
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Modeling genomic data with type attributes, balancing stability and
maintainability
Norbert Busch† and Gero Wedemann*†

Address: System Engineering und Informationsmanagement, Fachhochschule Stralsund, Zur Schwedenschanze 15, 18435 Stralsund, Germany

Email: Norbert Busch - norbert.busch@fh-stralsund.de; Gero Wedemann* - gero.wedemann@fh-stralsund.de

* Corresponding author †Equal contributors

Abstract
Background: Molecular biology (MB) is a dynamic research domain that benefits greatly from the
use of modern software technology in preparing experiments, analyzing acquired data, and even
performing "in-silico" analyses. As ever new findings change the face of this domain, software for
MB has to be sufficiently flexible to accommodate these changes. At the same time, however, the
efficient development of high-quality and interoperable software requires a stable model of
concepts for the subject domain and their relations. The result of these two contradictory
requirements is increased complexity in the development of MB software.

A common means to reduce complexity is to consider only a small part of the domain, instead of
the domain as a whole. As a result, small, specialized programs develop their own domain
understanding. They often use one of the numerous data formats or implement proprietary data
models. This makes it difficult to incorporate the results of different programs, which is needed by
many users in order to work with the software efficiently. The data conversions required to
achieve interoperability involve more than just type conversion. Usually they also require complex
data mappings and lead to a loss of information.

Results: To address these problems, we have developed a flexible computer model for the MB
domain that supports both changeability and interoperability. This model describes concepts of MB
in a formal manner and provides a comprehensive view on it. In this model, we adapted the design
pattern "Dynamic Object Model" by using meta data and association classes.

A small, highly abstract class model, named "operational model," defines the scope of the software
system. An object model, named "knowledge model," describes concrete concepts of the MB
domain. The structure of the knowledge model is described by a meta model. We proved our
model to be stable, flexible, and useful by implementing a prototype of an MB software framework
based on the proposed model.

Conclusion: Stability and flexibility of the domain model is achieved by its separation into two
model parts, the operational model and the knowledge model. These parts are connected by the
meta model of the knowledge model to the whole domain model. This approach makes it possible
to comply with the requirements of interoperability and flexibility in MB.

Published: 27 March 2009

BMC Bioinformatics 2009, 10:97 doi:10.1186/1471-2105-10-97

Received: 19 September 2008
Accepted: 27 March 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/97

© 2009 Busch and Wedemann; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19327130
http://www.biomedcentral.com/1471-2105/10/97
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
Background
Motivation
Molecular biology (MB) benefits greatly from the use of
software technology in preparing experiments, analyzing
data, and performing "in-silico" analyses. However inter-
action between MB software programs is often compli-
cated.

This will be illustrated by an example from our work:
Recently we localized short reads of nucleosomes, gained
by Illumina Solexa technology, in a reference genome.
The sequences acquired were analyzed by computing
some of their properties and assigning annotations from
the reference genome to them.

We used the programs RMAPQ [1], SOAP [2] and MAQ
[3] for the localization. Each of them uses a separate input
format, different from the short read data format. We had
to perform three data transformations. Furthermore, the
domain understanding of these programs is slightly differ-
ent: SOAP and MAQ support pair-end sequencing, while
RMAPQ does not; SOAP can report multiple hits, while
RMAPQ and MAQ can not. Due to this different domain
understanding, each program uses its own output format
with slightly different semantic. We had to write three dif-
ferent scripts to obtain the nucleosome sequences from
the reference genome. To relate the acquired locations
with other annotations and visualize this data, we used
GeneTrack [4], which is based on a more aggregated view
of the acquired locations. GeneTrack does not evaluate
single hits of the localization programs, it analyzes the
number of hits on found locations (different short reads
may point to the same location). GeneTrack uses proprie-
tary data formats for both the acquired locations and the
reference genome annotations. Again, we had to trans-
form the output of RMAPQ, SOAP, and MAQ three times.
And we converted the reference genome annotations from
the gene bank format into the GeneTrack format.

This is only one example of limited interoperability. How-
ever, due to heterogeneous data standards and uncoordi-
nated software development [5], there are many other
scenarios of complicated data exchange. A shared domain
understanding was identified as a potent means to achieve
interoperability for MB software [5,6]. On the other hand,
MB, especially the areas of functional genomics and pro-
teomics, is a very dynamic research domain. The increas-
ing number of biological databases [5,7-9] and the
continuous development of the EMBL data format [10]
attest to this fact. For example, the feature "snoRNA" was
introduced with Release 69. In Release 92 the features
"snoRNA," "scRNA," "snRNA," and "misc_RNA" were
replaced by the new feature "ncRNA" and its mandatory
qualifier "ncRNA_class." The qualifier defines the kind of
"ncRNA," and its value set is defined in an extensible form

[11]. This suggests that further development in the area of
non-coding RNA may be expected in the future.

As new insights into MB are gained, the domain and its
concepts quite often have to be viewed from a new per-
spective; sometimes new experimental or theoretical
results shift even fundamental concepts. The term "con-
cepts" means the notable entities in the domain, such as
different kinds of molecules (DNA, RNA, and proteins) or
special regions of molecules (genes or promoter). Soft-
ware systems for MB must be sufficiently flexible to
accommodate these changes in a reasonable amount of
time; otherwise, the software soon becomes obsolete or its
value diminishes [12].

Previous studies investigated extensibility as an important
requirement to achieve flexibility for MB software; e.g.
Jones and Paton [13]. Besides extensibility, changeability
is equally required to achieve flexibility [14].

An approach often used to deal with the problem of flex-
ibility is to consider only a small, well-defined area of the
domain. By this means, knowledge changes are scarcer
and, due to the lower program complexity, easier to
implement. The drawback is an isolated domain under-
standing of these programs, which is very much depend-
ent on the particular program's domain view.
Furthermore, these programs very often use proprietary
data formats. The explorative manner of biologists work is
not well supported, and interoperability and data
exchange are difficult to achieve. Performing large-scale
"in-silico" analyses using several programs often requires
an enormous amount of time and resources for interoper-
ability. The challenge in developing software for MB is to
satisfy both requirements appropriately: interoperability
to support explorative work in MB, and flexibility to
accommodate new knowledge in the domain.

To meet this challenge, we approach the problem from
the fundamental level of computer program develop-
ment; namely, the domain model, also known as "con-
ceptual model." In object-oriented (OO) software
development [15,16], the domain model is a systematic
description of entities in the subject domain and their
relationships [14,17]. It reduces the gap between mental
and software models, and it supports communication
between domain experts and software developers [18].

The domain model is created in an early development
phase, the analysis phase. It is the basis for data models
created in later phases, such as data formats for data
exchange and file storage, or the database model, or the
class model for the domain layer. Changes of the domain
model affect many parts of a software system; they are
therefore costly and complicated and should be avoided.
Page 2 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
So, besides flexibility, stability is also very important for
domain models in MB. A comprehensive domain model
for MB could provide a shared domain understanding for
a wide range of programs and therefore support interop-
erability.

It is difficult to fulfill both requirements using commonly
applied OO modeling approaches. In these approaches,
domain concepts are modeled statically in class hierar-
chies with associations between classes. New or changed
knowledge leads to changes in the domain model, which
should be avoided, as mentioned above.

Therefore, we present a different modeling approach,
which has adapted the "Dynamic Object Model" pattern
[19]. This approach promises to fulfill both requirements
of a comprehensive domain model for MB – flexibility
and stability – in a balanced manner and therefore sup-
ports interoperability.

Results
Approach
Overview
The essential idea behind our approach is the separation of
fundamental domain concepts from domain knowledge,
as proposed by Beale [12]. Fundamental concepts define
the scope of the subject domain, and hence the scope of the
software. If fundamental concepts were to change, the sub-
ject of the domain and the software would have to change,
too. Therefore, fundamental concepts constitute a stable
core; changes would only affect domain knowledge.

Following this idea, fundamental concepts were modeled
in an abstract class model and domain knowledge was

reflected in an object model. This approach utilizes the
"Dynamic Object Model" pattern [19], also known as
"Adaptive Object Model" [20]. This is a composed pattern
and its core is the "Type Object" pattern [21]. We named
abstract classes corresponding to fundamental concepts
typed classes. Instances of typed classes get a more concrete
meaning from a special attribute, called type attribute,
which describes a concrete concept. In other words,
instances of typed classes are parameterized by their type
attributes. These type attributes constitute the model for the
domain knowledge. They are instances of special classes,
called type definition classes.

The following example explains this approach: In classical
OO models, different molecules such as DNA, RNA and
proteins are represented as classes in a class hierarchy (Fig-
ure 1a). In contrast, the presented modeling approach
uses classes as well as instances (Figure 1b): Molecule is
a typed class and MoleculeType is a type definition class.
Different molecule types are represented by instances of
MoleculeType, not by subclasses of Molecule (see the
object diagram in Figure 1b). These instances are type
attributes of Molecule instances. By using this approach,
new concepts can be introduced into the model without
changing the class model.

Following this approach, we realized that four models can
be distinguished on different abstraction levels (Figure 2):

• The operational model defines the scope of the
domain model. It contains the fundamental abstract
domain concepts. It is a classical OO-class model that
consists of the typed classes.

Comparison of the classical and the proposed modeling approachFigure 1
Comparison of the classical and the proposed modeling approach. A) Classical OO-class model of different kinds of
molecules. B) Model of different kinds of molecules following the proposed approach. On top, the class model with typed class
Molecule and its type definition class MoleculeType. At the bottom, the object model that defines concrete kinds of mol-
ecules, instances of MoleculeType. They are used by instances of the typed class Molecule.

Molecule

DNA RNA Protein

Molecule MoleculeType

+name

type

 : MoleculeType

name = dna

 : MoleculeType

name = rna

 : MoleculeType

name = protein

a DNA : Molecule

a RNA : Molecule

a protein : Molecule

A B
Page 3 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
• The knowledge model defines concrete concepts in
the area of interest; these concepts and their relations
are subject to changing knowledge. The elements of
the knowledge model are instances of type definition
classes that can be created and changed dynamically.
They are used as type attributes in the operational
model.

• The meta model of the knowledge model defines
the structure of the knowledge model. It joins concrete
concepts defined in the knowledge model with
abstract concepts of the operational model. Classes in
the meta model of the knowledge model are type defi-
nition classes. This model is therefore an OO-class
model.

• The information model contains application data
from the developed system. It is not developed in any
phase of the software development process, but rather
it originates during the execution of an implemented
system. It consists of instances of classes from the
operational model, which use type attributes.

The names "operational model" and "knowledge model"
are inspired by the terms "operational level" and "knowl-

edge level," used by Fowler in [22]. Beale used the terms
"knowledge level" and "information level" in [12]; the lat-
ter term was the inspiration behind the naming of the
"information model."

Properties of knowledge model concepts
Concrete concepts usually define properties. For example,
double-stranded DNA has a melting temperature and a
GC ratio, and proteins can have annotations describing
their function. In our approach, properties cannot be
modeled as instance attributes of the typed class. This is
because properties are not shared by all kinds of concepts;
every concept has its own set of properties. To meet this
challenge, we integrated properties using a generic prop-
erty model (Figure 3). The basis of this model is the
"Typed Dynamic Property" pattern [23].

The property model defines kinds of properties by
instances of the type definition class PropertyType. These
instances are elements of the knowledge model (the
object diagram at the bottom right of Figure 3) and repre-
sent concrete kinds of properties (mtType, gcType, and
funcType). Instances of the typed class Property
(mtProp and funcProp) represent property values
according to its PropertyType.

Four different modelsFigure 2
Four different models. The presented approach leads to four different models: operational model, meta model of the
knowledge model (meta model), knowledge model, and information model. The operational model and meta model are OO-
class models. The knowledge model consists of instantiated classes of the meta model. The information model consists of
instantiated classes of the operational model that are parameterized by elements of the knowledge model. Elements of the
operational and information model are shown in red. Elements of the meta model and knowledge model are depicted in blue.
Instances are given in a lighter color.

knowledgeModelinformationModel

operationalModel

Molecule

metaModel

MoleculeType

+name

dna_2 : Molecule

type

protein_1 : Molecule

dna_2 : Molecule

 : MoleculeType

name = dna

 : MoleculeType

name = rna

 : MoleculeType

name = protein

type

type

type

<<realize>> <<realize>>
Page 4 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
Domain concepts usually have several properties; they have
a property set. These sets are defined by instances of the type
definition class PropertyRegistry (dnaPropReg and
proteinPropReg in Figure 3). These instances define
property sets for concrete concepts, they are also elements
of the knowledge model. The corresponding typed class for
PropertyRegistry is PropertyHolder, which is a
container class to manage instances of Property accord-
ing to the PropertyRegistry.

The property model is integrated into our domain model
using inheritance (see "Modeling properties of concrete

concepts"). If inheritance might cause problems, delega-
tion can be used instead: For example, when the class that
should have properties is the subclass of another class,
delegation would avoid problems that multiple inherit-
ance could imply [24].

Associations between concrete concepts
Domain objects are often related to other domain objects.
For example, a promoter can be involved in gene regula-
tion. To support relationships, Riehle suggests the "Rela-
tionship Type Objects" [19] pattern. It is a combination of
"Association Classes" [22,25] (classes that describe associ-

Modeling propertiesFigure 3
Modeling properties. Properties of concrete concepts are held by the typed class Property. Instances of its type definition
class PropertyType (gcType, mtType, and funcType) specify the meaning of properties with their attribute name. The
attributes valueType and cardinality restrict the data type and number of hold values. PropertyHolder and Proper-
tyRegistry support the handling and definition of property sets. The PropertyHolder aDnaMol holds the Property
gcProp of type gcType; the optional Property of type mtType is not set.

meta modeloperational model

knowledge modelinformation model

 mtType : PropertyType

name = melting temp
valueType = double
cardinality = 0..1

funcType : PropertyType

name = function
valueType = String
cardinality = 0..1

gcProp : Property

values = {67.23}

funcProp : Property

values = "Endonuclease that ..."

gcType : PropertyType

name = gc-ratio
valueType = percent
cardinality = 1

dnaPropReg : PropertyRegistry

proteinPropReg : PropertyRegistry

aDnaMol : PropertyHolder

aProteinMol : PropertyHolder

Property

+values

PropertyHolder

hold values

*

PropertyRegistryregistry

PropertyType

+name
+valueType
+cardinality

type

allowed properties*
Page 5 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
ations) and the "Type Object" pattern. "Relationship Type
Objects" are "Association Classes" that have a type
attribute; in our terms, they are typed association classes. On
the basis of "Relationship Type Objects," we have devel-
oped a model for associations between typed classes (Fig-
ure 4).

The main element of this model, the typed association class
Relation, represents relationships between domain
objects (Members). Its type definition class Relation
Type must be more complex than previously described

typed classes. It defines Roles that can be played by Mem
bers, and Rules that apply to the Relation and its
Members. The Role class is the type definition class of the
Member class.

This is explained by an example (object diagram in Figure
4): In a relation, describing the gene regulation by pro-
moters, the roles "promoter" and "gene" may exist.

Furthermore, the promoters and regulated genes must be
on the same DNA-strand. aGenRegRel, an instance of

Modeling relationsFigure 4
Modeling relations. A relation model realizes relations between concrete concepts defined in the knowledge model. Rela-
tion is a typed association class that holds references to its Members. The type definition class RelationType describes dif-
ferent relation kinds by its name attribute and defines Roles that members can play, and Rules that apply to the relation
type. A Role can have more than one Member. The number of role members is restricted by the attribute cardinality. A
Role furthermore restricts the type of its member objects by the attribute memberType (see memberType of promRole and
associated memberObjects promA and promB). Rules related to a relation kind have to check that the relations are con-
forming to the rules (method check).

information model knowledge model

meta modeloperational model

Relation RelationType

+name

Role

+name
+memberType
+cardinality

Member

+memberObjects
Rule

+check()

type

*

1..*
1..*

aGeneRegRel : Relation geneRegType : RelationType

name = gene regulation

geneRole : Role

name = gene
memberType = MoleculeSegment
cardinality = 1

promoterRole : Role

name = promoter
memberType = MoleculeSegment
cardinality = 1..n

sameMolecule : Rule
check that the promoters and

gene are on the same DNA

geneMembers : Member

promMembers : Member

aGene : MoleculeSegment

promA : MoleculeSegment

promB : MoleculeSegment

memberObject

memberObject

memberObject
Page 6 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
Relation, realizes this relation. It is parameterized by
the RelationType genRegType, which declares two
Roles, geneRole and promoterRole. Members of
the relation (aGene, promA, and promB) are managed by
geneMembers and promMembers (instances of Mem
ber). Both are parameterized by its type attributes, gen
eRole and promoterRole (instances of Role). The
Rule instance sameMolecule is associated with
geneRegType to ensure that all members of a geneRegType
relation are located on the same DNA-strand. The logic
used to perform the necessary checks cannot be shown in
the object diagram, so a UML note is used to declare the
logic.

Structure of the model
Modeling linear biological macromolecules
DNA, RNA, and proteins are the main domain concepts.
They are polymers, consisting of nucleotides or amino
acids. It is common to present these molecules as a
sequence of their elements. Figure 5 shows the model of
linear biological macromolecules.

Many different kinds of molecules exist, for example ordi-
nary DNA or RNA and more specific cDNA, tRNA, and
various ncRNAs. The relevance of molecule kinds depends
on the application; sometimes a less relevant kind may
become important over the course of research. In order to
support changeability, molecules are modeled as the
typed class Molecule and its type definition class Mole
culeType.

The linear structure is modeled by Sequence and Mole
culeElement; Sequence reflects the order of elements.
The association between MoleculeType and Molecu
leElement is used by instances of MoleculeType
(they are elements of the knowledge model) to define the
set of MoleculeElements, which can be contained in a
specific molecule type.

This model makes the dynamic definition of molecule
types possible; new types of molecules can be defined
without creating a new class.

Modeling special regions in linear macromolecules
Molecules can have special regions in their sequence, such
as genes and promoters in DNA or DNA-binding regions
in proteins. Figure 6 shows the model of special regions
and its relation to the model of molecules.

An important attribute of a special region is its location in
the sequence. Simple locations only have a start and an
end position. However, there could also be more complex
locations:

I. They can have gaps; e.g., the areas of introns are not
part of coding sequences.

II. They can be located between two molecule ele-
ments; e.g., the cleavage site of a restriction enzyme.

III. The start or end position could only approximately
be known.

For these reasons, the operational model contains the
class Location. Its attributes startLocProperty and
endLocProperty specify the meaning of the start and
end values. They allow the definition of special positions
corresponding to (II) and (III). The self-referencing asso-
ciation sublocation can compose locations to deal
with gaps (I). If a composed location contains subloca-
tions which are not adjoining, it contains a gap.

The class MoleculeSegment represents special regions
within molecules. However, there is a wide variety of
special regions, and it is expected to discover new region
types in the future (see the example of "ncRNA" feature
in the EMBL format in "Motivation" section). Therefore,
MoleculeSegment is a typed class with the type defini-
tion class SegmentType. This allows the integration of
new kinds of special regions into the model, e.g., when
new kinds of ncRNA become interesting. Which special
regions can occur in a molecule depends on the mole-
cule type. Therefore, an association between Molecu
leType and SegmentType describes allowed segment
types.

Model of moleculesFigure 5
Model of molecules. This model part describes linear biological macromolecules. Molecule, Sequence, and Molecu-
leElement are part of the operational model. MoleculeType enables the definition of different molecule kinds.

Molecule

Sequence MoleculeElement

+name
+symbol

MoleculeType

+name
+acronym

{ordered}

*

type

allowed elements1..*
Page 7 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
Modeling properties of concrete concepts
Simple properties as described in "Properties of knowl-
edge model concepts" are not sufficient in MB. For many
properties their values and equally further information
about the values is important. We named this information
"annotations." An example of such a property is the melt-
ing temperature (TM) of a doublestranded DNA, calcu-
lated from the nucleotide sequence. Different TM-
algorithms exist and many factors affect their suitability to
calculate TM. In order to assess a TM value, it is important
to know how the value was calculated.

These special characteristics of properties are considered
in an extended property model (Figure 7). Gray parts are
taken from the simpler model above; black parts are new
to the model. The new association between Property
and PropertyHolder enables Property to hold

annotations of its values. The one-to-many cardinality
allows each property value to have annotations and its
individual PropertyHolder. A constraint on the associ-
ation prohibits annotations from having further annota-
tions. Annotations of an annotation would not be of
value. Their responsibility is to clarify the property value
meaning. Annotations must be so precise that an expla-
nation of them is not needed. PropertyType uses an
association with PropertyRegistry to define which
annotations are allowed for its values. To avoid the speci-
fication of an annotation set for annotations, a constraint
prohibits the definition of a PropertyRegistry for
annotations.

Typed classes of the operational model (Molecule, Mol
eculeSegment and Relation) inherit from Proper
tyHolder to enable them to hold properties. Therefore,

Modeling special regions of moleculesFigure 6
Modeling special regions of molecules. This model part describes special regions within linear macromolecules. Mole-
culeSegments are located at a certain Location in Molecules. This is part of the operational model. SegmentType
is part of the meta model. It enables definitions of special regions in the knowledge model.

Molecule MoleculeType

MoleculeSegment SegmentType

+name

Location

+start
+end
+startLocProperty
+endLocProperty

type

*

+sublocation*

type

*

*

Extension of the property model by annotationsFigure 7
Extension of the property model by annotations. Values of properties of concepts defined in the knowledge model can
have annotations, represented by the association annotations of values. This association has a constraint by which a Prop-
erty, that is itself an annotation, cannot have annotations. The annotations that a Property can have are restricted by the
association allowed annotation types. Classes and relations previously explained are shown in gray.

Property PropertyType

type

PropertyHolder

hold values *

PropertyRegistryregistry

allowed properties*

annotations of values*

{annotations can not have annotations}

allowed annotation types

{annotations can not have annotations}
Page 8 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
the corresponding type definition classes have to be sub-
classes of PropertyRegistry. This is illustrated by an
example for the classes Molecule and MoleculeType
in Figure 8.

Overview of the operational model
The preceding sections explained parts of the operational
and the meta model in combination. The next two sec-
tions will explain both models separately to clarify their
content and responsibility. This section describes the
operational model (Figure 9).

Molecules and special regions within these molecules are
the relevant concepts in the domain. They define the
scope and have to be contained in the operational model.
Both are represented by typed classes, Molecule and Mol
eculeSegment. Relations between molecules and spe-
cial regions are also in the focus. They are realized by the
relation model described in "Associations between con-
crete concepts." The operational model contains the typed
class Relation for this reason.

Instances of these typed classes have to hold type specific
properties. Therefore, Molecule, MoleculeSegment,
and Relation are subclasses of PropertyHolder.

The linear molecule structure is represented by the class
Sequence, while the class MoleculeElement repre-
sents the monomers. The class Location specifies the
position of a special region within a molecule. Member
holds references to objects involved in associations; these
objects are usually Molecules or MoleculeSegments.

The operational model defines linear biological macro-
molecules, special regions within these molecules, and
relations between them as concepts in the scope of the
domain model.

Overview of the meta model
Figure 10 shows the meta model for the knowledge
model. This model defines the structure of the knowledge

model and basically consists of the type definition classes
MoleculeType, SegmentType, and RelationType.
They allow the definition of new kinds of molecules, mol-
ecule segments, and relations by creating instances of
them. The definition of property sets is supported by sub-
classing PropertyRegistry.

The type definition class RelationType supports the def-
inition of member roles and the assignment of relation
type specific rules by the associations to the Role and
Rule classes.

The meta model of the knowledge model provides means
to introduce new domain concepts, including their rela-
tions and properties, without needing to define new
classes.

Discussion
Improvements due to the modeling approach
This work presents a domain model for MB, based on a
novel modeling approach. In contrast to traditional mod-
eling, this approach provides means to develop a single
comprehensive view of the MB domain. Therefore, it sup-
ports a higher degree of interoperability (see "Effects on
interoperability").

The strength of the modeling approach is the separation
of the model into operational and knowledge models.
The operational model defines the scope of the model at
a high abstraction level, (see "Overview" and "Overview
of the operational model"). This ensures that all relevant
concepts can be represented in the model, albeit on a very
abstract level.

The knowledge model decreases the abstraction level. It
describes concrete domain concepts using objects that are
applied as type attributes of classes in the operational
model. New or changed domain concepts can be flexibly
defined in the knowledge model (see "Overview" and
"Overview of the meta model.")

The separation of the knowledge model and usage of
instances facilitate the utilization of semantic technolo-
gies, e.g., ontologies (see "Use of ontologies as the knowl-
edge model"). These technologies are more suitable for
knowledge representation than commonly used class dia-
grams; they enhance the clarity and strength of the model.

An increased changeability, necessary due to the knowl-
edge development in MB (see "Motivation"), is also sup-
ported by this approach. The applied design pattern
"Dynamic Object Model" is intended to support changea-
bility better than traditional approaches. Furthermore, the
"Effects of changing knowledge" section demonstrates the
limited effects of changing knowledge on implementa-

Example of the usage of propertiesFigure 8
Example of the usage of properties. The property
framework is integrated into the operational and meta model
by inheritance. This is exemplified here by the Molecule
class.

PropertyHolder PropertyRegistry

Molecule MoleculeTypetype

registry
Page 9 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
tions that utilize the presented modeling approach. These
limited effects make changes easier and less time consum-
ing. New findings can be reflected faster and with less
effort in the software. Furthermore, changes arising from
new knowledge only affect certain parts; hence there is
less chance of introducing errors into the software. Posi-
tive effects in terms of maintainability and software qual-
ity are discussed in "Consequences for software
development."

Consequences for design and software development
Due to the fundamental role of domain models, the man-
ner in which they are developed strongly affects the design
of software and the development process. Consequences
of the modeling approach for software design concern the

internal software structure (classes or components) as
well as the interaction of software components. In this
article, the term "component" denotes a small modular
and replaceable part of the system that provides a deter-
mined functionality [25,26].

Consequences for software development
The modeling approach distinguishes the abstraction
level by using different models: the operational model,
the knowledge model, and the meta model of the knowl-
edge model. These models use the same modeling tech-
nology. At first glance, systems based on this approach
seem to be harder to maintain than traditionally devel-
oped systems. Developers have to put significant effort
into understanding this kind of modeling. However, we

Operational modelFigure 9
Operational model.

MoleculeSequence

MoleculeElement

{ordered}

*

MoleculeSegment

Location

+sublocation *

* Relation

Member

+memberObjects

1..*

PropertyHolderProperty

+values

hold values*

annotations of values
*

{annotations can not have annotations}

Meta model of the knowledge modelFigure 10
Meta model of the knowledge model.

MoleculeTypeSegmentType **RelationType

Role 1..*

Rule *

PropertyType PropertyRegistryallowed properties*

allowed annotation types

{annotations can not have annotations}
Page 10 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
and others have observed that developers who manage to
achieve this understanding find such systems easier to
maintain than traditionally developed systems [27].

Furthermore, the separation of operational and knowledge
model reduces coupling between concepts on different
abstraction levels. The operational model is notably
smaller and less complex than the class model of tradition-
ally developed systems. Both of these factors – a good sep-
aration of concerns and lower complexity – are known to
support maintainability and enhance software quality [14].

Consequences for the structure of software components
Systems based on this approach need typical components
in order to handle the knowledge model, usually a repos-
itory that provides a list of known types. For example, for
the instantiation of typed classes, a value for their type
attribute is needed. This value can be obtained from the
repository.

Another typical component is a persistence component
that loads the knowledge model from permanent mem-
ory. Standard methods for mapping object models like
the knowledge model into relational databases and XML
files can be used in this persistence component [28]. The
viability of this approach is shown by the implementation
of the MB framework "Molecule Computation Kit"
(MCK), which is based on the domain model presented
here (see "Validation of the domain model" below). The
current MCK version uses XML files to define the knowl-
edge model. In the further development of MCK, how-
ever, ontologies seem to be a promising alternative for
defining the knowledge model, as discussed in "Use of
ontologies as the knowledge model."

In the presented modeling approach, the formal descrip-
tion by type attributes is advantageous for the implementa-
tion of software components. Thanks to this description,
components can handle data generically and hence they
are unaffected by changing knowledge. For example, MCK
uses generic writers and readers that store and load mole-
cules, molecule segments, and relations between mole-
cules by utilizing type attributes. The MCK also contains a
design study for user interface components that uses the
formal description to display properties of molecules.

However, generic handling is not always possible. For
instance, new domain concepts are usually followed up by
new data processing components that process these concepts.
These components must be integrated into the system. For this
reason, a software system has to provide extension points for
the integration of new data processing components.

As another example of the advantages of the modeling
approach presented here, data processing components
can use type attributes to validate input data with regard

to the concrete type of a typed class or necessary properties.
This generic validation even allows the processing of con-
cepts that were unknown at the development time of the
data processing component; an inherent interoperability
is achieved.

Even data processing components themselves, including
their I/O ports and configuration parameters, could be
described by type attributes. This would allow the
dynamic and semantically correct composition of data
processing components [29,30] and support interopera-
bility and the explorative manner of biological research.
This interesting approach is the subject of further investi-
gations (see "Integration of data processing compo-
nents").

Consequences for the interaction of software components
The use of typed classes also concerns the interaction of sys-
tem components. During interaction, the involved compo-
nents must act in accordance with the meaning of the
exchanged data. This requires the ability of components to
utilize the type attribute; since the meaning of instances of
typed classes depends on the value of their type attribute and
their class. As described in "Consequences for the structure
of software components" generic components must utilize
the type attribute. They depend on software structures that
allow them to read the meta data provided by the type
attributes. A modular design of these software structures
allows their reuse by non-generically implemented compo-
nents. The type attributes can then be read and utilized by all
components in internal communication.

Since changes in the knowledge model may often occur,
data using different knowledge model versions will exist.
This becomes relevant for reading older data from files or
importing data from system installations with other
knowledge model versions. Transformation rules support
persistence components in this task. They describe steps
necessary to convert data from one version to another,
and would support automatic data transformation.

The modeling approach presented here supports the
development of transformation rules. Hence the separa-
tion of the knowledge model makes changes to the
domain understanding explicit. A change in the knowl-
edge model indicates the necessity for developing a trans-
formation rule. Furthermore, the reasons for the
knowledge model change are known. This knowledge is
helpful in developing the transformation rules; due to the
explicit presence of the change, this knowledge can be
used immediately.

Effects of changing knowledge
One of our aims was the development of a domain model
for MB that allows the fast and convenient integration of
new knowledge while providing a stable basis for software
Page 11 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
development. To assess the achievement of this goal, we
have analyzed the effects of changing knowledge on
implementations based on the presented approach.

When new domain concepts arise, or when they are
changed, the class model of the domain layer is not
affected. In the case of changing domain concepts, it is
sufficient to create new instances of type definition classes,
or to change existing instances. In traditionally developed
systems, a new class must be created as mentioned in
"Motivation," significantly more time and effort is needed
than in the presented approach. Hence, in contrast to tra-
ditionally developed systems, our approach separates the
software implementation from the knowledge representa-
tion, so changes in knowledge have limited effects on the
software implementation.

Changing knowledge only affects components directly
dependent on them, so they must be adapted. Generically
implemented components and components not involved
remain unchanged. For example, the changed cardinality of
a concrete concept property affects the implementation of
processing components that must consider this property in
its processing. Components that work with the same concept
but do not use the changed property will not be affected. Our
practical experience with MCK supports this statement

A close examination of possible changes reveals three dif-
ferent kinds of changes to the knowledge model: (i) The
introduction of new domain concepts leads to new model
elements. (ii) Domain concepts must be removed. (iii)
Modified domain concepts lead to modified model ele-
ments. These different kinds of change must be handled
in an appropriate manner.

We developed the following strategy to deal with the differ-
ent kinds of changes and applied it to the MCK. New and
modified knowledge model elements can mostly be han-
dled generically. When this is not applicable, the strategy
suggests ignoring unknown elements of the knowledge
model. This is possible because a software system that is not
aware of a model element will not depend on it.

Simply removing obsolete elements from the knowledge
model would also lead to "unknown" elements. However,
these removed elements must not be handled generically;
they were discovered to be obsolete and should not occur
in the system. To prevent generic handling of these ele-
ments, it is not sufficient to simply remove them. They have
to remain in the model and must be flagged as obsolete.

Effects on interoperability
The limited interoperability of current MB software moti-
vated the development of our domain model. The conse-
quences of our approach for interoperability are outlined
in this section.

In "Motivation" we demonstrated that a shared domain
model is a potent means of achieving interoperability.
This does not mean that the interacting systems must use
the same software implementation. It is sufficient that
they use the same domain model. The presented mode-
ling approach provides the flexibility and strength
required to develop a widely used domain model for lin-
ear biological macromolecules. Systems using this
domain model are able to exchange data simply and accu-
rately, thus supporting interoperability on a new level.

The use of meta data in information systems is known to
support interoperability [31]. A shared domain under-
standing is usually not given in communication between
systems with different domain models. A mapping that
transforms the data of one system into a form understand-
able by the other system is necessary. The development of
this mapping is usually a complicated process and often
associated with loss of information (see "Motivation").
And it is important that this mapping does not modify the
semantics of exchanged data.

The section "Consequences for the structure of software
components" describes how data processing components
can use type attributes to validate their input data. This kind of
validation signifies a shift from type-based communication
to content-based communication. Type-based communica-
tion only considers data types specified by method signa-
tures to ensure correct communication. Content-based
communication considers not only the data type, but also
the semantics of data by utilizing meta data like the type
attribute. For example, content-based communication can
distinguish between a float value describing a percent value
and one describing a temperature value. The presented
approach allows systems to communicate in type-based and
content-based manner. This achieves greater flexibility in the
mapping development and leads to better interoperability.

Validation of the domain model
Our domain model must be able to include the relevant
concepts of the domain. To validate this, we successfully
proved that the data structures of the EMBL standard [10]
can be mapped into our model, and developed an accord-
ing mapping. EMBL database entries were handled as
molecules and EMBL features were treated as molecule
segments. Other EMBL line codes were mapped to proper-
ties and annotations. Qualifiers of EMBL features were
handled mostly as annotations for segments (EMBL fea-
tures). We verified this mapping by implementing a parser
for EMBL files in our MCK, which will be described next.

We demonstrated the feasibility of systems based on our
domain model with a framework for linear biological
macromolecules. It is called Molecule Computation Kit
(MCK) and is available at http://mck.etisvr.fh-stral
sund.de.
Page 12 of 16
(page number not for citation purposes)

http://mck.etisvr.fh-stralsund.de
http://mck.etisvr.fh-stralsund.de

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
Generic models like our domain model do not provide
type safety by themselves. However, type safety provides
strong type checks at compilation time and many errors
can be detected early.

In order to compensate for missing type safety, we use
runtime type checks against the type attributes in the MCK.
To make these runtime type checks transparent and
decrease complexity, we implemented the property model
in a set of service classes. They manage properties and per-
form type checks.

In order to guarantee that annotations do not have further
annotations (see "Modeling properties of concrete con-
cepts"), we distinguished two different kinds of properties
and introduced corresponding classes. We named them
Feature, which can be annotated, and Annotation,
which can not have further annotations. All typed classes
of the MCK use the service classes by inheritance.

Furthermore, we implemented an XML-based storage
component. It is based on the structure of the operational
model and handles all kinds of molecules, segments, and
relations between molecules. It utilizes the formal
description of concepts provided by the type attributes.
Generic readers and writers are assigned to data types.
Annotations and Features of stored objects are han-
dled by these readers and writers according to the data
type specified by the PropertyType. Therefore, the stor-
age component does not have to be changed when new
knowledge model elements are defined. Due to its generic
implementation, the storage component can work with
different knowledge model versions.

Similar work
Our domain model uses solutions from the composite
design pattern "Dynamic Object Model" [19,20], which
has been successfully applied in different domains. The
developed model meets the special requirements of MB
by adapting the pattern. The typed classes and their type
attributes are similar to the "Type Object" pattern [21]. The
property model applies the "Typed Dynamic Property"
pattern [23], and the model for associations uses ideas
described as "Relationship Type Objects" in [19].

The main difference of our approach compared to
"Dynamic Object Model" is the explicit distinction
between operational and knowledge model and the
explicit description of the knowledge model structures by
the meta model of the knowledge model. The informa-
tion processing model is strictly separated from the
knowledge representation. This separation is also
intended by the "Archetype" modeling approach of Beale
[12] and the "Knowledge Level" described by Fowler [22].
Beale proposes the proprietary archetype definition lan-
guage (ADL) to specify the knowledge model. The ADL

has a higher expressiveness than the currently used knowl-
edge model description. However, the ADL has not yet
been broadly applied. In contrast, we use well-known OO
technology, which we are going to combine with ontolo-
gies to derive the knowledge model from them (see "Use
of ontologies as the knowledge model"). By this means,
the knowledge model would get significantly greater
expressiveness, and well-known technologies would be
used.

Jones and Paton analyzed and described modeling con-
structs to achieve extensibility in data formats for func-
tional genomics [13]. They described how different
modeling constructs support frequently performed tasks,
mainly in data analysis. Although they did not focus on
domain models, some of the described constructs are suit-
able for domain modeling and were adapted in our
approach.

Our property model extends the Name-Value-Type triples
(NVT) described in [13] by a description of data types and
cardinality. This extension supports the "reasonable"
usage of NVTs as demanded in [13] and increases seman-
tic expressiveness.

In [13], inheritance was also described as a means to
achieve extensibility. However, we do not use inheritance
for extension on the knowledge level. Inheritance is only
used on a more technical level, e.g., to define extension
points for generically implemented or data processing
components. Inheritance is not used to represent "is-a"
relations between domain concepts. This kind of knowl-
edge representation is too inflexible for MB domain mod-
els (see section "Motivation"). Furthermore, inheritance
often causes misunderstandings between domain experts
and software engineers. Domain experts often think of "is-
a" relations as restrictions, e.g., a cDNA is a DNA without
introns. In contrast, commonly used OO programming
languages and the UML interpret "is-a" relations described
by inheritance as an extension by attributes, methods, or
associations.

Ontologies provide a stronger way to describe relations
between domain concepts. Not only "is-a" relations, but
also "has-a" relations and even other relation types can be
described by ontologies. Jones and Paton also described
ontologies as a suitable means to achieve extensibility in
[13]. We share this opinion, and will derive the knowl-
edge model from ontologies in the future (see the next
section).

Use of ontologies as the knowledge model
Motivation for the use of ontologies
In MCK we currently identify concepts in the knowledge
model by simple name attributes of the type definition
classes. This does not allow the expression of semantic
Page 13 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
relations such as "is-a" relations between general and spe-
cialized concepts.

The usage of ontologies is promising to cope with this
problem. Ontologies provide a formal description of
domain concepts and of relations between them, as "is-a"
and "has-a" relations. "Reasoners" (components of ontol-
ogy software packages) can use this description to deter-
mine semantic associations like "a snoRNA is-a ncRNA."
There is an active community for bio-ontologies [32-34],
and ontologies have taken an important place in bioinfor-
matics [33,35]. Their semantic capabilities were applied in
several fields, such as data exchange, information integra-
tion, search and query of heterogeneous data sources, and
computer reasoning [36].

An adoption of ontologies will help to acquire a represen-
tation of "is-a" relations between domain concepts
[13,37]. We have developed a strategy to derive the knowl-
edge model from ontologies. However, a full description
of this strategy would be beyond the scope of this paper
and will be the topic of an upcoming publication. There-
fore, we provide a sketch of our strategy in the next sec-
tion.

Strategy to derive the knowledge model from ontologies
The essential idea to derive the knowledge model from
ontologies is to use the concept identifier of ontological
concepts as the name attribute value of type definition
classes. A mapping between ontological key concepts and
type definition classes provides entry points into the ontol-
ogy. "Is-a" relations in the ontology are used for naviga-
tion from entry points to ontological child concepts. So,
one can recursively derive the descriptions of concrete
concepts for the knowledge model. Properties of ontolog-
ical concepts and "has-a" relations can be used to derive
property sets of the concepts.

An example illustrates the strategy. It uses the Sequence
Ontology, Version 2.3 [34,38] and applies the notation
"term-ID = term name" to reference ontology terms: The
term "SO:0000110 = sequence_feature" is identified as a
key concept in the ontology and is mapped to the class
SegmentType. This term serves as an entry point, and
according to this term, an instance of SegmentType is
created and inserted into the knowledge model. The con-
cept id "SO:0000110" is used as the name attribute for the
new instance.

All ontology terms with a direct or indirect "is-a" relation
to the term "SO:0000110 = sequence_feature" are
searched by reasoning. Every term contained in the result
forces to insert a corresponding instance of Segment
Type into the knowledge model. For example, the term
"SO:0000001 = region" has a direct "is-a" relation to

"SO:0000110 = sequence_feature" and is inserted into the
knowledge model. The term "SO:0000833 =
transcript_region" has an indirect "is-a" relation to
"SO:0000110 = sequence_feature". This means, there is a
path from "SO:0000110 = sequence_feature" over
"SO:0000001 = region" to "SO:0000833 =
transcript_region". Therefore, "SO:0000833 =
transcript_region" is inserted as a SegmentType into the
knowledge model.

This strategy permits the derivation of the knowledge
model from ontologies, and "is-a" relations (but also
other relations) can now be expressed in the knowledge
model by using reasoning.

Current usage of ontologies and their relevance for deriving the
knowledge model
Ontologies are used extensively in current MB software
and our approach can benefit from experiences made
there. This section provides a short overview of current
ontology usage, relevant to our approach.

The TAMBIS project [39] is an example for ontology usage
to mediate between different domain models. A mediator
component and several database wrappers use the TAM-
BIS ontology to provide transparent access to heterogene-
ous databases. The TAMBIS strategy is to perform a
mapping between the terms of the heterogeneous data-
bases and the TAMBIS ontology terms. TAMBIS usage may
be convenient for the user. However, due to continuous
database development, the wrapper maintenance will be
very labor intensive. On the other hand, the TAMBIS
ontology proves the possibility of a comprehensive
domain ontology.

Another approach is to integrate ontologies into data
models, e.g., FuGE [40] and MAGE-OM [41]. In both
models, classes, representing domain objects, use associa-
tions to the class OntologyTerm, that represents ontol-
ogy terms. For example, to specify the experimental
equipment (e.g., a SOLEXA sequencer) more precisely, the
FuGE model uses the association "equipmentModel"
between the Equipment and OntologyTerm classes to
specify the equipment product name. The approach
allows the flexible integration of ontological terms into
the models. Both models use this mechanism to specify
domain entity types or generic properties. At first glance,
this is similar to the type attributes and generic properties
presented here. However, the models do not constrain the
set of allowed properties. Our approach for deriving the
knowledge model from ontologies is a further develop-
ment of the FuGE and MAGE-OM approach.

Another approach to utilize ontologies in domain mode-
ling is to derive a class model from an ontology [42]. The
Page 14 of 16
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
approach defines transformation rules, which, for exam-
ple, map concepts to classes and relations to associations.
These rules allow the automatic conversion of ontologies
into object-oriented models. However, a static class
model is generated. Such a model is too inflexible to serve
as a MB domain model. Changes in the ontology would
require new transformations and result in new domain
models. In contrast, our approach creates a dynamic rep-
resentation of ontology concepts; it is a similar approach
but enhances the flexibility significantly.

Outlook and current work
Integration of data processing components
Another aspect of our current investigation are extension
points that allow the integration of extended data process-
ing components. These components should be seen as
algorithms, formal described by type attributes. The
description includes the I/O ports and configuration
parameters of the algorithms, see section "Consequences
for the structure of software components." This descrip-
tion provides enhanced capabilities in using data process-
ing components. For example, the description of I/O ports
allows an easy and semantically correct combination of
processing components. Together with the formal descrip-
tion of exchanged data, one can ensure semantic compat-
ibility. In this way, users will be able to join data
processing components safely and create their own com-
puting pipelines.

Conclusion
Our aim was the development of a domain model for lin-
ear biological macromolecules that can easily integrate
new or modified domain concepts and nevertheless pro-
vide a stable basis for implementation models. We
achieved this through the strict separation of two model
parts, the operational model and the knowledge model.
These parts are connected by the meta model of the
knowledge model to the whole system model.

We validated our model against the EMBL standard and
by implementing an MB framework (MCK) whose data
structures are based on the model. We demonstrated that
our model is able to integrate new domain concepts with-
out changes to the operational model and therefore pro-
vides a stable interface for software programs. General use
of the design pattern "Dynamic Object Model" and its
related patterns is the key to creating changeable, high-
quality software solutions for MB.

In the future, an integration of domain-specific ontologies
will enrich the model and the modeling approach pre-
sented here even further; for example, in the form of
enhanced expressiveness and automatic generation of
knowledge models.

The modeling approach allows the development of infor-
mation systems for MB that can accommodate changes in
the domain in a fast and flexible manner. This approach
also provides the expressiveness and flexibility that is
needed to develop a widely used domain model of MB,
one which allows a shift to a global view of the domain
and supports interoperability on a new level.

Availability and requirements
Our models and the MCK are available at http://
mck.etisvr.fh-stralsund.de. MCK requires Java Software
Development Kit, version 1.6 or higher, and Eclipse 3.4
http://www.eclipse.org.

Authors' contributions
NB developed the modeling approach and drafted the
manuscript. GW participated in developing the modeling
approach and revised the manuscript. All authors read
and approved the final manuscript.

Acknowledgements
We thank the University of Applied Sciences Stralsund for supporting and
funding our work, and Anika Oellrich (now EBI, Hinxton, UK), Peter Lutz,
and Ronald Stübs for their great work in helping to design and implement
MCK. We are pleased to acknowledge the support of the Division of
Genome Organization & Function (BQ24) of Bioquant Heidelberg. Our
understanding of molecular biology has benefited from interactions with
Karsten Rippe and his group. We thank Jan Krüger and Sven Hartmeier
from Bielefeld University for helpful discussions on our model. Further-
more, we thank Peter Forbrig from Rostock University for important sug-
gestions, discussions, and support.

References
1. Smith A, Xuan Z, Zhang M: Using quality scores and longer

reads improves accuracy of Solexa read mapping. BMC Bioin-
formatics 2008, 9:128.

2. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide
alignment program. Bioinformatics 2008, 24:713-714.

3. Maq: Mapping and Assembly with Qualities [http://
maq.sourceforge.net]

4. Albert I, Wachi S, Jiang C, Pugh BF: GeneTrack – a genomic data
processing and visualization framework. Bioinformatics 2008,
24:1305-1306.

5. Romano P: Automation of in-silico data analysis processes
through workflow management systems. Briefings in Bioinfor-
matics 2008, 9:57-68.

6. Stein L: Creating a bioinformatics nation – A web-services
model will allow biological data to be fully exploited. Nature
2002, 417:119-120.

7. Galperin MY: The Molecular Biology Database Collection:
2006 update. Nucleic Acids Research 2006, 34:D3-5.

8. Galperin MY: The Molecular Biology Database Collection:
2007 update. Nucleic Acids Research 2007, 35:D3-D4.

9. Galperin MY: The molecular biology database collection: 2008
update. Nucleic Acids Research 2008, 36:D2-D4.

10. Cochrane G, Akhtar R, Aldebert P, Althorpe N, Baldwin A, Bates K,
Bhattacharyya S, Bonfield J, Bower L, Browne P, Castro M, Cox T,
Demiralp F, Eberhardt R, Faruque N, Hoad G, Jang M, Kulikova T,
Labarga A, Leinonen R, Leonard S, Lin Q, Lopez R, Lorenc D, McWil-
liam H, Mukherjee G, Nardone F, Plaister S, Robinson S, Sobhany S,
Vaughan R, Wu D, Zhu W, Apweiler R, Hubbard T, Birney E: Prior-
ities for nucleotide trace, sequence and annotation data cap-
ture at the Ensembl Trace Archive and the EMBL
Nucleotide Sequence Database. Nucl Acids Res 2008, 36:D5-12.
Page 15 of 16
(page number not for citation purposes)

http://mck.etisvr.fh-stralsund.de
http://mck.etisvr.fh-stralsund.de
http://www.eclipse.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18307793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18307793
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18227114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18227114
http://maq.sourceforge.net
http://maq.sourceforge.net
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18388141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18388141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18056132
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381871
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17148484
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18025043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18025043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18039715

BMC Bioinformatics 2009, 10:97 http://www.biomedcentral.com/1471-2105/10/97
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

11. The DDBJ/EMBL/GenBank Feature Table: Definition Ver-
sion 7 [ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/FTv7.htm]

12. Beale T: Archetypes: Constraint-based domain models for
future-proof information systems. OOPSLA; 4–8 November 2002;
Seattle 2002:16-32.

13. Jones AR, Paton NW: An analysis of extensible modelling for
functional genomics data. Bmc Bioinformatics 2005, 6:235.

14. Lethbridge TC, Laganiere R: Object-Oriented Software Engineering 2nd
edition. Glasgow: McGraw-Hill Education; 2005.

15. Booch G, Rumbaugh J, Jacobson I: The Unified Modeling Language user
guide Reading: Addison Wesley Longman Publishing Co., Inc; 1999.

16. Jacobson I, Christerson M, Jonsson P, Övergaard G: Object-oriented
software engineering: a use case driven approach Workingham: Addison-
Wesley; 1992.

17. Sommerville I: Software Engineering 8th edition. Boston, MA: Addison-
Wesley Longman Publishing Co., Inc; 2006.

18. Larman C: Applying UML and Patterns 3rd edition. Upper Saddle River:
Prentice Hall; 2004.

19. Riehle D, Tilman M, Johnson R: Dynamic Object Model. In Pattern
Languages of Program Design 5 Edited by: Manolescu D, Völter M.
Noble J: Addison-Wesley; 2005:3-24.

20. Yoder JW, Balaguer F, Johnson R: Architecture and design of
adaptive object-models. SIGPLAN Not 2001, 36:50-60.

21. Johnson R, Woolf B: Type object. In Pattern languages of program
design 3 Addison-Wesley Longman Publishing Co., Inc; 1997:47-65.

22. Fowler M: Analysis patterns: reusable objects models Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc; 1997.

23. Dealing with Properties [http://www.martinfowler.com/apsupp/
properties.pdf]

24. Meyer B: Object-oriented software construction 2nd edition. Upper Sad-
dle River: Prentice-Hall, Inc; 1997.

25. Unified Modeling Language: Superstructure, version 2.0
[http://www.omg.org/docs/formal/05-07-04.pdf]

26. Meyer B: On To Components. Computer 1999, 32:139-140.
27. Yoder JW, Johnson R: The Adaptive Object-Model Architec-

tural Style. 3rd IEEE/IFIP Conference on Software Architecture 2002.
28. Ambler S: Agile Database Techniques: Effective Strategies for the Agile

Software Developer New York: John Wiley & Sons, Inc; 2003.
29. Bowers S, Ludascher B: Actor-oriented design of scientific

workflows. Conceptual Modeling – Er 2005; 24–28 October 2005
2005:369-384.

30. Bowers S, Ludascher B: Towards automatic generation of
semantic types in scientific workflows. Web Information Systems
Engineering – Wise 2005 Workshops, Proceedings; 20–22 November
2005 2005:207-216.

31. Sciore E, Siegel M, Rosenthal A: Using semantic values to facili-
tate interoperability among heterogeneous information sys-
tems. ACM Trans Database Syst 1994, 19:254-290.

32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene Ontology: tool for the unification
of biology. Nature Genetics 2000, 25:25-29.

33. Bodenreider O, Stevens R: Bio-ontologies: current trends and
future directions. Brief Bioinform 2006, 7:256-274.

34. Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ash-
burner M: The Sequence Ontology: a tool for the unification
of genome annotations. Genome Biology 2005, 6:.

35. Stevens R, Wroe C, Lord PW, Goble CA: Ontologies in Bioinfor-
matics. In Handbook on Ontologie Springer; 2004:635-658.

36. Rubin DL, Shah NH, Noy NF: Biomedical ontologies: a func-
tional perspective. Briefings in Bioinformatics 2008, 9:75-90.

37. Baker PG, Goble CA, Bechhofer S, Paton NW, Stevens R, Brass A:
An ontology for bioinformatics applications. Bioinformatics
1999, 15:510-520.

38. Sequence Ontology release 2.3 [http://downloads.source
forge.net/song/so_2_3.obo]

39. Stevens R, Baker P, Bechhofer S, Ng G, Jacoby A, Paton NW, Goble
CA, Brass A: TAMBIS: Transparent Access to Multiple Bioin-
formatics Information Sources. Bioinformatics 2000, 16:184-186.

40. Jones AR, Miller M, Aebersold R, Apweiler R, Ball CA, Brazma A,
DeGreef J, Hardy N, Hermjakob H, Hubbard SJ, Hussey P, Igra M,
Jenkins H, Julian RK, Laursen K, Oliver SG, Paton NW, Sansone SA,
Sarkans U, Stoeckert CJ, Taylor CF, Whetzel PL, White JA, Spellman
P, Pizarro A: The Functional Genomics Experiment model

(FuGE): an extensible framework for standards in functional
genomics. Nature Biotechnology 2007, 25:1127-1133.

41. Spellman P, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bern-
hart D, Sherlock G, Ball C, Lepage M, Swiatek M, Marks WL, Gon-
calves J, Markel S, Iordan D, Shojatalab M, Pizarro A, White J, Hubley
R, Deutsch E, Senger M, Aronow B, Robinson A, Bassett D, Stoeckert
C, Brazma A: Design and implementation of microarray gene
expression markup language (MAGE-ML). Genome Biology
2002, 3:research0046.0041-research0046.0049.

42. Falbo RdA, Guizzardi G, Durate KC: An ontological approach to
domain engineering. In Proceedings of the 14th international confer-
ence on Software engineering and knowledge engineering Ischia, Italy:
ACM Press; 2002.
Page 16 of 16
(page number not for citation purposes)

ftp://ftp.ebi.ac.uk/pub/databases/embl/doc/FTv7.htm
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16188029
http://www.martinfowler.com/apsupp/properties.pdf
http://www.martinfowler.com/apsupp/properties.pdf
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16899495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892872
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18077472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383475
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383475
http://downloads.sourceforge.net/song/so_2_3.obo
http://downloads.sourceforge.net/song/so_2_3.obo
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10842744
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17921998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17921998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17921998
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Motivation

	Results
	Approach
	Overview
	Properties of knowledge model concepts
	Associations between concrete concepts

	Structure of the model
	Modeling linear biological macromolecules
	Modeling special regions in linear macromolecules
	Modeling properties of concrete concepts
	Overview of the operational model
	Overview of the meta model

	Discussion
	Improvements due to the modeling approach
	Consequences for design and software development
	Consequences for software development
	Consequences for the structure of software components
	Consequences for the interaction of software components

	Effects of changing knowledge
	Effects on interoperability
	Validation of the domain model
	Similar work
	Use of ontologies as the knowledge model
	Motivation for the use of ontologies
	Strategy to derive the knowledge model from ontologies
	Current usage of ontologies and their relevance for deriving the knowledge model

	Outlook and current work
	Integration of data processing components

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References

