 2 | Non-exhaustive list of CD8+ T cell marker levels in different age groups.

Phenotypic (CD8+) T cell marker Level of neonatal versus adult/elderly expression in T cells Reference

ab-TCR Similar (82, 83)
CD3 Similar (83–85)
CD5 Similar (83, 86)
CD8 Similar (83)
CD28 Lower expression in adults; 40-50% of the elderly (age 80 and above) lack CD28 expression (87)
CD38 Higher expression in neonates (83, 88)
KIR Higher expression in adults and elderly (89)
CD45RAloCD45ROlo Expressed by neonates, rare or absent in adult T cells (83, 90)
CD300a Higher expression in adults (91)
December 2020 | Volume 11 | Art
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granzyme B by neonatal NK cells are found to be similar or even
higher than adult NK cells (113). Therefore, it could be
postulated that neonatal NK cells are being deployed as a
compensation mechanism for having CD8+ T cells bearing
low cytotoxicity.

In elderly, differentiation of CD8+ T cells into effector
molecules has shown to be impaired in response to infection
due to reduced expression of important cytokines, such as IFN-g,
TNF-a, granzyme B, and IL-2 (114). Another functional decline
of the immune response in the elderly is suggested to originate
from down regulation of certain genes in CD8+ T cells which
affect a variety of stages of gene transcription, such as
transcription initiation, elongation, RNA stabilization, and
protein translation and translocation (115). Certainly, more
studies are required to fully understand the primary causes of
the impaired gene expression that occurs in CD8+ T cells in the
older population and their functional consequences.

Another significant discrepancy between newborn and adult
CD8+ T cells is that neonatal cytotoxic T cells have higher
proliferative rates than adult naive CD8+ T cells and,
subsequently, differentiate more rapidly into effector cells
(116). As a consequence, an imbalance in effector and memory
CD8+ T cell formation emerges in neonatal cells, with a shift
toward more CD8+ T cell effector cells. Thus, newborn cells are
less capable of creating immunological memory which has direct
implications for creating adaptive immune responses after re-
infection. It has been suggested that differences in microRNA
(miRNA) expression profiles are accountable for these findings.
miRNAs are non-coding mRNA molecules that modulate
different aspects of immune responses, such as T cell
differentiation. Wissink et al. observed that age-dependent
changes in miR-29 and miR-130 in human CD8+ T cells may
contribute to the diminished development of neonatal memory
cells (117). Further research is required to support
this hypothesis.

Age-related changes in CD8+ T cell frequency and
proliferation rate may also be influenced by the presence of
homeostatic cytokines, such as IL-7. IL-7 plays a central role in
maintaining T cell homeostasis and serves as a key factor in the
proliferation and survival of naive T cells (118, 119). During
thymic development, stromal and epithelial cells in the thymus
produce IL-7 to promote CD8+ T cell differentiation in the
thymus (120). Thymic production declines with age and, as a
consequence, IL-7 levels may decrease during the aging process
(121). This could negatively affect CD8+ T cell expansion in
response to vaccination and potentially result in failure
of immunization.

Fms-like tyrosine kinase 3 ligand (FL) also functions as an
important regulator of hematopoiesis and is widely distributed in
both murine and human tissues (122). FL has an important role
in regulating immunity, due to its capacity to stimulate the
expansion of DCs (123). Its receptor, Fms-like tyrosine kinase
3 (FLT3), is mostly expressed by immature hematopoietic cells
and shows similar expression patterns in newborn and adult
mice (122). To our knowledge, however, no differences in FL
levels among age groups have been reported.
Frontiers in Immunology | www.frontiersin.org 5
ONTOGENY OF VACCINE INDUCED CD8+

T CELL RESPONSES

Table 1 lists the commercially available vaccines for pediatric
and adult use in the United States. The majority of the live
attenuated or inactivated vaccines do induce protective CD8+ T
cell mediated immunity, providing empiric evidence that there is
at least no impairment in MHC class I loading or CD8+ T cell
functionality in early life. Empiric evidence of protective CD8+ T
cell mediated immunity induced by protein-based vaccines is
much less substantial (Table 1). There are different mechanisms
to create CD8+ T cell responses after immunization. Modern
vaccines may use viral vectors or nucleic acids as a vaccine
delivery system (124). These delivery systems are attractive for
vaccine therapy because of their capability to provoke potent and
sustained CD8+ T cell responses (57, 125). However, the kinetics
of nucleic acid delivery and expression of the antigen by APCs
likely makes adjuvantation very challenging. Enhancement of the
immune response to nucleic acid-based vaccines can be achieved
by inclusion of plasmids that encode cytokines, costimulatory
receptors, or Toll-like receptor (TLR) ligands (126, 127).The
ability to instruct appropriate (often Th1-mediated) CD4+ T cell
responses in newborns and infants is impaired (128, 129) and
requires adjuvantation with select molecules or combinations
that have shown the ability to overcome this impairment (27,
29, 130).

An alternative method for inducing CD8+ T cell responses is
through the mechanism of cross-presentation in which MHC
class I molecules present exogenous peptides to naive CD8+ T
cells. This is in contrast to classical MHC class I presentation, in
which a foreign peptide will be displayed after it has arrived into
the cytosol of the cell inter alia after the cell has been infected.
Antigen cross-presentation has been studied for decades, since its
discovery in 1976 (131, 132), but there are still many aspects of
this concept which are controversial and not fully understood.
However, it is clear that there are different subcellular pathways
involved in cross-presentation, each consisting of crucial steps
for MHC class I presentation. In order to evaluate the potential
of adjuvants to induce cross-presentation in children, it is
important to summarize the components and mechanisms of
cross-presentation to the extent that they are currently known
and understood. Figure 1 provides an illustrated summary of the
different components, cytokines, receptors, and biological
processes contributing to successful vaccine-induced CD8+ T
cell activation discussed in this review, and the extent to which
changes with age have been observed.
HUMAN DENDRITIC CELL SUBSETS AND
CROSS-PRESENTATION

Dendritic cells are a class of bone-marrow-derived cells which
can be found in blood, tissues and lymphoid organs. They are
referred to as ‘professional’ APCs because of their unique ability
to bridge the innate and adaptive immune system via the
December 2020 | Volume 11 | Article 607977
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presentation of antigens to naive T cells. In human, dendritic
cells are divided between two major lineages: conventional DCs
(sometimes called myeloid DCs) and non-classical DCs. Based
on their phenotypic and functional characteristics, these
populations are further compartmentalized into several
subtypes (Table 3). Each subset is specialized to react to
particular pathogens and to interact with specific T cell
subsets. In this manner, the immune system can act upon a
broad spectrum of several pathogens and danger signals.

Current vaccination strategies take into account the
functional specialization of different DC subsets. For example,
both the CD1c+ subset (also known as cDC2 DCs) and the
CD141+ subset (also known as cDC1 DCs) have potent capacity
to induce T cell responses. Where cDC2 cells are predominantly
inducers of CD4+ T cell responses, cDC1 cells are uniquely able
to cross-present exogenous antigens on MHC I. Interestingly,
neonatal cDC1+ DCs reach adult-like levels by mid-gestation
(160), and therefore, this subpopulation may be a desirable tool
for vaccine development to empower antiviral immunity in
early life.

In literature, the chemokine receptor XCR1 is presented as a
universal surface marker on cross-presenting DCs (161) in mice
as well as humans. This marker is also present on cDC1+ DCs
Frontiers in Immunology | www.frontiersin.org 6
and, therefore, it is thought that XCRI+ DCs are crucial in
creating successful adaptive immune responses against viruses
(162). In addition, pDCs, which do not express XCR1, are
considered to cross-present in humans (144–146). However,
the exact role of pDCs in cross-presentation remains
controversial (163, 164).

Full-term newborns and adult pDCs display similar
frequencies in whole blood, although subset composition
between these age groups may differ (165). However, Zhang
et al. observed that these differences do not affect the potency of
neonatal antiviral responses (166). In contrast, pDCs from
preterm newborns have shown an immature morphology and
an impaired capacity to produce IFN-a (165).

It should be noted that it is difficult to determine the
functional distinctions with age of DC subsets in humans. To
study the characteristics of DC types in vitro, studies are mainly
carried out with moDCs. For neonates, moDCs are generated
from umbilical cord blood. One of the limitations thereof is the
presence of maternal factors in the content of the blood, which
may influence the characterization of neonatal DCs (167).
However, due to the convenience of this method, moDCs
are the main subset for studying the phenotype and function
of DCs.
FIGURE 1 | Immune ontogeny of a vaccine-induced CD8+ T cell response. Starting with recognition of vaccine antigens by APCs (left), up to the effector
phenotype of a vaccine-induced CD8+ T cell (right), relative changes with age of key cytokines, receptors, and biological processes discussed in this review
are depicted.
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THE MECHANISM OF ANTIGEN CROSS-
PRESENTATION

The Role of Endocytosis: Soluble Versus
Particulate Antigens
Cross-presentation of soluble and particulate antigens is
regulated by distinct methods of internalization. Particulate
antigens are selectively internalized by APCs through
phagocytosis. Subsequently, the antigen can be presented
through both MHC class I and II molecules, a time-dependent
process in which the NADPH oxidase 2 (NOX2) plays a crucial
part. This enzyme is found in professional phagocytes and DCs
and contributes to the alkalization of phagosomes by ROS
production. NOX2 is recruited to phagosomes with the help of
Rab27a and Rac2 (168, 169). Thus, NOX2 prevents phagosome
acidification and, consequently, abolishes lysosomal antigen
degradation which then allows for cross-presentation (170).
This means that when ROS production ceases and the
phagosomal pH gets more acidic, the particulate antigen will
be preferentially loaded onto MHC class II molecules (171).

In contrast to cell-associated antigens, soluble antigens
intended for cross-presentation are internalized by endocytic
receptors. Burgdorf et al. describe two different endocytic
compartments for antigen processing: early endosomes and
lysosomes (172). If a soluble antigen is routed into a lysosome,
classical MHC II presentation will take place, whereas antigens in
endosomes are targeted for presentation on MHC class I
molecules. Depending on the type of endocytic receptor the
antigen interacts with upon internalization, the antigen will be
Frontiers in Immunology | www.frontiersin.org 7
sorted into one of the compartments, a process taking place at
the plasma membrane (172, 173). Receptors used by DCs to take
up extracellular antigens and route these into endosomal
compartments include the C-type lectin receptors CLEC9a,
DC-SIGN, Mannose Receptor, and DEC-205 (172, 174, 175).
Furthermore, molecular chaperones such as heat shock proteins
(HSP) can also bind exogenous antigens for MHC class I
presentation, through the scavenger receptors LOX1 and
SCARF1 (176).

Interestingly, in newborns, monocytes and neutrophils
exhibit a reduced ability to bind and ingest particles. This
impairment is transient as neonatal phagocytic ability has
shown to reach adult-like levels after a few days after birth
(177). There are many factors that potentially account for this
phenomenon. For example, the chemotaxis of cord blood
phagocytes is decreased and Fcg receptor expression is
diminished in early life. Furthermore, newborns show reduced
numbers of neutrophils with phagocytic capacity and display
poor complement activity (178). Notably, it has been observed
that preterm infants with low numbers of neutrophils contain
higher phagocytic ability compared to term infants (179).

The Cytosolic Pathway: Critical Steps in
Antigen Cross-Presentation
The cytosolic pathway is characterized by translocation of
internalized soluble or particulate antigens to the cytoplasm
where they go through degradation by large protein complexes,
referred to as proteasomes (59). The way antigens translocate
across the endocytic membrane into the cytoplasm is still
TABLE 3 | DC subsets functions and distinctive markers.

Subset Cross-presents? Function(s) Distinctive markers

cDC1 Yes (133) cross-presentation (134)
Necrotic cells uptake (135)
Alloactivation (136)
Promote Th1 polarization (137)

CD141, XCRI, CLEC9A, CADM1

cDC2-A Yes (133, 138–140) Promote Th1/Th17 polarization (141) CD11c, CD1c, CD32+

cDC2-B Yes (133, 138, 142) Promote Th1/Th17 polarization (141) CD36, CD1c, CD163
Dermal cDC1 ? ? CD141, CD11c
Dermal Langerin-

cDC2
? ? CD1a, CD11c

Dermal Langerin+

cDC2
? Promote Th1 polarization, inhibit Th17 cell differentiation (murine model) (143) Langerin, CD1a, CD11c

pDC Yes (144–146) Promote antiviral immune responses (type I IFN production) (147, 148)
Th2 polarization (149)
Pathogenic functions in autoimmunity (148)
Tolerogenic functions: can induce suppressive responses by inducing Tregs through IDO
expression (147)

CD123, BDCA2, BDCA4

CD14+ DC No (134, 144, 150,
151)

Tolerogenic functions: Treg induction (152)
Th2 polarization (153)

CD209 (154)

SLAN DC ? Produce Th17-programming cytokines and induce Th17/Th1 cells (155)
Promote proliferation, cytotoxicity and IFN-a production by NK cells (156)

SLAN, CD16

IDEC ? Th1 polarization, recruitment of inflammatory cells, amplification of allergic-inflammatory
reactions (149)

CD1a, CD11c

Tip DC ? Might be important for immunoglobulin A production (157, 158)
Th1 polarization in vitro (159)
Can stimulate the differentiation and activation of Th17 cells, may participate in tumor
rejection (158)

iNos, TNF
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debated. It has been suggested that proteins require an unfolding
step before translocation (180). However, experimental studies
observed enzymatically active proteins in cytosolic extracts,
proposing that these proteins do not get unfolded (150).

A common theory is that antigens are transported into the
cytosol by sec61, a member of the endoplasmic reticulum
associated degradation (ERAD) machinery (181). However,
there are papers that have suggested that cytosol export can be
independent of sec61 (182, 183). Sec61 has additional functions
relating to protein transport across ER and plasma membranes,
making it challenging to explore its exact contribution to antigen
cross-presentation.

As mentioned previously, low phagosomal pH prevents cross-
presentation of particulate antigens. However, it should be
emphasized that a slightly acidic environment in the
phagosome is required for transportation into the cytosol
(180). Particulate antigens can form aggregates and therefore
should be processed before transportation. This means that the
phagosomal pH should be strictly regulated to prevent antigens
from excessive degradation but still be able to deliver them into
the cytosol (184, 185).

The involvement of the soluble N-ethylmaleimide-sensitive
fusion protein attachment protein receptor (SNARE) sec22b,
located in the ER-Golgi intermediate compartment (ERGIC), as
a mediator of antigen export to the cytosol has been described in
many papers. However, in recent literature, the role of sec22b in
cross-presentation has been questioned (186, 187). Overall,
whether sec22b is critical for antigen cross-presentation
remains under investigation.

After antigens undergo protein degradation in the cytosol, the
proteasome-generated peptides subsequently follow two possible
routes: the antigens are transported back into the endosome [1]
or into the ER lumen [2], of which the latter only applies to cell-
associated antigens (188). The import of peptide fragments into
the ER is suggested to occur via the transporter associated with
antigen processing (TAP). This protein was also found in
antigen-containing lysosomes, supporting the hypothesis that
peptide loading could also occur inside the lysosomal
compartment (189). Indeed, it has been observed that selective
TAP deficiency in endosomes strongly impaired the ability for
cross-presentation (190). However, TAP-independent pathways
also have been described (191, 192). It has been observed that the
majority of cytosolic peptides that are being processed TAP-
independently are derived from C terminal ends of proteins or
N-terminal signal sequences (193). Many proteases are thought
to be involved in this process. It should be noted, however, that
direct evidence for ER peptide loading is missing. This means
that the exact site of peptide loading has not been clarified yet.

If peptides are routed back into the endosomal compartment,
efficient cross-presentation requires the translocation of ER
proteins to the endosome. ER protein trafficking takes place
with the help of sec22b and syntaxin 4, a transmembrane SNARE
member present on phagosomes. In this manner, ERGIC
molecules such as sec61 and TAP are recruited to phagosomes
and endosomes (184). Furthermore, the ER-associated
aminopeptidase 1 (ERAP) and the endosomal insulin-
Frontiers in Immunology | www.frontiersin.org 8
responsive aminopeptidase (IRAP) are recruited to trim the
antigens to obtain the right size for efficient MHC class I
complexing (194).

With regards to newborns, Kollman et al. studied the efficacy
of cross-presentation in murine neonatal dendritic cells using
soluble ovalbumin (OVA) (195). Their results showed a clear
reduction in neonatal MHC class I presentation of the soluble
antigen, while antigen uptake in neonates and adults were
similar. As OVA cross-presentation is dependent on the
cytosolic pathway (180, 196), this evidence implies that the
cytosolic pathway may be impaired in early life.

The Vacuolar Pathway
Unlike the cytosolic pathway, internalized antigens that follow
the vacuolar route do not reach the cytosol. Instead, the antigens
are thought to be both degraded and loaded onto MHC class I
molecules inside the phagosome or endosome. In literature, TAP
(in)dependency is mainly used as a determining criterion to
distinguish between the cytosolic and vacuolar pathway.
However, as mentioned, the cytosolic pathway could also occur
without the involvement of the TAP transporter. Besides,
research has indicated that cross-presentation of long peptides
through the vacuolar pathway can be TAP dependent (197).
Therefore, it seems that this distinction does no longer
holds ground.

It has been postulated that active proteases, such as the
cysteine protease cathepsin S, can enter the endosome or
phagosome to process internalized antigens into smaller
peptides (198). However, it has been argued that the variety of
hydrolases within phagosomes is too harsh for the production of
8-16 amino acid peptides, required for MHC class I loading
(199). This argument might not provide sufficient grounds
against the fact that there are approximately 15 degradative
peptidases and over 50 acid hydrolases localized in the cytosol
available for antigen processing via the cytosolic pathway (200).

It is not known whether the vacuolar pathway in newborns
and children is fully competent. Human neonatal APCs show
distinct features in terms of expression of costimulatory
molecules, and therefore it has been proposed that these cells
require a higher level of activation than their adult counterparts
in order to create similar CD8+ T cell responses (201).
Considering these data, once a human neonatal APC is
activated, it could still be entirely competent to induce an
adaptive effector response. In support of this notion, Gold
et al. found no defect in human neonatal DCs to process and
present particulate antigen and concluded that cross-
presentation is fully functional in human newborn DCs.
However, as previously described, Kollman et al. observed
otherwise (195). It could be proposed that differences between
these studies might be due to dissimilarities in engagement of the
vacuolar pathway. Another possibility is that these different
findings are partially caused by the type of antigenic form used
in the experiments. It is known that particulate and soluble
antigens have distinct immunologic properties. For example,
particulation ensures targeted delivery of antigens to APCs in a
more concentrated form and, subsequently, results into an
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adjuvant effect (202). Furthermore, the antigen within the
particle is exhibited in multiple copies, leading to more robust
and persisting cellular responses. In light of the foregoing, it
could be possible that the intrinsic properties of particulate
antigens offset the mediocre costimulatory support displayed
by human neonatal APCs.

There are many other facets of cross-presentation still to be
elucidated. For example, it is unknown whether the role of the
TAP-transporter and sec22b are age-dependent. Furthermore,
animal experiments suggest that proteasome function might be
elevated in early life and decline with age (203, 204). In brief,
there is an unmet need to conduct research on the MHC I
pathway in early life and the age-dependent aspects of
this process.

Important Cytokines
In order to obtain a functional cytotoxic T cell response, the sole
presence of antigens is not adequate. Instead, pro-inflammatory
cytokines and costimulatory molecules are required to create an
inflammatory environment that will activate naive CD8+ T cells.
Several cytokine receptors, such as IL-12R and the type I
interferon receptor, are essential to activate key transcription
factors that support cellular immunity. However, as mentioned
earlier, the neonatal immune system demonstrates a
characteristic impairment in the production of Th1 polarizing
cytokines, such as IFN-a and IL-12p70, which imposes
challenges on creating robust and sustained CD8+ T cell
responses (29, 205–213). Although cell-intrinsic components
contribute to this distinct functionality of newborn DCs,
elevated plasma levels of extrinsic factors such as IL-10,
adenosine, MMP-9, and PTX-3 (214–216) can also play a role.

IFN-a is a type I interferon (IFN), which is predominantly
produced by pDCs in vivo. When PRRs such as TLRs and
cytosolic RIG-I-like receptors recognize viral proteins, early
type I IFN production is initiated. Type I IFNs play a major
role in antiviral immunity, as they are capable of upregulating
MHC and costimulatory molecules on DCs (205). Besides,
through direct CD8+ T cell contact, type I IFNs significantly
improve clonal expansion of CD8+ T cells in vivo (206). It is well
known that type I IFN levels, such as IFN-a, correlate with age.
Indeed, newborns infected with RSV show a significant decline in
IFN-a production compared to adults (207). It has been
postulated that pDC functionality is impaired in newborns
and, therefore, shows poor IFN-a induction (208).

Production levels of IL-12 are notably lower in newborns and
infants compared to adults (209). Recent work showed that TCR/
IL-12 stimulation can enhance expression of genes in newborns
that are associated with T cell functions, including cytotoxicity
genes and cell signaling genes (210). The ability of newborn
dendritic cells to produce IL-12p70 in response to TLR agonists
proposedly can be overcome by combined stimulation through
TLR4 and Dectin-1 (213). In this study, however, dendritic cells
were generated from cord blood monocytes (moDCs) in the
presence bovine serum before activation. We have previously
demonstrated that the ability of newborn moDCs to produce IL-
12p70 is highly reduced by soluble factors present in cord
Frontiers in Immunology | www.frontiersin.org 9
plasma, and impaired Th1 induction was instead overcome
independently of IL-12p70 production (29).

Another member of the IL-12 family, IL-27, is a cytokine
which consists of both inflammatory and immunosuppressive
capabilities. One of its functions is to promote the survival and
differentiation of CD8+ T cells, thereby contributing to their
effector functions (211). IL-27 secretion by dendritic cells is
highest in childhood, while adults’ levels are low (212).
Interestingly, Il-27 helps drive T helper 1 (Th1) cell
differentiation, while newborns are impaired in inducing this
type of immune response. The pleiotropic nature of IL-27 could
make it difficult to determine its contribution to the impaired
Th1 response observed in newborns.
ADJUVANT-INDUCED CROSS-
PRESENTATION

Several studies have described potential mechanisms of cross-
presentation induced by clinically relevant adjuvants, such as
aluminum, saponin and toll like receptor agonists. The next
paragraphs elaborate on the molecular pathways of these
adjuvants. However, very little is known about these
mechanisms in newborns, and therefore, more research is
required in order to comment on potential age-dependent
differences between these adjuvants.

Aluminum-Based Adjuvants
Insoluble aluminum (alum) salts are the most broadly used
classical adjuvants in human vaccines (217). Alum is known
for its ability to provoke strong T helper 2 (Th2) responses but
does not typically enhance CD8+ T cell-mediated immunity.

Alum salts are particulate adjuvants comprised of crystalline
structures, which are thought to be central to their adjuvanticity.
It has been shown that alum induces the production of uric acid
(218). Uric acid can precipitate into crystals of monosodium
urate (MSU), which can be phagocytosed by APCs. Phagocytosis
of particulate matter, such as alum or MSU, can trigger
disruption of the phagosomal membrane, resulting into the
activation of the NOD-like receptor protein 3 (NLP3)
inflammasome. In addition, alum has also been shown to
induce cell death, leading into the release of danger signals like
DNA and uric acid. These components are also able to activate
the NLP3 inflammasome (218). However, the role of NLP3 in
cross-presentation is likely to be limited since NLPR3 is a
transcriptional regulator of Th2 differentiation (219). In
support of this notion, alum has shown to be capable of
inducing a CD8+ T cell response without the involvement of
the inflammasome (217).

Interestingly, alum-based nanoparticles in combination with
the TLR ligand cpG showed enhanced cross-presentation by DCs
(220). With the use of endocytic pathway inhibitors, it was
observed that the scavenger receptor A was responsible for
internal izat ion of the alum-polymer partic les . The
nanoparticles were both found in the lysosome and cytosol,
indicating lysosomal escape. In addition, both brefeldin A, which
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inhibits ER transport to the Golgi apparatus, and MG-132, a
proteasome inhibitor, reduced alum-induced cross-presentation
in DCs. A potential reason for this enhancement in response
could be the involvement of both the cytosolic and vacuolar
pathway. This is, because it has been speculated that TLR ligands
potentially use the vacuolar pathway (58), while alum-based
adjuvants seem to follow the cytosolic pathway. Activating
both routes of cross-presentation may enhance MHC class I
restricted presentation and, thus, promote CD8+ T cell mediated
immunity. There are many other factors that could play a role,
such as particle size and manufacturing conditions.

Saponin-Based Adjuvants
Saponins are triterpene plant glycosides that exhibit different
biological and pharmacological properties. There are several
saponins that can stimulate the immune system which has led
to significant interest in their potential as vaccine adjuvants
(221). The most extensively investigated saponin adjuvant is QS-
21, a purified fraction from the soap bark tree (Quillaja
Saponaria) (222).

The molecular composition of QS-21 revealed that its
aldehyde group is key in inducing cellular immunity. This is,
because it was observed that after reduction of the aldehyde
moiety into a secondary amine, adjuvanticity was lost (223). The
immune stimulating role of aldehyde-containing adjuvants has
been previously described, such as in case of lipidated tucaresol
(224). QS-21 is thought to provide a costimulatory signal to the T
cell through imine formation from its aldehyde and the primary
amine on the T cell, most likely CD2 (221). However, the
aldehyde group is not likely to play a role in cross-presentation
because tucaresol is not able to induce CD8+ T cell immunity by
itself. Furthermore, there are also existing triterpene saponins
that lack imine-forming structural groups but still induce
cytotoxic T cells against exogenous antigens (223).

Saponin-antigen complexes enter the APC by endocytosis in a
cholesterol-dependent way (221). Den Brok et al. proposed that,
once the antigen-saponin complex is engulfed by the membrane,
MHC class I presentation is induced through lipid body formation
(225). As previously described, LBs potentially facilitate antigen
export to the cytosol and would therefore play an important role in
inducing CD8+ T cell responses. LB formation destabilizes the
membrane and, therefore, allows the antigen to escape the
endosome early (221). Thus, antigen translocation into
the cytosol occurs in a proteasome-independent matter. Indeed,
saponin-induced cross-presentation was not compromised by
different NAPDH oxidases and several ROS scavengers.

Surprisingly, pharmacological inhibition of LB induction did
not reduce antigen export to the cytosol. However,
pharmacological and genetic interreference with lipid body
formation did abrogate saponin-induced cross-presentation.
Thus, LBs might contribute to saponin-mediated CD8+ T cell
immunity in a different yet undefined matter.

TLR-Based Adjuvants
DCs express different subtypes of TLRs on their surface. TLRs
recognize various PAMPs and therefore play an important role
Frontiers in Immunology | www.frontiersin.org 10
in immunosurveillance. Increasing evidence shows that TLR
signaling is involved in multiple steps in cross-presentation. It
was found that TLR activation controls several aspects of
phagocytosis like internalization and phagosome maturation.
For example, TLR signals accelerate both phagocytosis and
phagolysosomal fusion (226). DC activation status plays a
critical role in this process. Indeed, it was shown that
activation of DCs with TLR3 and TLR4 ligands significantly
reduced the uptake and subsequent cross-presentation of
particulate antigen compared with immature DCs (227). This
phenomenon was not observed with TLR2 and TLR7 ligands.
Another potential explanation for this difference is that TLR3
and TLR4 signaling require Trif as essential adapter, whereas the
other TLRs operate Trif independent (228).

TLRs may also contribute to cross-presentation via MHC I
enrichment, a process which is suggested to occur in a
phagosome-autonomous way (59). Gupta et al. observed that
TLR4 stimulation in murine BMDCs enhanced the recruitment
of MHC class I molecules to phagosomes (229). In their work,
they showed that these molecules were not derived from the
ERGIC machinery, since recruitment of ERGIC components to
phagosomes happened in a TLR-independent matter. This also
suggests that TLRs are not involved in TAP recruitment, as
proposed in literature (190). Instead, they suggested that MHC I
molecules are recruited from the endosomal recycling
compartment (ERC), regulated by the activity of rab11a. TLRs
would manage this process through TLR-MyD88-IKK2-
dependent phosphorylation of phagosomal SNAP-23.

Cross-presentation may be further enhanced through TLR
mediated antigen export. Antigen transport from the phagosome
to the cytosol was increased after TLR4 stimulation with LPS
(227). This would suggest that TLR adjuvanticity favors the
cytosolic pathway. However, this would not explain the
previous described enhancement in MHC class I molecules in
the phagosome, which suggests phagosomal loading instead of
ER loading. Furthermore, TLRs accelerate phagosome
maturation in the first hours after antigen uptake (230).
Phagosome maturation in DCs allows antigens to be processed
for antigen presentation. In this way, antigen degradation would
not include the proteasome and, therefore, it could be argued
that TLR ligands follow the vacuolar pathway. However,
evidence points to the contrary, as many papers observed that
the cytosolic pathway is ruling in TLR-mediated cross-
presentation (68, 231, 232). Very little is known about the
underlying molecular mechanism of adjuvant-induced cross-
presentation in newborns. However, the type and magnitude of
CD4 T cell activation by licensed adjuvants often differs, due to
distinct signaling requirements in newborn antigen-presenting
cells (233–237). To induce cross-presentation in neonates, TLR-
adjuvants are interesting candidates for adjuvant application.
TLR expression and downstream signaling have been well
studied in newborns and although age distinctions have been
observed, specific TLR agonists or combinations have been
identified that can induce adult-like levels of pro-inflammatory
cytokines such as type I IFNs and Il-12, which are important for
cross-presentation and are generally not highly produced in
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newborn cells. Furthermore, TLR ligands appear to induce a
similar degree of polyfunctionality compared to adults (110).
However, IRF3 activation by TLR3 and TLR4 is reduced in
newborns (238). This process is Trif-dependent and, as described
in the previous chapter, TLR3 and TLR4 ligands showed reduced
antigen uptake and cross-presentation, indicating that adjuvants
stimulating these receptors will not induce cross-presentation in
newborns as effectively.

Most TLR signaling is dependent on the adaptor protein myeloid
differentiation primary response 88 (MyD88). It has been suggested
that MyD88 functioning in neonatal DCs is impaired (239). As
described above, MHC class I upregulation may take place in a
MyD88 dependent way and, therefore, it could be postulated that
TLR-mediated MHC I enrichment in newborns is reduced, possibly
resulting in impaired cross-presentation. However, it has been
shown that newborn cells can increase MyD88 mRNA expression
after bacterial infection (240), and potent nuclear translocation of
NF-kB can be achieved using TLR7/8 agonists rather than TLR3 or
TLR4 agonists. Whether this would also happen upon viral infection
is unknown. Even though alum-adjuvants are probably less suitable
candidates in early life, because of their propensity to be Th2
skewing, combinations of alum with TLR adjuvants have shown
promise, as described above.
CONCLUDING REMARKS AND FUTURE
DIRECTIONS

This paper highlights key differences between the neonatal,
infant, and adult immune system and aims to underline that
our understanding of vaccine mediated CD8+ induction in early
life requires further investigation.

Most commercially available vaccines for pediatric use consist
of attenuated or inactivated pathogens. While these vaccines are
mostly competent in stimulating CD8+ T cell immunity, modern
vaccine development is shifting toward subunit and nucleic acid
vaccines and, consequently, has imposed major challenges on
inducing adequate cellular immunity. Therefore, subunit vaccines
often depend on immune activation by adjuvants. Little is known
about CD8+ T cell induction by adjuvants, for example, via cross-
presentation, in newborns and infants. Adding to the complexity,
in early life, many aspects of the immune system correlate with
age. Even though neonates and infants have enough naive CD8+ T
cells to create a robust antiviral response, they exhibit several
functional differences compared to adults that may have direct
Frontiers in Immunology | www.frontiersin.org 11
implications for their ability to cross-present antigens. As a result,
their CD8+ T cells have reduced cytotoxicity and are biased toward
type 2 immunity. And neonatal APCs receive weak costimulatory
stimulation. Altogether, this means that a vaccinated child will
produce less pro-inflammatory cytokines important for cross-
presentation, does not receive the same stimulation as an adult
and shows poor CD8+ T cell effector properties. To overcome
these hurdles in the pediatric population, adjuvants should be
tailored to their distinct immune system.

Future research should examine whether cross-presentation
mechanisms in neonates and infants are fully operational, and aim
to identify adjuvants that can induce potent CD8+ T cell responses
For example, using adjuvant combinations that employ both the
vacuolar and cytosolic pathway or use different mechanisms for
antigen export to the cytosol may enhanceMHC class I presentation.
Furthermore, antigen particulation can boost the adjuvant effect and
outbalance poor neonatal APC costimulation. Besides, extra
stimulation of cytokines such as Il-12 may enhance neonatal
cytotoxicity and, thus, improve the antiviral response.

To date, however, it is unknown how adjuvants contribute to
cross-presentation in neonates. For example, do TLR adjuvants
also enhance antigen uptake and phagolysosomal fusion in
newborns or is this an age-dependent process? Do adjuvants
use similar cross-presentation pathways in newborns as they do
in adults? Refining our understanding of adjuvant-induced CD8+

T cell immunity will further improve vaccine formulations in the
pediatric setting and, hopefully, create more robust and sustained
responses to protect this vulnerable population.
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Álvarez-Hernández DA, Franyuti-Kelly GA, et al. Human Dendritic Cells:
Ontogeny and Their Subsets in Health and Disease. Med Sci (2018) 6:88.
doi: 10.3390/medsci6040088

148. Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic
cells. Nat Rev Immunol (2015) 15:471–85. doi: 10.1038/nri3865

149. Novak N, Bieber T. The role of dendritic cell subtypes in the pathophysiology
of atopic dermatitis. J Am Acad Dermatol (2005) 53:S171–6. doi: 10.1016/
j.jaad.2005.04.060
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receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat
Immunol (2015) 16:859–70. doi: 10.1038/ni.3202

220. Jiang H, Wang Q, Li L, Zeng Q, Li H, Gong T, et al. Turning the Old
Adjuvant from Gel to Nanoparticles to Amplify CD8 + T Cell Responses.
Adv Sci (2017) 5:1700426. doi: 10.1002/advs.201700426

221. Marciani DJ. Elucidating the Mechanisms of Action of Saponin-Derived
Adjuvants. Trends Pharmacol Sci (2018) 39:573–85. doi: 10.1016/
j.tips.2018.03.005

222. Ragupathi G, Gardner JR, Livingston PO, Gin DY. Natural and synthetic
saponin adjuvant QS-21 for vaccines against cancer. Expert Rev Vaccines
(2011) 10:463–70. doi: 10.1586/erv.11.18

223. Soltysik S, Wu J-Y, Recchia J, Wheeler DA, Newman MJ, Coughlin RT, et al.
Structure/function studies of QS-21 adjuvant: assessment of triterpene
aldehyde and glucuronic acid roles in adjuvant function. Vaccine (1995)
13:1403–10. doi: 10.1016/0264-410x(95)00077-e

224. Collins KC, Schlosburg JE, Lockner JW, Bremer PT, Ellis BA, Janda KD.
Lipid tucaresol as an adjuvant for methamphetamine vaccine development.
Chem Commun Camb Engl (2014) 50:4079–81. doi: 10.1039/c4cc00682h

225. den BrokMH, Büll C,WassinkM, de Graaf AM,Wagenaars JA, MindermanM,
et al. Saponin-based adjuvants induce cross-presentation in dendritic cells by
intracellular lipid body formation. Nat Commun (2016) 7:13324. doi: 10.1038/
ncomms13324
Frontiers in Immunology | www.frontiersin.org 17
226. Nair P, Amsen D, Blander JM. Co-ordination of Incoming and Outgoing
Traffic in Antigen-Presenting Cells by Pattern Recognition Receptors and T
Cells. Traffic (2011) 12:1669–76. doi: 10.1111/j.1600-0854.2011.01251.x

227. Gil-Torregrosa BC, Lennon-Duménil AM, Kessler B, Guermonprez P,
Ploegh HL, Fruci D, et al. Control of cross-presentation during dendritic
cell maturation. Eur J Immunol (2004) 34:398–407. doi: 10.1002/
eji.200324508

228. Kawai T, Akira S. TLR signaling. Cell Death Differ (2006) 13:816–25.
doi: 10.1038/sj.cdd.4401850

229. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, et al. TLR
signals induce phagosomal MHC-I delivery from the endosomal recycling
compartment to allow cross-presentation. Cell (2014) 158:506–21.
doi: 10.1016/j.cell.2014.04.054

230. Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for
presentation by dendritic cells. Nature (2006) 440:808–12. doi: 10.1038/
nature04596

231. Santone M, Aprea S, Wu TYH, Cooke MP, Mbow ML, Valiante NM, et al. A
new TLR2 agonist promotes cross-presentation by mouse and human
antigen presenting cells. Hum Vacc Immunother (2015) 11:2038–50.
doi: 10.1080/21645515.2015.1027467

232. Datta SK, Redecke V, Prilliman KR, Takabayashi K, Corr M, Tallant T, et al.
A Subset of Toll-Like Receptor Ligands Induces Cross-presentation by Bone
Marrow-Derived Dendritic Cells. J Immunol (2003) 170:4102–10.
doi: 10.4049/jimmunol.170.8.4102

233. Levy O, Suter EE, Miller RL, Wessels MR. Unique efficacy of Toll-like
receptor 8 agonists in activating human neonatal antigen-presenting cells.
Blood (2006) 108:1284–90. doi: 10.1182/blood-2005-12-4821

234. Levy O, Coughlin M, Cronstein BN, Roy RM, Desai A, Wessels MR. The
adenosine system selectively inhibits TLR-mediated TNF-alpha production
in the human newborn. J Immunol (Baltimore Md: 1950) (2006) 177:1956–
66. doi: 10.4049/jimmunol.177.3.1956

235. Levy O, Zarember KA, Roy RM, Cywes C, Godowski PJ, Wessels MR.
Selective impairment of TLR-mediated innate immunity in human
newborns: neonatal blood plasma reduces monocyte TNF-alpha induction
by bacterial lipopeptides, lipopolysaccharide, and imiquimod, but preserves
the response to R-848. J Immunol (Baltimore Md: 1950) (2004) 173:4627–34.
doi: 10.4049/jimmunol.173.7.4627

236. Angelidou A, Conti M-G, Diray-Arce J, Benn CS, Shann F, Netea MG, et al.
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