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Abstract: The large yellow croaker is one of the most economically important fish in Zhoushan,
Zhejiang Province, and is well known for its high protein and fat contents, fresh and tender meat,
and soft taste. However, the mechanisms involved in its flavor changes during storage have yet to be
revealed, although lipid oxidation has been considered to be one important process in determining
such changes. Thus, to explore the changes in the flavor of large yellow croaker fish meat during
different storage periods, the main physical and chemical characteristics of the fish meat, including
the acid value, peroxide value, p-anisidine value, conjugated diene value, and identities of the various
flavor substances, were investigated and analyzed by multivariable methods, including headspace
gas chromatography–ion mobility spectrometry (GC-IMS) and principal component analysis (PCA).
It was found that after 60 d storage, the types and contents of the aldehyde and ketone aroma
components increased significantly, while after 120 d, the contents of ketones (2-butanone), alcohols
(1-propanethiol), and aldehydes (n-nonanal) decreased significantly. More specifically, aldehyde
components dominated over ketones and lipids, while the n-nonanal content showed a downward
trend during storage, and the 3-methylbutanol (trimer), 3-methylbutanol (dimer, D), 3-pentanone (D),
and 3-pentanone (monomer) contents increased, whereas these compounds were identified as the key
components affecting the fish meat flavor. Furthermore, after 120 d storage, the number of different
flavor components reached its highest value, thereby confirming that the storage time influences the
flavor of large yellow croaker fish. In this context, it should be noted that many of these compounds
form through the Maillard reaction to accelerate the deterioration of fish meat. It was also found that
after storage for 120 d, the physical indices of large yellow croaker meat showed significant changes,
and its physicochemical properties varied. These results therefore demonstrate that a combination
of GC-IMS and PCA can be used to identify the differences in flavor components present in fish
meat during storage. Our study provides useful knowledge for understanding the different flavors
associated with fish meat products during and following storage.
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1. Introduction

The large yellow croaker (Larimichthys crocea) is a prized commercial fish in China and
is considered one of the traditional “four major marine products.” This fish is distributed
over three geographical locations in China, namely in the East China Sea (the northern part
of the Yellow Sea including Lu Yanyu, Yushuyang, Lushan fishery, and other waters), the
Guangdong group (mainly in the Taiwan Strait), and the western group (the South China
Sea between the Qiongzhou Straight and the mouth of the Pearl River). The meat of the
large yellow croaker is nutritious and contains a variety of unsaturated fatty acids and
amino acids, its texture is delicate and crisp, and its taste is delicious [1–3]. As a result, this
fish is a popular seafood among consumers.

In terms of the analyses of flavor compounds in such foods, current analytical tech-
niques, such as gas chromatography (GC) and GC-mass spectrometry (MS), require solid-
phase microextraction (SPME) and/or post-treatments [4,5]. By contrast, headspace-gas
chromatography–ion mobility spectrometry (HS-GC-IMS) requires no pretreatment, as
the solid, liquid, or headspace gas samples are injected directly [6,7]. This method also
displays a particularly high sensitivity (at the ppb level) [8,9] and fast detection [10]. There-
fore, GC-IMS is promising for identifying product varieties, carrying out quality control,
monitoring product freshness, and estimating product shelf lives [11–13]. Previously, HS-
GC-IMS and HS-SPME-GC-MS have been used to reveal the fingerprints and changes in
the aroma of soybeans during fermentation, wherein 115 volatile organic compounds were
successfully identified. In addition, through the fingerprint analysis of olive oil by GC-IMS,
39 volatile organic compounds were found to change significantly during fermentation,
thereby confirming that IMS can identify different food flavor components [14]. It has also
been suggested that GC-IMS could be employed to examine the changes in lipid flavor
compounds during the processing of meat, and it was found that the volatile organic com-
pounds (alcohols, aldehydes, ketones, heterocyclic compounds, aromatic hydrocarbons,
and esters) present in different meat products can be identified through fingerprinting by
such techniques [15–17]. However, few reports have been published on the organic volatile
fingerprints of large yellow croaker meat after different storage periods [18].

Thus, we herein report the use of GC-IMS to identify changes in the volatile flavor
substances of large yellow croaker meat during its oxidation under storage. By measuring
the acid value, the peroxide value, the p-anisidine value, and the conjugated diene value
of the fish meat, its oxidative deterioration is evaluated, and the fingerprint of volatile
flavor compounds is established. Ultimately, we aim to provide information to permit
exploration of the changes in volatile flavor substances in large yellow croaker meat during
storage for different periods of time and to provide theoretical support for its quality
control during storage.

2. Materials and Methods
2.1. Fish Samples

The large yellow croaker samples used in this experiment were provided by the Ocean
Family Fishery (Zhoushan Xincheng, Zhejiang, China) and were transported to the Seafood
Health Risk Factors Laboratory at Zhejiang Ocean University later. The fish samples
had a body length of 19.40–24.00 cm and a weight range of 270.50–320.70 g. All samples
were stored at −18 ◦C for 2 d after capture (the minimum time required to reach land).
The yellow croaker fish selected for the purpose of this study originated from Zhoushan
(Zhejiang), in the Zhoushan Islands. The dorsal and upper sides of the fish are yellowish
brown, the lower and ventral sides are golden yellow, and the head is large. This fish
is rich in proteins, trace elements, and vitamins, which are important in the context of
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human nutrition. In addition, the salt-soluble protein content can reach 11.90 g/100 g,
the water-soluble protein content can reach 14.27 g/100 g, the water content can reach
61.85 g/100 g, and the ash content can reach 0.80 g/100 g.

2.2. Reagents and Chemicals

The following chemicals were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China): ethanol, petroleum ether, sodium thiosulfate, anhydrous sodium
carbonate, acetic acid, isooctane, n-hexane, trichloromethane, sodium sulfate, n-heptane,
potassium iodide, phenol, phenolphthalein, potassium hydroxide, tetrahydrofuran, and
alumina. All other reagents were of analytical grade and were commercially available.

2.3. Sample Processing

The fish samples were stored in a freezer at −18 ◦C (MDF-U53V, Sanyo, Japan) and
at a relative humidity of 60–75% for 0, 5, 10, 20, 30, 40, 60, 90, and 120 d. At the desired
time, the fish meat was cut and homogenized at 10,000 rpm for 20 s (FJ200-S, Hunan Li
Chen Instrument Technology Company, Changsha, China) to produce a slurry, as outlined
in Figure 1. To identify the volatile components present in the large yellow croaker fish
samples after different storage periods, GC-IMS (see Section 2.6.2) was used to analyze the
samples after 0, 60, 90, and 120 d.
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Figure 1. Schematic diagram of the methods employed for analysis of large yellow croaker fish meat.

2.4. Determination of the Lipid Profiles

The official methods of the American Oil Chemists Society (AOCS) were used to
determine the acid values (AV) (Ca 5a-40), the peroxide values (POV) (Cd 8b-90), and
the p-anisidine values (p-AV) (Cd 18–90) of the various samples. Determination of the
conjugated diene value (CDV) was carried out using a modification of the technique, as
described below [19].

2.4.1. Acid Values

The AV can be used as an indicator of the degree of oil deterioration. To prepare
the phenolphthalein indicator required for this measurement, phenolphthalein (1.00 g)
was accurately weighed (AR224-CN, Electronic Balance, Orhaus Instruments (Shanghai)
Co., Ltd., Shanghai, China) and completely dissolved in 95% ethanol with ultrasonication.
After transferring to a 100 mL volumetric flask, the volume was made up to capacity with
95% ethanol. A standard solution of 0.01 mol/L potassium hydroxide was prepared by
dissolving potassium hydroxide (0.56 g) in deionized water (1000 mL). Fish meat samples
(5.00 g) subjected to different storage periods were homogenized (5000 rpm) and placed in a
100 mL conical flask. The hydrolysate was prepared by adding a mixture of petroleum ether
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and ethanol (2:1 v/v, 50 mL) and 2–3 drops of the phenolphthalein indicator. Subsequently,
the mixture was titrated with a 0.01 mol/L potassium hydroxide standard solution. The
AV (mg/g) was calculated according to Equation (1):

AV = (v × c × 56.1)/m (1)

where v is the volume of potassium hydroxide solution (mL), c is the concentration of
potassium hydroxide (mol/L), m is the quality of the meat sample (g), and 56.1 is the molar
mass (g/mol) of potassium hydroxide.

2.4.2. Peroxide Values

The fish meat sample was wiped with absorbent paper to remove water and water-
soluble impurities. The fish meat sample (5.00 g) was then added to a 250 mL Erlenmeyer
flask and a 3:2 (v/v) acetic acid–isooctane solution (5 mL) was added and swirled to mix
well. Subsequently, a saturated potassium iodide (KI) solution (0.5 mL) was added to the
sample and allowed to stand for exactly 1 min. After this time, distilled water (30 mL)
was added, and the mixture was swirled to mix well. The sample was then titrated with
a 0.005 N sodium thiosulfate solution until light yellow color appeared. Subsequently,
the starch indicator solution (0.50 mL, >95% purity) was titrated under agitation until the
solution turned colorless. A blank sample was also prepared without the addition of the
fish meat sample. The POV (meq/kg) was calculated according to Equation (2):

POV = (1000 × v × c)/m (2)

where v is the volume of sodium thiosulfate solution (mL), c is the concentration of the
sodium thiosulfate standard solution, and m is the mass of fish meat (g).

2.4.3. p-Anisidine Values

The fish meat sample was wiped with absorbent paper, and the p-anisidine solution
was prepared by adding p-anisidine (0.125 g) to glacial acetic acid (50 mL). A sample
(2.00 g) of the fish meat was then added to a 25 mL volumetric flask, and isooctane (25 mL)
was added prior to swirling to mix well. The absorbance (A0) of the resulting solution
was measured at 350 nm using a spectrophotometer (UV-2600, Tianjin, China). An aliquot
(5 mL) of the solution sample was then pipetted into a test tube, and the p-anisidine reagent
(1 mL) was added. After 10 min, the sample absorbance (A1) was measured at 350 nm. For
the blank sample, isooctane (5 mL) and the p-anisidine reagent (1 mL) were added to a
separate test tube. The dimensionless p-AV was calculated according to Equation (3):

p − AV = 25(1.2A1 − A0)/W (3)

where W is the weight of the fish meat (g), A1 is the absorbance of the fat solution after
reaction with the p-anisidine reagent, A0 is the absorbance of the fat solution, 25 is the
sample volume (25 mL), and 1.2 is the correction factor.

2.4.4. Conjugated Diene Values

The fish meat sample was weighed and placed in a small beaker. After the addition
of isooctane (5 mL) to dissolve the sample, the volume was adjusted to 50 mL using
an additional volume of isooctane. The optical absorption of the obtained solution was
then measured at 232 nm (UV-2600, Yerco Instrument Co., Ltd., Shenzhen, China) using
isooctane as the zero reference. The CDV was calculated according to Equation (4):

CDV= AqC × 1 (4)

where Aq is the absorbance of the sample at 232 nm, C is the concentration of the sample
(g/100 mL) (the solute is the fish meat and the solvent is isooctane), and 1 (cm) is the length
of the quartz cell.
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2.5. Aroma Detection at Different Points during Storage

For sample pretreatment, the fish meat (10.00 g) was sealed in a capped bottle and
allowed to stand for 30 min to allow the volatile compounds to equilibrate in the air.
An electronic nose (PEN3, Airsense, Berlin, Germany) was employed under previously
reported conditions (n = 3) [20]. The detection time was 200 s, the sensor cleaning time was
300–500 s, and the data acquisition time was 199–200 s. The various sensors are described
in Table S1.

2.6. Volatile Compound Analysis at Different Points during Storage
2.6.1. Sample Processing

After thawing at 4 ◦C in a refrigerator, the fish meat sample (5.00 g) was placed in
a 20 mL headspace bottle equipped with a magnetic screw seal and incubated 40 ◦C for
20 min. GC-IMS analysis was then carried out in triplicate for each sample.

2.6.2. Headspace Gas Chromatography–Ion Mobility Spectrometry (GC-IMS)

These analyses were performed on a FlavourSpec® GC-IMS system (G.A.S Company,
Berlin, Germany) equipped with a 490 micro gas chromatograph (Agilent, Palo Alto, CA,
USA), an autosampler (Solid-Phase Microextraction, 57330-U, Supelco, PA, USA), and a
headspace sampling unit (Supelco, PA, USA). The GC was equipped with an FS-SE-54-CB-1
capillary column (15 m × 0.53 mm) (Nicolet, PA, USA). The samples in the headspace
vials were incubated at 70 ◦C for 20 min, and after this time, a sample (500 µL) of the
headspace was injected automatically (80 ◦C, splitless mode) via a heated syringe at 50 ◦C.
The flow of the carrier gas was programmed as follows: 2 mL/min for 0–2 min, 30 mL/min
for 1–10 min, 100 mL/min for 10–20 min, and 130 mL/min for 20–45 min. The analytes
were eluted and separated at 40 ◦C, then ionized in the IMS ionization chamber by a 3H
ionization source (300 MBq activity) in the positive ion mode. The 9.8 cm drift tube was
operated at a constant voltage (5 kV) at 45 ◦C with a nitrogen flow of 150 mL/min. Each
spectrum was reported as an average of 12 scans. The syringe was automatically flushed
with a stream of nitrogen for 30 s before each analysis and 5 min after each analysis to
avoid cross contamination. The retention index (RI) of each compound was calculated
using n-ketones C4–C9 (Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China) as
external references and the calculations were performed by the automated mass spectral
deconvolution and identification system. The identification of volatile compounds was
performed by comparing the RIs and drift times, and the content of volatile compounds
was quantified based on the HS-GC-IMS peak intensity.

2.7. Data Processing

All measurements were carried out three times in parallel, and Origin software (Origin-
Lab Corporation, Northampton, MA, USA) was used for data analysis. The values are
reported as “mean ± standard deviation” and were analyzed using SPSS 24.0 software
(Chicago, IL, USA). The multi-comparison was obtained at p < 0.05. The structures of the
volatile compounds were identified based on the built-in IMS database. PCA was carried
out using the dynamic PCA plug-in program.

3. Results and Analysis
3.1. Effect of the Storage Time on Lipid Oxidation in Large Yellow Croaker

Four indicators (i.e., the AV, POV, p-AV, and CDV) were used to assess the degree
of oxidation in the meat of large yellow croaker during storage. As shown in Figure 2,
all four values increased significantly during storage (p < 0.05). In the fresh fish (0 d),
the AV, POV, p-AV, and CDV were 2.02 ± 0.12 mg/g, 4.51 ± 0.51 meq/kg, 0.40 ± 0.04,
and 12.43 ± 0.56, respectively, thereby indicating that the fresh fish meat contains a rich
variety of lipid products [21]. After 90 d, these values increased to 5.02 ± 0.11 mg/g,
18.55 ± 0.64 meq/kg, 1.47 ± 0.04, and 24.59 ± 0.78, respectively. In particular, the POV
increased almost fourfold during this storage period, likely due to hydrogen peroxide being
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the main product of fish lipid oxidation [22,23]. As the storage period was lengthened, fat
oxidation in the fish meat led to a further increase in the POV. More specifically, after 120 d,
the AV, POV, p-AV, and CDV were 7.62 ± 0.14 mg/g, 23.67 ± 0.55 meq/kg, 2.33 ± 0.03, and
33.57 ± 0.89, respectively. This observed increase in the AV is also consistent with previous
studies [24,25] and is closely related to the free fatty acid content [26,27]. Previously, it
was reported that the oxidation of fish meat during storage causes the breakage of ester
bonds, which releases a large amount of free fatty acids and increases the AV [28]. In terms
of the p-AV, this value represents the content of secondary products in the fish meat,
including aldehydes, ketone alcohols, and acids [29]. It was found that after 120 d, the
p-AV approached the POV, thereby confirming an increased content of oxidation products
in the fish sample [30]. In this context, it has been reported that p-AV increases with time
due to the decomposition of secondary oxidation products [31]. As outlined in Table 1,
the hexanal (M), hexanal (D), and benzaldehyde contents increased significantly from
453.89, 237.69, and 232.42 mg at day 0 to 765.02, 316.81, and 400.98 mg, respectively, after
120 d. Similarly, the contents of ketones 3-octanone, 2-heptanone (M), and 2-heptanone (D)
increased from 197.55, 226, and 33.98, at day 0 to 549.19, 770.82, and 129.45, respectively,
after 120 d. These observations suggest that after storage for 120 d, the fish meat had
undergone a significant degree of spoiling, which would likely have a detrimental effect
on its flavor. It should be noted here that the letters M, D, and T in parentheses after a
substance name represent the monomer, dimer, and trimer of the substance, respectively.
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Table 1. Qualitative analysis of the flavor compounds present in large yellow croaker meat after different storage periods.

No. Compound CAS# Molecule
Formula

MW RI1 RT2 DT3
Storage Period

0 d 60 d 90 d 120 d

1 3-Octanone C106683 C8H16O 128.2 992.4 540.9 1.31 197.55 232.44 439.69 549.19
2 2-Heptanone (M) C110430 C7H14O 114.2 892 367.6 1.256 226 367.96 572.06 770.82
3 2-Heptanone (D) C110430 C7H14O 114.2 889.2 364 1.625 33.98 46.23 99.86 129.45
4 3-Hydroxy-2-butanone (M) C513860 C4H8O2 88.1 716.1 192.3 1.068 1336.8 1350.1 1362.8 1376.56
5 3-Hydroxy-2-butanone (D) C513860 C4H8O2 88.1 715.8 192 1.326 884.81 914.77 953.59 987.56
6 3-Pentanone (M) C96220 C5H10O 86.1 696.6 178.5 1.108 260.51 339.22 389.51 518.62
7 3-Pentanone (D) C96220 C5H10O 86.1 694.1 176.8 1.351 1270.9 1472 1588.4 1631.99
8 2-Butanone C78933 C4H8O 72.1 590.9 129.7 1.057 624.73 561.24 483.93 321.34
9 1-Hexanol C111273 C6H14O 102.2 879.8 351.9 1.326 225.16 122.06 83.02 94.84

10 3-Methylbutanol (D) C123513 C5H12O 88.1 739.9 210.7 1.499 202.46 505.84 820 1088.71
11 1-Penten-3-ol C616251 C5H10O 86.1 690.1 174.1 0.944 226.6 248.48 305.92 339.2
12 1-Propanethiol C107039 C3H8S 76.2 633.3 147 1.36 109.48 82.32 50.17 47.2
13 3-Methylbutanol (T) C123513 C5H12O 88.1 738.8 209.8 1.788 56.03 67.77 97.83 126.9
14 Ethanol C64175 C2H6O 46.1 491.5 96.79 1.046 975.52 911.11 711.76 518.53
15 Hexanal (M) C66251 C6H12O 100.2 793 257.8 1.264 453.89 534.21 643.29 765.02
16 Hexanal (D) C66251 C6H12O 100.2 792.5 257.3 1.56 237.69 256.85 298.56 316.81
17 Benzaldehyde C100527 C7H6O 106.1 975.6 507 1.145 232.42 302.87 356.59 400.98
18 n-Nonanal C124196 C9H18O 142.2 1103 765.3 1.481 147.74 124.97 123.93 110
19 3-Methylbutanal (M) C590863 C5H10O 86.1 648.9 153.9 1.169 498.2 419.74 397.01 260.11
20 3-Methylbutanal (D) C590863 C5H10O 86.1 646.2 152.7 1.406 157.91 111.17 92.31 56.65
21 2-Methylbutanal (M) C96173 C5H10O 86.1 667.7 162.7 1.164 172.2 163.62 154.96 143.92
22 2-Methylbutanal (D) C96173 C5H10O 86.1 667.7 162.7 1.4 263.97 231.09 210.64 186.84
23 (E)-2-Pentenal (M) C1576870 C5H8O 84.1 747.8 217.2 1.104 146.57 132.75 129.54 116.53
24 2-Hexenal (M) C505577 C6H10O 98.1 853.6 320.4 1.179 166.87 156.54 146.83 136.59
25 Methylpropanal (M) C78842 C4H8O 72.1 568 121.3 1.113 317.71 289.15 254.57 229.72
26 Methylpropanal (D) C78842 C4H8O 72.1 570.3 122.1 1.282 214.97 201.43 198.34 187.5
27 Ethyl acetate (M) C141786 C4H8O2 88.1 609.6 137.1 1.094 184.81 143.91 100.19 58.11
28 Ethyl acetate (D) C141786 C4H8O2 88.1 611.6 137.9 1.336 120.57 109.78 82.49 53.92
29 Heptanal (M) C111717 C7H14O 114.2 902.5 382.7 1.347 55.08 51.23 46.75 39.04
30 (Z)-4-Heptenal C6728310 C7H12O 112.2 900.6 380.1 1.146 130.31 159.75 189.86 223.49
31 Trimethylamine C75503 C3H9N 59.1 496.6 98.26 1.148 1543.4 1665.65 1862.3 1950.94

Note: The retention times and ion migration times are listed together with the compound name, CAS number, molecular formula, molecular
weight (MW), reserved index (RI1), retention time (RT2), drift time (DT3), and response peaks after different storage periods.

3.2. Identification of Volatile Compounds in Large Yellow Croaker during Storage

To gain further insight into the volatile compounds present in large yellow croaker
after different storage periods, GC-IMS was employed to identify the compounds by
their retention times in the GC column and their ion migration times during IMS [32]. The
results are displayed in Figure 3, wherein a total of 31 peaks, including 8 ketones, 6 alcohols,
12 aldehydes, 2 esters, 2 alkanes, and 1 amine, can be observed. Some other additional
signals were also observed. As can be seen from Figure 3, dimers (D) and trimers (T) can
also form from monomeric species (M), such as in the cases of 2-heptanone, 3-hydroxy-
2-butanone, 3-pentanone, 3-methylbutanol, hexanal, 2-methylbutanal, methylpropanal,
and ethyl acetate, which were observed as both monomers (M) and dimers (D), while
3-methylbutanol was also observed as a trimer (T). The analyzed large yellow croaker meat
was, therefore, determined to contain the following flavor components: 8 ketones, namely
3-octanone, 2-heptanone (M), 2-heptanone (D), 3-hydroxy-2-butanone (M), 3-hydroxy-
2-butanone (D), 3-pentanone (M), 3-pentanone (D), 2-butanone; 6 alcohols, namely 1-
hexanol, 3-methylbutanol (D), 1-penten-3-ol, 1-propanethiol, 3-methylbutanol (T), and
ethanol; 14 aldehydes, namely hexanal (M), hexanal (D), benzaldehyde, n-nonanal, 3-
methylbutanal (M), 3-methylbutanal (D), 2-methylbutanal (M), 2-methylbutanal (D), (E)-2-
pentenal (M), 2-hexenal (M), methylpropanal (M), methylpropanal (D), heptanal (M), and
(Z)-4-heptenal; 2 esters, namely ethyl acetate (M) and ethyl acetate (D); and 1 amine, namely
trimethylamine. Therefore, when passing through the drift region, multiple signals can be
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observed for a single compound due to the formation of adducts between the analyzed
ions and neutral molecules.
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Figure 4 shows a plot of the signal strengths measured by the different sensors of the
electronic nose during evaluation of the fish meat samples. With a prolonged storage time,
the signals from the W3C, W6S, W2W, W3S, and W1C sensors became stronger, indicating
that the large yellow croaker meat accumulated aromatic compounds and hydrogen perox-
ide. In contrast, the signal related to the organic sulfide compound decreased between 0
and 90 d, and then rebounded again at 120 d. This resembles the observations reported by
Meng in terms of the formation of heterocyclic aromatic compounds and the associated
changes in flavor [33]. From the data measured by the W2W and W6S sensors, it is apparent
that the fish flavor is largely determined by organic sulfides and hydrides, while amines
play a smaller role [34].Foods 2021, 10, x FOR PEER REVIEW 10 of 17 
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Figure 4. Effect of the storage period on the volatile flavor compounds present in fish meat, as
measured using different sensors of an electronic nose. Note: W1C: aromatics; W5S: nitrogen oxides;
W3C: ammonia and aromatic components; W6S: hydride; W5C: olefins and aromatic molecules; W1S:
methane; W1W: sulfide; W2S: ethanol and some aromatics; W2W: organic sulfides: W3S: alkanes
and aliphatics.
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3.3. Topographic Map of the Volatile Components Present in Large Yellow Croaker at Different
Storage Times

To comprehensively explore the volatile compounds present in the fish meat at dif-
ferent storage times, a topographic map was obtained for the normalized GC-IMS data
(Figure 5), wherein the red vertical line indicates the reaction ion peak (RIP), and each
point on the right-hand side of the RIP represents a different volatile compound that is
present in the sample. As can be seen from the figure, intense signals were observed
between retention times of 100 and 300 s and drift times of 0.7 and 1.5 s. In the normalized
two-dimensional plots, red (blue) indicates an increase (decrease) in the volatile compound
concentration compared to the reference [35,36]. It has also been suggested that the drift
rate is related to the concentration of such compounds in the fish samples [37].
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3.4. Variations in the Volatile Flavor Compounds Present in Large Yellow Croaker after Different
Storage Periods

To further compare the volatile flavor compounds present in the fish samples after
different storage periods, all peaks in the 2D GC-IMS map were analyzed to establish
a fingerprint map (Figure 6). In this map, each row displays all signal peaks from the
same sample, while each column shows the signal peaks for the same volatile compounds
measured in triplicate for each storage time. More specifically, each heat map indicates the
content of the given volatile compound [38]. Such fingerprints provide a panoramic view
of all the volatile compounds present in the samples after different storage periods, and a
number of unidentified substances are also displayed (Arabic numerals 1–8) [39–41].
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Based on the data presented in Figures 4 and 6, it is apparent that the fish meat of
large yellow croaker contains different volatile organic compound fingerprints after the
various storage times. For example, compared with the samples stored for 60, 90, and
120 d, a greater aldehyde content was present in the initial sample (see Table 1), which is
consistent with the findings of Duan [42]. It should be noted here that aldehydes possess
a low flavor threshold in addition to a characteristic fat aroma at low concentrations [43].
In the fresh fish meat (i.e., at day 0), the key volatile organic compounds present (area A,
Figure 6) were methylpropanal (D), methylpropanal (M), hexanal (D), hexanal (M), ethanol,
2-hexenal (M), and 2-methylbutanal (D). Upon increasing the storage period to 60 d, the
flavor attributed to 1-hexanol was reduced and had essentially disappeared after 90 d.
This may be because oxidative deterioration of the meat proteins dissipated the 1-hexanol
flavor [44]. Furthermore, after storage for 60 d, the contributions from ethyl acetate (D),
ethyl acetate (M), 3-hydroxy-2-butanone (D), and 3-hydroxy-2-butanone (M) to the fish
flavor were significant, with 3-hydroxy-2-butanone (M) being the key component affecting
the fish meat flavor during this period (see Figure 6). This compound is known to mainly
originate from the oxidation of palmitic acid, stearic acid, and oleic acid [45]. Subsequently,
it was found that beyond 60 d of storage, the main flavor components of the large yellow
croaker meat were ethyl acetate (D) and ethyl acetate (M), which have a fat-like flavor.
However, the oxidation of such compounds produces a pungent smell, similar to that of
rotten eggs [46]. In addition, the contributions by the 3-methylbutyraldehyde (D) and
3-methylbutyraldehyde (M) components were more significant after 90 and 120 d, with
the highest content being reached after 120 d. It should be noted here that when humans
consume fish meat at this stage of oxidation, they will experience chest tightness, nausea,
vomiting, fatigue, and weakness, as previously reported [47]. Although aldehydes are
the most abundant compounds in pickled products, if their content is too high, a strong
pungent smell is produced along with a greasy and oily/waxy odor, and the consumption
of such compounds can be detrimental to human health. Our results, therefore, clearly
indicate that after 120 d storage, the spoilage of fish meat takes place, leading to increased
ketone and alcohol contents [48]. As described previously, short-chain aldehydes can
interact with protein aggregates to produce a fatty flavor [49]. After a period of storage,
putrefaction can take place, which can produce a rancid smell due to the production of
such volatile aldehydes during the microbial degradation of free cysteine and methionine
in the fish muscle [50]. Ketones also play a similar role in the flavor deterioration of large
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yellow croaker meat due to their increased production by lipid oxidation and microbial
degradation [51].

3.5. PCA of the Characteristic Flavor Compounds Present in Large Yellow Croaker

Finally, delving deeper into the GC-IMS and GC-MS results, we performed PCA based
on the fingerprint map of the volatile organic compounds (Figure 7). This method generates
principal components that are linear combinations of the input variables, and it is effective
for reducing the number of variables and removing abnormal data. According to the PCA
results, the accumulative variance contribution rate of PC-1 (61%) and PC-2 (26%) was 87%,
thereby indicating that it was facile to distinguish between the large yellow croaker meat
samples from different storage periods, as can be seen in the figure. As outlined in Table 1,
some volatile organic compounds (e.g., 3-hydroxy-2-butanone (M), 3-hydroxy-2-butanone
(D), 3-pentanone (D), ethanol, and trimethylamine) were more common prior to storage,
while others (i.e., 3-octanone, 2-heptanone (M), 3-pentanone (M), and 3-methylbutanol (D))
were present primarily beyond 60 d of storage, and some compounds (i.e., 3-pentanone
(D), benzaldehyde, (Z)-4-heptenal, and trimethylamine) dominated after 120 d. These
results are in agreement with the fingerprint map analysis presented in Figure 6. As shown
in the PCA plot of the volatiles identified by GC-MS (Figure 7), PC-1 had a remarkable
influence on the large yellow croaker meat samples over the various storage periods, and
the day 0 samples differed significantly from those at 60 d (p < 0.05). Indeed, this difference
increased further when the storage period was prolonged to 90 and 120 d. This gradual
change in the flavor components during storage is similar to previously reported findings
for salmon fillets [52]. Overall, our results indicate that the flavor characteristics of large
yellow croaker meat were successfully established using GC-IMS for the various storage
periods. In addition, the clustering of the triplicate data confirms the good reproducibility
of this measurement method. Thus, we were able to obtain an improved understanding of
lipid oxidation in the meat of large yellow croaker during frozen storage by quantitative
analysis of the volatile flavor compounds.
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4. Conclusions

To explore the changes in flavor of large yellow croaker fish meat during storage, the
main physical and chemical characteristics of the fish meat, including the acid value, the
peroxide value, the p-anisidine value, the conjugated diene value, and the identities of
the various flavor substances, were investigated and analyzed by multivariable methods,
including headspace gas chromatography–ion mobility spectrometry (GC-IMS) and princi-
pal component analysis (PCA). Significant changes were observed in the volatile organic
compounds present in the meat samples during storage for periods up to 120 d. A total of
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31 volatile compounds were identified by GC-IMS, including aldehydes, ketones, alcohols,
esters, and alkanes. Aldehydes accounted for the largest number of these 31 identified
species, followed by ketones and alcohols. The GC-IMS data were further used to construct
fingerprint maps to highlight the characteristic molecular species present at each stage
during storage, and the distinct fingerprint maps were corroborated by results from PCA
for the samples at 0, 60, 90, and 120 d. The techniques employed herein could, therefore, be
employed to improve quality control and inventory monitoring, as well as for analyzing
the flavor components present in other foodstuffs during storage. In order to ensure the
smooth progress of this research, our team is still working in relation to this project, I hope
you can look forward to our future work report.
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