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a b s t r a c t

Fatty Acid Desaturase 2 (FAD2), a key enzyme in the fatty acid biosynthesis pathway, is involved in the
desaturation and conversion of oleic acid to linoleic acid. Therefore, it plays a crucial role in oleic/linoleic
acid ratio and the quality of olive oil. DNA sequencing of 19 FAD2 genes from a set of olive oil varieties
revealed several single-nucleotide polymorphisms (SNPs) and highlighted associations between some of
the SNPs and saturated fatty acids contents. This was further confirmed by SNP-interaction and machine
learning approach. Haplotype diversity analysis led to the discovery of three highly polymorphic SNPs
and four haplotypes harboring differential oleic/linoleic acid ratios. Moreover, a combination of molecu-
lar modeling and docking experiments allowed a deeper and better understanding of the structure–func-
tion relationship of the FAD2 enzyme. Sequence patterns and variations involved in the regulation of the
FAD2 activity were also identified. Furthermore, S82C and H213N substitutions in OeFAD2 make the
Oueslati variety more interesting in terms of fatty acid profile and oleic acid level.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

One of the most ancient domesticated species, a native of the
middle east, highly popular and appreciated for its delicious drupe
and healthy fruit oil, Olea europaea L. is an emblematic evergreen
tree cultivated all over the Mediterranean basin [1]. The Food
and Agriculture Organization (FAO) had declared 2021 as the inter-
national year of fruits and vegetables, aiming to raise awareness
about balanced and nutritious food and a healthy diet [2,3]. Indeed,
unhealthy diets and malnutrition are among the top-ten risk fac-
tors for disease globally [3]. Food and diet are part of one’s culture
and identity, which change over time with a preference for a more
convenient lifestyle. However, the consumption of junk food con-
taining highly processed and degraded unhealthy vegetable oil is
increasing due to various reasons. Olive oil is considered a healthy
oil and its consumption is strongly recommended due to its several
benefits. Benefits of olive oil consumption include balanced growth
and development, better mental health, healthy heart, lower car-
diovascular diseases and cancer risks, lower diabetes and obesity
risks, and improved immunity.

Although olive oil is consumed worldwide, the Mediterranean
basin is its principal zone of production [4], mainly Spain, Greece,
Tunisia, and Italy, with respectively 1790, 327, 278, and 277 thou-
sand tons of Virgin Olive Oil (VOO) produced in 2018 [5]. The world
olive oil market size is expected to reach $4.79 Billion by 2025 [6].
Besides, olive oil price and demand depend on several factors,
mainly its quality and geographic origin [7]. Moreover, consumers’
choices are guided by the origin and category of the olive oil [8],
and the main worry of consumers is purity of the oil [9]. The qual-
ity of olive oil is determined mainly by its acidity, expressed as
oleic acid content. The Extra Virgin Olive Oil (EVOO) is considered
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as the best quality olive oil (<0.8 g/100 g) [10]. Consequently, the
level of acidity represents the main parameter of reference, and
oleic acid content is a crucial factor in determining the category
of olive oil.

The biosynthesis of fatty acids, particularly oleic acid, is a com-
plex pathway that spans several cellular compartments and where
different substrates, precursors, and enzymes intervene. Fatty acid
synthesis, as for oleic acid, starts with sugar as the backbone pre-
cursor [11]. The carbon comes from leaf through translocation of
photosynthates as well as the olive drupe itself since it is a photo-
synthetic organ [11]. The biosynthesis of fatty acids proceeds
through a series of enzymatic reactions, including several enzymes,
namely fatty-acid synthase, desaturase, transacylase, esterase,
transferase, and carboxylase [12]. Unfortunately, being complex,
this pathway has not been completely characterized yet, nor have
its individual enzymes revealed. Therefore, much research still
needs to be performed to fully understand the mechanism of fatty
acids biosynthesis in Olea europaea. Knowing the characteristics
and the specificities of these enzymes and their corresponding
genes is a pre-requisite for genetic improvement of olive oil qual-
ity. In particular, the Fatty Acid Desaturase 2 (FAD2) enzyme is
involved in the desaturation and conversion of oleic acid (C18:1)
to linoleic acid (C18:2). It therefore plays a key role in oleic/linoleic
acid ratio in olive oil [13,14].

Breeding for improved olive oil quality could be realized by
monitoring the oleic/linoleic acid ratio. Indeed, the development
of several oilseeds with decreased linoleic acid and/or increased
oleic acid contents has been achieved through FAD2 manipulation
using different biotechnological approaches [15–19]. The FAD2
gene family comprises several members, sometimes including iso-
forms, displaying distinct or similar patterns of expression, and
involved in fatty acid metabolism and stress response [20–22].
Recently, in Olea europaea subsp. europaea, two sequences of
microsomal FAD2 genes (OeFAD2-1 and OeFAD2-2) were character-
ized [23]. Given that OeFAD2-2 is more implicated and responsible
for oleic acid desaturation in the mesocarp [11,24–27], it would be
a pertinent candidate gene to focus on for genetic improvement of
olive oil quality.

Therefore, given that olive tree biodiversity constitutes the pri-
mary source for breeding programs aiming at improving the oil
quality [28], and since Tunisia comes after EU in terms of produc-
tion and exportation, with a rich and varied olive germplasm con-
stituted by hundreds of cultivars and varieties; our study focused
on the identification through gene sequencing, molecular charac-
terization, Single Nucleotide Polymorphism (SNP) discovery, dock-
ing studies and structure modeling of OeFAD2-2 in 19 Tunisian
olive varieties. Our findings are expected to provide a deeper
insight into the biochemistry and molecular basis of olive oil con-
stituents and quality. This, in turn, may contribute to the produc-
tion of olive oil with a higher nutritional value by increasing its
oleic/linoleic ratio.
2. Materials and methods

2.1. Plant material and olive oil extraction

A total of 19 olive tree varieties were chosen and used in this
study (Supplementary Table 1). They were selected from different
regions of Tunisia, from north to south. Two trees were considered
for each variety, and for which olive oil was obtained across the
steps of stoned olives grinding (2.5 Kg), followed by a mechanical
oil extraction. Therefore, olive oil was obtained following the stan-
dard procedure commonly used in olive mills, which includes a
milling step, followed by kneading step for 30 min at 25 �C, cen-
trifugation for 3 min at 2000g, and finally natural decantation.
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All samples were kept at 4 �C until fatty acid composition determi-
nation and DNA extraction.
2.2. Determination of fatty acid composition

The composition of fatty acids of olive oil samples was deter-
mined according to the analytical method and procedure recom-
mended by the European Union Commission Regulation 2568/91
[29]. As a prerequisite, fatty acids were converted into methyl
esters to make them suitable and detectable via CPG analysis. Fatty
acid methyl esters (FAMEs) were prepared through a reaction of
cold trans-esterification. FAMEs were obtained by mixing the olive
oil vigorously in hexane (0.2 g in 3 ml) with 0.4 ml of methanolic
solution of KOH (2 N), and then analyzed by gas chromatography
(Shimadzu Gas Chromatograph, Kyoto, Japan) equipped with a
flame ionization detector and a fused silica capillary column
(30 m length � 0.32 mm internal diameter � 0.25 lm film thick-
ness). 1 lL was used as the injection volume, and the nitrogen
was used as carrier gas with 1 ml/min flow rate. Both detection
and injection temperatures were set at 220 �C, whereas 180 �C
was the oven temperature. Based on their retention times, ten fatty
acids (C16:0, C16:1, C17:0, C17:1, C18:0, C18:1, C18:2, C18:3,
C20:0 and C20:1) could be identified. The obtained values of
C18:1, C18:2, and C18:3 were indicated in Supplementary Table 2.
2.3. DNA extraction

DNA was extracted from olive using the QIAamp DNA Stool
Mini Kit (Qiagen, Hilden, Germany) and following the manufac-
turer’s instructions with slight modifications, according to Ben
Ayed et al. [30]. Thereafter, DNA detection and quantification were
performed with a SpectroFluorometer (Tecan GENIOS Plus, Männe-
dorf, Switzerland) following Hoechst H33258 dye incorporation. A
serial dilution of Lamda DNA (D150A Promega, Wisconsin, USA)
served for standard calibration. DNAs extracted from olive samples
were dissolved in TE buffer and stored at �20 �C until further PCR
amplification and sequencing.
2.4. Primer design, PCR amplification and sequencing of OeFAD2-2

PCR primers (FAD2F: 50 GAATTGAAGGGCGAGCAGT 30 and
FAD2R: 50 TGGAATGTAATGCAAACACTGA 30) were designed using
the Primer3 program [31] based on the 50- and 30- UTR regions of
the OeFAD2 mRNA sequence available at NCBI (http://www.ncbi.
nlm.nih.gov) (accession number AY083163.1) and the OeFAD2 gene
was PCR amplified from the 19 olive varieties. PCRs were per-
formed in 30 mL reaction volumes consisting of 100 ng of olive
genomic DNA, 2.5 mL of 25 mM MgC12, 2 lL of 10 mM dNTPs,
1 lL of each primer (10 lM), 1.25U of GoTaq Flexi DNA polymerase
(Promega, Wisconsin, USA), 10 mL of GoTaq buffer (5X) and 3.25 lL
of distilled water. PCR amplifications were performed on a 96-well
Verity Thermal Cycler (Applied Biosystems, Massachusetts, USA)
with a starting denaturation at 95 �C for 5 min, followed by 35
cycles of 94 �C for 30 s, 57 �C for 30 s, 72 �C for 30 s, with a final
elongation at 72 �C for 10 min. PCR products from each variety
were visualized by agarose gel electrophoresis, allowing to check
amplification efficiency and ensure amplicon specificity and char-
acteristics. PCR products were purified by passing through
WizardR SVGel and PCR Clean-Up System purification columns
(Promega, Wisconsin, USA), and sequenced in triplicate from either
end using the same primers as used in PCR amplification and ana-
lyzed on the 3130XL Genetic Analyzer (Applied Biosystems, Mas-
sachusetts, USA) for sequence determination.
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2.5. Sequence analysis and SNP marker discovery

FAD2 gene was sequenced from 19 Tunisian olive oil varieties
having different fatty acid compositions. DNA polymorphisms in
the OeFAD2 gene sequence of the 19 olive varieties were discov-
ered by sequence alignment using ClustalW2 (http://www.ebi.ac.
uk/Tools/msa/clustalw2/) [32] to determine the positions and
types of SNPs. The outputs from the sequencer were visually
inspected to confirm the possible heterozygous sequence. The
potential SNPs were resequenced to minimize false positives due
to sequencing artifacts. Likewise, the deduced amino acid
sequences of the 19 FAD2 genes were aligned to determine con-
served motifs in each sequence.
2.6. Haplotype analysis

DNA polymorphism and haplotype variation were determined
within all gene sequences using DnaSP v5 [33]. The latter allowed
extensive analyses and measures, namely number of polymorphic
sites, haplotype number, and haplotype diversity (Hd). The haplo-
type analysis and the construction of the haplotype block structure
were assessed using Haploview v4.2 [34]. We took into account a
minimum Lewontin’s D’ value of 0.8 to design the haplotype block,
solid spine of the linkage disequilibrium algorithm. The estimated
values of the linkage disequilibriumwere based on those of the fre-
quency of haplotype, which was determined without genetic infor-
mation on parents using the algorithm and based on the methods
of the Haploview v4.2 program. Moreover, according to Gabriel
et al. [35], any breed whose D’ values had an upper limit
of > 0.98 and a lower limit of > 0.7 at a 95% confidence interval cor-
responded to strong linkage disequilibrium. The haplotype block
was selected as a domain for which the confidence interval
between the pairwise SNP exceeded 95%.
2.7. Statistical methods

The descriptive statistical analysis of the background data on
quantitative variables was performed using R packages. Genotyp-
ing quality check and association analysis of alleles were done
using the ‘‘Genetics” package of R software [36]. Genotype-
phenotype association analyses using logistic regression assuming
different genetic models-dominant, codominant, recessive, over
dominant, and log-additive were performed using the ‘‘SNPassoc”
R package [37]. The relationship between the fatty acids composi-
tion and SNPs was analyzed and determined through various sta-
tistical tools and techniques. One-way ANOVA and the t-test
were applied for the fatty acids composition to assess the signifi-
cant differences between the means of variety groups for each
SNP. A variance multi-way analysis was performed to examine
the association of the studied SNPs simultaneously with fatty acids
composition. Binary logistic regression was used to test the associ-
ations of the discovered SNPs with fatty acids composition sepa-
rately. All analyses were performed using R program. Two-sided
P-values < 0.05 were considered as statistically significant.
Machine learning analysis was carried out by Bayesian network
through two constraint-based machine learning (ML) algorithms
(Grow-shrink and Incremental Association) and the Pearson’s cor-
relation conditional independence test. The Bayesian network
learned via Constraint-based methods served to generate nodes
and arcs. Each generated node was characterized by Gaussian dis-
tribution. This analysis aimed to study the interactions between
unsaturated fatty acid contents (C18:1, C18:2 and C18:3) and the
discovered SNPs on the one hand and between SNPs on the other
hand. Machine learning analysis was performed using
the ‘‘bnlearn” R package.
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2.8. Cluster analysis

Two-way hierarchical clustering of the olive oil varieties and
the studied parameters (oleic acid (C18:1), linoleic acid (C18:2),
linolenic acid (C18:3), and the 15 newly identified SNPs) were per-
formed using the ‘‘Heatmap” R package [38]. The phylogenetic
analyses based on the 19 FAD2 gene sequences were realized using
MEGA v11 (https://www.megasoftware.net/) [39] using the
Neighbor-Joining method.

2.9. Bioinformatics analysis

Multiple sequence alignment of FAD2 sequences was performed
using ClustalW2 with default parameters [40]. The TMHMM server
(http://www.cbs.dtu.dk/services/TMHMM) [41] was used to pre-
dict transmembrane regions.

2.10. Three-dimensional protein modeling

Three-dimensional (3D) protein models were predicted and
proposed for the four desaturases. Homology modeling was per-
formed using the (PS)2-v2 Protein Structure Prediction Server
(http://ps2v2.life.nctu.edu.tw/) [42,43], where the reported crystal
structure of a mammalian stearoyl-CoA desaturase (PDB ID 4YMK)
was used as a template (42% identity and 98.7% alignment with the
targeted protein sequence). The four low-energy modeled struc-
tures were further validated by performing Ramachandran plot
analysis (model structure with the maximum number of amino
acids in allowed regions) using the PROCHECK suite of programs
[44]. The models were viewed using The PyMol Molecular Visual-
ization System (https://pymol.org/2/) [45].

2.11. Protein docking

Protein docking was performed using GRAMM-X online server
(http://vakser.compbio.ku.edu/resources/gramm/grammx/) [46].
The Arabidopsis ferredoxin structure (PDB ID 4ZHO) was used as
the ligand protein. The structure provided by the NCBI data bank
was prepared for docking using Discovery Studio 4.1 Visualizer
(https://discover.3ds.com/discovery-studio-visualizer-download)
[47]. The 4ZHO molecule was opened using Discovery Studio; after
removing water molecules and other bound ligand molecules, the
file was saved as a PDB file. The Discovery Studio software was also
used to visualize hydrophobic surfaces of predicted models.
Finally, Verify3D allowed the validation of the obtained models
(http://nihserver.mbi.ucla.edu/Verify_3D/) [48]. Molecular model-
ing and docking analyses were combined to study the structure–
function relationship of the poorly structurally characterized inte-
gral membranes of FAD2. The findings allowed us to investigate the
role of each substitution within FAD2 gene sequences of four olive
varieties.
3. Results and discussion

3.1. FAD2 gene sequencing, SNP discovery, and molecular
characterization

To discover a large number of genic SNP markers across the
olive tree genome, we sequenced the FAD2 gene from 19 olive oil
varieties. All the obtained FAD2 sequences were submitted to NCBI
GenBank (accession numbers are provided in Supplementary
Table 3). FAD2 sequences of the studied olive varieties revealed
intronless genes (IG) and were identified as mono-exonic genes
containing full-length ORFs [49]. FAD2 CDS is made of 1152 bases
and encodes a protein of 383 amino acids. The multiple sequence
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alignment of the FAD2 nucleotide sequences showed 15 variations
(Table 1), of which only six corresponded to non-synonymous sub-
stitutions in the FAD2 protein sequence, namely (Q26H, S82C,
H213N, E286G, H309R, and G341W) in all 19 varieties, represent-
ing new haplotypes and protein isoforms. The average nucleotide
diversity for the FAD2 gene in the coding region was estimated to
be the observed genetic diversity (p) = 0.00438 and the expected
diversity (hw: per-site Watterson’s theta) = 0.00339. Given that
the two values p and hw were different, the nucleotide polymor-
phism of the FAD2 gene in coding regions does not fit into the neu-
tral and silent mutation hypothesis. Furthermore, the values of
Tajima’s D (D = 1.1035), Fu and Li’s D* statistic test
(D* = 1.2431), and Fu and Li’s F* statistic test (F* = 1.3947) were
also not significant (P > 0.1) for this gene; therefore, confirming
our previous hypothesis. Among the total SNPs, substitution pat-
terns and rates were estimated according to the Tamura and Nei
model [50]. Transition and transversion SNPs were 12.632 and
6.185, respectively. The transition–transversion ratio (ts/tv) was
found to be 2.042. Fifteen candidate SNPs located in the FAD2 gene
were further statistically validated to determine the genotypic and
allelic frequencies, heterozygosity, minor allele frequency (MAF),
and Hardy-Weinberg equilibrium (HWE). Table 2 shows seven
monomorphic loci (SNP87, SNP140, SNP307, SNP593, SNP755,
SNP988 and SNP1083) in olive FAD2 gene. As all individuals have
the same form (genotype) at the monomorphic sites, they were
excluded from the genetic association analysis, because they do
not provide information.

3.2. Genotype-phenotype correlation and SNP-SNP interaction

3.2.1. Association statistics for virgin olive oil quality and genetic
variants in FAD2 gene

Associations between mono and polyunsaturated fatty acid
composition and genotypes of 15 SNPs in the FAD2 gene were
investigated. Significant results for each genetic model are summa-
rized in Table 3. By assuming each genetic model, SNPs over the
correction threshold line with the lowest Bayesian Information Cri-
teria (BIC), Akaike Information Criteria (AIC), and P values were
identified.

3.2.1.1. Interaction between SNPs of FAD2 gene and C18:1 con-
tent. Table 3 shows the mean, standard deviation (SE), difference,
and significant values of the first 14 SNPs related to C18:1 for the
Table 1
Details of the SNPs detected in the FAD2 gene from the 19 studied olive oil varieties.

Olive oil
varieties /
SNP

SNP87 SNP140 SNP206 SNP307 SNP593 SNP699 SNP755

Besbessi A A T C C C T
JemriB A A T C C C T
JemriD A A T C C C T
Jarboui A A T C C C T
Zalmati G A T C C C C
ChemlSfax A A T C C C C
Meski A A T C C C C
Arbequina A A T C C C C
Tounsi G T C G T A T
Zarrazi A T C G T A T
Fakhari A T C G C A T
Oueslati A T C G C A T
ElHorr A T C G C C T
Chemcheli A T C G C C T
ChemlTat G T C C C C T
SahliMG G T C C C C T
Toffehi A T T C C C T
Chetoui A T T C C C T
Fougi A A T C C C T
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model harboring the lowest P-value, AIC and BIC. The five follow-
ing SNPs, SNP307, SNP699, SNP919, SNP988, and SNP1083, dis-
played the lowest P-value (P < 0.0001) and significant
associations under the additive model. In addition, these five
SNPs reported significant values under three additional models
(i.e., dominant, recessive, and codominant). However, the best
fit for genotypic variation of the oleic acid content analyzed for
these markers is the additive model based on AIC and BIC values.
Fig. 1 displays the interaction analysis plots drawn using all the
studied SNP markers with the highest significant or lower signif-
icant effects (P < 0.001) on C18:1. Each plot contains the P values
obtained from different likelihood ratio tests. As shown by the
diagonal in Fig. 1a, a considerable number of SNP markers dis-
played epistasis with high and moderate significance levels. In
fact, not all the interactions exhibited high P values, and the color
intensity of some cases on the diagonal is weak. SNP206, SNP307,
SNP699, SNP902, SNP919, SNP988, SNP1083 and SNP1181
showed the highest significant interactions. Additionally, another
group of SNP pairs composed of SNP206-SNP699, SNP307-
SNP776, and SNP902-SNP988, also exhibited significant
interaction..

3.2.1.2. Interaction between SNPs of FAD2 gene and C18:2 con-
tent. Table 4 shows the mean, standard deviation (SE), and the
difference and significance values of the first 14 SNPs related to
C18:2 for the model with the lowest P-value, AIC and BIC. The
following five SNPs, SNP307, SNP699, SNP919, SNP988, and
SNP1083, had the lowest P-value (P < 0.0001) and significant
associations under the additive model. In addition, these five
SNPs provided significant values under three additional models
(i.e., dominant, recessive, and codominant). However, the best
fit for genotypic variation of the linoleic acid content analyzed
for these markers is the additive model based on AIC and BIC val-
ues. As shown by the diagonal in Fig. 1b, there is a considerable
number of SNP markers demonstrating epistasis with high and
moderate significance levels. However, not all interactions exhib-
ited high P-values, and the color intensity of some points on the
diagonal is low. The SNP206, SNP307, SNP699, SNP 788, SNP919,
SNP988, SNP1083 and SNP1181 showed the highest significant
interactions. Additionally, another group of SNP pairs composed
of SNP307-SNP788, SNP307-SNP788, SNP919-SNP788, SNP988-
SNP788, and SNP1083-SNP788, also exhibited significant
interaction.
SNP776 SNP788 SNP902 SNP919 SNP988 SNP1083 SNP1181 SNP1237

G C T G G T C G
G C T G G T C G
G C T G G T C G
G C T G G G T G
G G A A A G T G
G G A A A G T G
G G A A A G T G
G G A A G G C G
A C T G G T C C
A C T G G T C C
A C T G G T C C
A C T G G T C C
A C T G G T C C
A C T G G T C G
A C T G G T C G
A C T G G T C G
A C T G G T C G
A C T G G T C G
A C T G G T C G



Table 2
Characteristics of the identified SNPs.

SNPs Ho He HWE (p value) MAF alleles

SNP87 0.474 0.411 1.0000 0.289 A: G
SNP140 0.526 0.499 1.0000 0.474 T: A
SNP206 0.632 0.432 0.1525 0.316 T: C
SNP307 0.474 0.494 1.0000 0.447 G: C
SNP593 0.421 0.432 1.0000 0.316 C: T
SNP699 0.579 0.500 0.9103 0.5 A: A
SNP755 0.474 0.478 1.0000 0.395 T: C
SNP776 0.368 0.5 0.4152 0.5 A: A
SNP788 0.789 0.494 0.0369 0.447 G: C
SNP902 0.316 0.465 0.2971 0.368 T: A
SNP919 0.368 0.478 0.5172 0.395 G: A
SNP988 0.526 0.488 1.0000 0.421 G: A
SNP1083 0.526 0.488 1.0000 0.421 T: G
SNP1181 0.263 0.411 0.2491 0.289 C: T
SNP1237 0.632 0.432 0.1525 0.316 G: C

Ho: Observed Heterozygosity; He: Expected Heterozygosity; MAF: Minor allele frequency; HWE: Hardy-Weinberg equilibrium.

Table 3
Genetic control for 14 SNPs associated with oleic acid (C18:1) content.

SNP Model N Genotype Mean SE P AIC BIC

SNP87 Dominant 9 AA 64.66 1.94 0.3 122.9 125.7
10 AG-GG

SNP140 Recessive 15 T/T-A/T 67.8 1.23 0.005 115.1 117.9
4 AA 59.62 1.53

SNP206 – 7 TT 61.13 1.32 9e-04 111.4 114.2
12 TC 68.97 1.27

SNP307 Additive < 0.0001 85.1 87.9
SNP593 Additive 0.014 117.1 119.9
SNP699 Additive < 0.0001 82.5 85.4
SNP755 Recessive 16 T/T-T/C 67.7 1.1 0.001 111.8 114.6

3 CC 57.43 0.22
SNP776 Additive 0.0017 112.8 115.7
SNP788 Dominant 3 GG 57.43 0.22 0.001 111.8 114.6

16 C/G-C/C 67.7 1.1
SNP902 Additive 1e-04 106.2 109.1
SNP919 Additive < 0.0001 91.8 94.6
SNP988 Additive < 0.0001 90.2 93
SNP1083 Additive <0.0001 99.9 102.8
SNP1181 Additive 1e-04 106.4 109.3

N: number of olive oil varieties; SE: standard deviation; P: P-value; AIC: Akaike Information Criteria; BIC: Bayesian Information Criteria.
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3.2.1.3. Interaction among SNPs of the FAD2 gene and both C18:1 and
C18:2 fatty acid levels. Correlations between the levels of two fatty
acids (C18:1 and C18:2) and the discovered SNPs were studied by
the Bayesian network (BN) through two constraint-based machine
learning (ML) algorithms (Grow-shrink and Incremental Associa-
tion) and the Pearson’s correlation conditional independence test.
The Grow-shrink machine learning algorithm based on the Grow-
Shrink (GS) Markov Blanket detection algorithm [51] used a struc-
ture learning algorithm. The Incremental Association is based on
the Incremental Association Markov Blanket (IAMB) algorithm
[52], which is based on a two-phase selection scheme (a forward
selection followed by an attempt to remove false positives). These
two algorithms learn the network structure by analyzing the prob-
abilistic relations entailed by the Markov property of Bayesian net-
works with conditional independence tests and then constructing a
graph that satisfies the corresponding d-separation statements.
The resulting models are often interpreted as causal models even
when learned from observational data. The output of this analysis
gives graphical models where nodes represent random variables
and arrows represent probabilistic dependencies between them.
The BN is a directed acyclic graph (DAG). The latter defines a fac-
torization of the joint probability distribution of nodes (variables:
in our cases SNPs and C18:1, C18:2, and C18:3) called a global
probability distribution. The form of the factorization is given by
the Markov property of Bayesian networks.
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As shown in Fig. 2, 18 nodes and 27 directed arcs were gener-
ated by the analysis. Highly significant associations were obtained
between C18:1 and the SNPs (Table 5): SNP140 (r = 0.812,
p < 0.001), SNP206 (r = 0.803, p < 0.001), SNP307 (r = 0.772,
p < 0.001), SNP593 (r = �0.546, p = 0.016), SNP699
(r = �0.736, p < 0.001), SNP755 (r = �0.763, p < 0.001), SNP776
(r = �0.802, p < 0.001), SNP788 (r = �0.763, p < 0.001),
SNP902 (r = 0.763, p < 0.001), SNP919 (r = 0.763, p < 0.001),
SNP988 (r = 0.691, p = 0.001), SNP1083 (r = �0.772, p < 0.001),
SNP1181 (r = 0.689, p = 0.001) and SNP1237 (r = �0.629,
p = 0.004). Moreover, the C18:2 fatty acid levels showed highly
significant associations with the identified SNPs (Table 5):
SNP140 (r = �0.674, p = 0.002), SNP206 (r = �0.804, p < 0.001),
SNP307 (r = �0.634, p = 0.004), SNP699 (r = 0.506, p =
0.027), SNP755 (r = 0.634, p = 0.004), SNP776 (r = 0.701,
p = 0.001), SNP788 (r = 0.634, p = 0.004), SNP902 (r = �0.634,
p = 0.004), SNP919 (r = �0.634, p = 0.004), SNP988 (r =
�0.620, p = 0.005), SNP1083 (r = 0.784, p < 0.001), SNP1181
(r = �0.767, p < 0.001) and SNP1237 (r = 0.564, p = 0.012). On
the other hand, we found a negative, highly significant association
between C18:1 and C18:2 (r = �0.837, p < 0.001). There was no
interaction between SNP87 and the fatty acid or the other novel
identified SNPs. However, we confirmed correlations between
SNP307-SNP699 (r = �0.760, p < 0.001), SNP919-SNP988
(r = 0.839, p < 0.001), SNP919-SNP1083 (r = �0.864, p < 0.001),



Fig. 1. Interaction analysis for significantly associated markers with C18:1 (a) and C18:2 (b) rates. Increasing intensity of green color corresponds to an increasing level of
interaction between SNPs. The same color indicates similar levels of statistical significance between SNP cases. P-values for the interaction (epistasis) log-likelihood ratio test
are found in the upper triangle of the matrix. In contrast, those from the likelihood ratio test (LRT) compare the two-SNP additive likelihood to the best of the single-SNP
models are in the lower part. P values from LRT for the crude effect of each SNP are written on the diagonal. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 4
Genetic control for 14 SNPs associated with linoleic acid (C18:2) level.

Marker Model N Genotype Mean SE P AIC BIC

SNP87 Additive 0.18 108.4 111.2
SNP140 Recessive 15 T/T-A/T 12.91 1.01 0.094 107.3 110.1

4 AA 16.57 1.06
SNP206 –
SNP307 Additive 1e-04 93.4 96.2
SNP593 Recessive 17 C/C–C/T 14.22 0.9 0.077 106.9 109.7

2 TT 9.1 1.9
SNP699 Additive 6e-04 96.8 99.7
SNP755 Additive 0.0042 101.1 103.9
SNP776 Additive 0.044 105.8 108.6
SNP788 Dominant 3 GG 19.1 1.07 0.0046 101.2 104.1

16 C/G-C/C 12.66 0.82
SNP902 Recessive 15 T/T-T/A 12.44 0.84 0.0035 100.7 103.5

4 AA 18.32 1.08
SNP919 Additive 5e-04 96.6 99.5
SNP988 Additive 1e-04 92.9 95.7
SNP1083 Additive 0.0024 99.9 102.8
SNP1181 Additive 4e-04 96.3 99.1

N: number of olive oil varieties; SE: standard deviation; P: P-value; AIC: Akaike Information Criteria; BIC: Bayesian Information Criteria.
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SNP1083-SNP1181 (r = �0.864, p < 0.001), SNP1083-SNP755
(r = 0.864, p < 0.001) and SNP776-SNP140 (r = �0.899, p < 0.001).

These two ML algorithms allowed a deeper description of the
genotypes (SNPs) and phenotypes (unsaturated fatty acids, partic-
ularly oleic and linoleic) interaction. In fact, the combination of
these two algorithms allowed us to detect interactions between
all SNPs and C18:1 and C18:2 contents. Compared to other conven-
tional statistical methods, ML algorithms have had a spectacular
success in specific plant application areas such as plant genetics
and plant breeding. The ML algorithms can perform genotype-
phenotype prediction analyses to better understand the link
between phenotypic variation and corresponding variation at the
genotype level in a more efficient and faster way. The eventual
applications of these approaches are to anticipate genomic regions
that can be modified to produce the desired phenotype (olive oil
varieties with high C18:1 level). However, effective high-
1234
throughput genotyping systems and deep biometrics ML methods
can provide researchers and breeders with reliable tools to evalu-
ate these choices to genetic selection in breeding programs. As a
result, ML research and development may contribute to solving
olive oil quality and food security problems within constantly
changing settings such as the era of the worrisome climate and
environmental change.

Currently, researchers and breeders take advantage of the reli-
able MLmodels to support decision-making with rigorous ML algo-
rithms in a range of areas in plant research, which are tailored to
consider prior knowledge on the problem to be solved [53]. Indeed,
an ensemble machine learning model was developed for Alfalfa
yield prediction [54], for predicting the performance of wastewater
treatment plants [55], and for modeling and optimizing in plant
tissue culture [56,57]. Other ML algorithms were also used, such
as Multilayer perceptron (MLP) being applied for drought tolerance



Fig. 2. Machine learning analysis carried out by Bayesian network based on Grow-shrink learning algorithm and the Pearson’s correlation conditional independence test. The
analysis generated 18 nodes and 27 directed arcs. C18:1, C18:2, and C18:3 nodes are indicated by three different colors. All SNP nodes are colored green, except SNP87 in
white for not being correlated with the oleic (C18:1) and linoleic (C18:2) fatty acid levels. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 5
Pearson’s correlation coefficients and p-values of the association results between
C18:1, C18:2, and the discovered SNPs.

SNP C18:1 C18:2

r p r p

SNP87 0.100 0.684 �0.349 0.144
SNP140 0.812 < 0.001 �0.674 0.002
SNP206 0.803 < 0.001 �0.804 < 0.001
SNP307 0.772 < 0.001 �0.634 0.004
SNP593 � 0.546 0.016 0.415 0.077
SNP699 �0.736 < 0.001 0.506 0.027
SNP755 �0.763 < 0.001 0.634 0.004
SNP776 �0.802 < 0.001 0.701 0.001
SNP788 �0.763 < 0.001 0.634 0.004
SNP902 0.763 < 0.001 �0.634 0.004
SNP919 0.763 < 0.001 �0.634 0.004
SNP988 0.691 0.001 �0.620 0.005
SNP1083 �0.772 < 0.001 0.784 < 0.001
SNP1181 0.689 0.001 �0.767 < 0.001
SNP1237 �0.629 0.004 0.564 0.012

r: Pearson’s correlation coefficient; p: p-value.
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prediction [58], Support vector machine (SVM) for gene selection
in cancer classification [59], and plant cell and tissue culture [57]
area. In the recent years and near future, the deep learning (DL)
method, which is a type of machine learning (ML) approach that
is a subfield of artificial intelligence (AI), will provide powerful
tools for researchers, allowing interpretation of their decisions in
the plant genetics field, especially models prediction and biochem-
ical data interpretation to improve our understanding of plant biol-
ogy in rapidly changing environments. In fact, due to its ability to
combine different kinds of inputs and exploit all the available col-
lected data, DL prediction models could become an efficient
method for synthetic biology by learning to automatically generate
new DNA sequences and new proteins with desirable properties
and also to select the best candidate individuals in breeding
programs.
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3.2.2. SNP-SNP interaction and FAD2 haplotype analysis
The nucleotide and deduced amino acid sequences of this desat-

urase gene in the 19 olive varieties were reported earlier. Among
the 19 varieties, 15 variable sites of FAD2 polymorphism were
found, which resulted in 14 haplotypes with a haplotype diversity
(Hd) value of 0.965. Indeed, most varieties had their distinct hap-
lotypes, except the haplotypes 1, 4, 12, and 13 that were shared
by three (Besbessi, JemriD, JemriB), two (Chemlali Sfax and Meski),
two (Chemlali Tataouine and Sahli mgargeb), and two (Toffehi and
Chetoui) varieties, respectively. As mentioned above, five polymor-
phic SNPs (SNP307, SNP699, SNP919, SNP988, and SNP1083) were
found and revealed a highly significant difference in the level of the
unsaturated fatty acids C18:1 and C18:2. We studied the important
genetic function by analyzing the linkage disequilibrium (LD). To
perform haplotype analysis for polymorphisms in the FAD2 gene,
we used the Haploview software that provided a single haplotype
block including the five SNPs (Supplementary Fig. 1) and having an
average Lewontin’s D’ = 0.88. The interaction between the five
SNPs generated eight different haplotypes (Supplementary
Table 4). On the other hand and according to Gabriel et al. [35],
the lower limit of a 95% confidence interval exceeded 0.7, and
the status of linkage disequilibrium was reached. Fig. 3 shows only
three SNPs (SNP 307, SNP 699 and SNP 919) with a strong degree of
linkage disequilibrium, and forming a single block with an average
of Lewontin’s D0 = 1.0 (D0 = 1.0 value demonstrates the strongest
linkage disequilibrium between two given polymorphisms). Hence,
these three SNPs located in the FAD2 gene have direct linkage dis-
equilibrium and indicate the involvement of a multitude of varia-
tions rather than a single SNP.

The distributions of the four haplotypes and frequencies are
presented in Table 6, where the four haplotypes demonstrated a
significant difference in the levels of C18:1 and C18:2. For which,
the Gsnp307- Asnp699-Gsnp919 haplotype (frequency = 0.5) was signif-
icantly associated with a high C18:1 and low C18:2 levels, corre-
sponding to Oueslati olive variety; whereas the Csnp307- Csnp699-



Fig. 3. SNP within the FAD2 gene and linkage disequilibrium among the three SNP
pairs in FAD2. The color code on the Haploview plot follow the standard color
scheme: red (|D’|<1, |D’|=1, LOD � 2). Numbers in cells are D’ value. However, the D’
values of 1.0 are not shown (empty). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Table 6
Haplotype frequencies based on the interaction between five SNPs located in the FAD2 ge

Haplotypes
Block 1

Haplotype frequency

Gsnp307- Asnp699-Gsnp919 0.5
Csnp307- Csnp699-Asnp919 0.395
Gsnp307- Csnp699-Gsnp919 0.053
Csnp307- Csnp699-Gsnp919 0.053

Fig. 4. (a) Two-way hierarchical clustering of olive oil varieties and the various traits (ole
Colors show the proportion of the bands present at every designated band location. Co
white: gradually increasing Concentration. (b) phylogenetic tree based on Neighbor Joinin
reader is referred to the web version of this article.)
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Asnp919 haplotype (frequency = 0.395) corresponds to Chemlali Sfax
olive variety. The other two haplotypes (Gsnp307- Csnp699-Gsnp919 and

Csnp307- Csnp699-Gsnp919) (frequency = 0.053) concerned the olive
varieties, which have a fatty acid profile with medium C18:1 and
C18:2 contents such as Chetoui variety. The finding of our results
confirmed that the different haplotypes had direct effects on
C18:1 and C18:2 levels. When the Gsnp307- Asnp699-Gsnp919 haplo-
type was changed to the Csnp307- Csnp699-Asnp919 type in the FAD2
gene, the proportion of the monounsaturated fatty acid C18:1
was decreased; whereas the proportion of the polyunsaturated
fatty acid C18:2 increased. As shown in this study, the content of
the oleic unsaturated fatty acid C18:1 appears higher when we
obtained the functions of the SNPs located on the FAD2 gene in
olive oil as follow: snp307 G > C, snp699 A > C and snp919 G > A.

3.3. Two-way hierarchical cluster analysis

Two-way hierarchical cluster analysis was performed to assess
the relationship between the olive oil FAD2 sequences and the stud-
ied C18:1, C18:2, and C18:3 fatty acid compositions to identify which
of these parameters are themost important (Fig. 4a). The first dimen-
sion allowed classifying olive oil varieties according to the various
studied fatty acid parameters. Three clusters were defined, where
the first presented olive oil varieties with high C18:1 and low
C18:2 levels, which are the Fougi, Jemri D, Zarrazi, Oueslati, Fakhari,
Chemcheli, Chemlali Tataouine, and Sahli mgargeb. The second clus-
ter contains olive oil varieties with medium C18:1 and C18:2 such as,
ne.

Phenotype Variety Model

C18:1 C18:2

74.5 10.7 Oueslati
57 19 Chemlali Sfax
68.2 11.9 Chemcheli
66.5 17.5 Chetoui

ic acid content, linoleic acid content, linolenic acid content, and the identified SNPs.
lor indicates relative concentration: white, increased; red, decreased; from red to
g (NJ) method. (For interpretation of the references to color in this figure legend, the
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Chetoui, Toffehi, JemriB, Tounsi, and Elhorr. The third cluster repre-
sents olive oil varieties with lower C18:1 and high C18:2 levels like
Besbessi, Arbequina, Zalmati, Meski, Chemlali Sfax, and Jarboui. This
classification of the studied olive oil varieties into three clusters was
confirmed by the phylogenetic tree generated by the Neighbor-
Joining (NJ) method (Fig. 4b). Based on this cluster analysis, we
selected four olive oil varieties: Oueslati and Chemcheli, representing
the first cluster, and Chetoui and Chemlali Sfax as a representative of
clusters 2 and 3, respectively.

3.4. Structure prediction and analysis of desaturase in four olive
varieties

3.4.1. Sequence alignment
The 3D structure prediction and modeling of the FAD2 proteins

of these four olive oil varieties was performed. Alignment was per-
Fig. 5. Multiple sequence alignment of FAD2 sequences showing the catalytic histidine b
conserved region underlined in blue. (For interpretation of the references to color in thi
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formed to check differences among the four chosen sequences and to
identify and localize conserved regions with functional implications.
The results of alignment show six positions of changed amino acids
(aa) as follows: Q26H, S82C, H213N, E286G, H309R and G341W
(Fig. 5). In previous alignment studies of plants, FAD2 showed several
conserved motifs in FAD2 sequences [60]. Among others, three con-
served histidine motifs are demonstrated to be directly involved in
the enzyme activity. In our case, and as shown in Fig. 5, the three his-
tidine boxes are conserved, and none of the changed residues in the
four olive sequences was located in these boxes. However, the
authors described two strongly conserved sequences among D-12
oleate desaturases, EWDWLRGALAT (position 286) and LFSTMPHY-
HAMEAT (position 320) located before and after the third histidine
box, respectively. Interestingly, the substitution E286G was found
in the first conserved motif and is suspected of having an important
role in enzyme activity or interaction.
oxes (yellow), the differences between the four sequences (purple), and the highly
s figure legend, the reader is referred to the web version of this article.)
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3.4.2. Structure prediction
The 3D structures of FAD2 proteins were predicted by homol-

ogy modeling, based on the 42% sequence identity with a mam-
malian stearoyl-CoA desaturase (PDB ID 4YMK). The quality of
the produced models was assessed by Ramchandran plot analysis.
The latter shows 97.2% of the residues located in the allowedU and
W dihedral angles, while only 2.8% of the residues were outliers. All
the FAD2 generated models consisted of 13 a-helices, among
which, four longer a-helices (TM1, TM2, TM3 and TM4) with 29,
23, 21 and 20 residues, respectively were present, which together
displayed a conical shape (Fig. 6A). These helices are most likely
organized in transmembrane domains, since they match with the
large red peaks obtained by the TMHMM server (Fig. 6B). To con-
firm this observation, a hydrophobicity surface representation
was generated. As shown in Fig. 6C, the four transmembrane
helices are highly hydrophobic (shown in brown). At the same
time, the rest of the protein is polar and solvent accessible, proving
its cytosolic side location in the plasma membrane. Considering
that the membrane thickness is about 40 Å [61] and that the length
of the transmembrane moiety is about 20 Å, the protein could be
Fig. 6. (A) 3D protein models of FAD2 (helix regions are shown in red and b-sheet in blue)
Red color boxes represent the putative transmembrane domains, blue and pink color
representation of FAD2 model anchored in the lipid bilayer (brown color indicated hyd
surface representation of FAD2 in the same orientation as in (C) showing the substrate po
references to color in this figure legend, the reader is referred to the web version of thi
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anchored in only one layer of the membrane and considered as a
peripheral protein (Fig. 6C).

The models also involved a C-terminus anti-parallel b-sheet
located at the top of the solvent accessible domain. It should be
noted that, the generated models are truncated in the N and C ter-
minus region (a total of 78 residues). Besides, these regions are also
truncated in the template structure. The predicted structure
showed the presence of the three conserved Histidine-boxes,
namely H1 (H105, H109 and H110), H2 (H141, H144 and H145)
and H3 (H315, H318 and H319). These boxes are located almost
at the centre of the cytosolic moiety in contact with the catalytic
pocket and are involved in the reaction mechanism by maintaining
two metal ions implicated in electron transfer during desaturation
[62]. According to the obtained models, FAD2 could be part of a
distinct integral membrane proteins (IMP) class since it cannot
strictly be placed into either the aIMP or bIMP classes [63]. In fact,
FAD2 acts on the lipophilic substrates and has a soluble homolog
(Acyl-ACP desaturase). Secondly, as shown in Fig. 6D, the active
site cavity pointed directly to the bilayer, implying that the sub-
strate channel is buried in the edge of the transmembrane domain
. (B) Predicted transmembrane domains in FAD2 by TMHMM server (CBS; Denmark).
lines indicate the inner and outer membranes of the cell respectively. (C) Surface
rophobic surface while blue color showed solvent accessible surface). (D) Slabbed
cket (red arrow) and the catalytic histidine in yellow color. (For interpretation of the
s article.)
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and could access its substrates by direct recruitment from the
bilayer. The FAD2 reaction product could also be released in the
membrane by dint of the intimate relationship between its
membrane-binding domain and active site.

3.4.3. Interpretation of structural differences
As explained above, the sequence alignment of the four vari-

eties showed six substitutions. Nevertheless, in structural analysis,
only five could be studied since the first one (Q26H) is situated in
the truncated N terminal region. To determine the possible impli-
cations of these substitutions in different fatty acid profiles in
terms of C18:1 and C18:2 levels, the generated models were ana-
lyzed, and no drastic structural changes were observed when the
four FAD2 models were superimposed. Nevertheless, careful
inspection of the changed amino acid positions showed that four
of them are placed in the cytosolic domain, and only one is in
the tip of the transmembrane domain. Interestingly, no substitu-
tions were observed near the catalytic cavity. Docking experiments
with plant-type ferredoxin protein were conducted to find a plau-
sible explanation of the changes that occurred in the cytosolic
domain, since it was demonstrated that in plant FAD2, the elec-
Fig. 7. (A, B) Close up view of position 82 in S82-model and C82-model respectively, (C, D
C82-model respectively. Residues are shown as sticks, H-bonds are shown in red dotted l
of the references to color in this figure legend, the reader is referred to the web version
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trons needed for the desaturation reaction are obtained from ferre-
doxin protein [64].

3.4.4. S82C substitution
As shown in Fig. 7A, the S82C substitution is located at the end

of the hydrophobic cone and, more precisely in the turn separating
TM1 and TM2 helices. Interestingly, on the cytosolic side, TM2 pro-
trudes a helical turn out of the membrane and provides three his-
tidine (H1 box) coordinating the dimetal active site. Polar contact
analysis showed that due to its radical OH, S82 established one
hydrogen bond with G85 (Fig. 7A), while C82 established two
hydrogen bonds with W86 and G85 (Fig. 7B). Furthermore, a rota-
tion of the TM2 helix was observed when comparing models of the
two different varieties (S82-models and C82-models). In fact, in
variety models displaying a serine residue, the F86 points to the
membrane layer (Fig. 7A), while in variety models with a cysteine
residue, the F86 points to the interior cone (Fig. 7B). The conse-
quences of this rotation in the H1 histidine conformation were
notable. Remarkably, H105 in S82-models was not involved in
the first metal coordination (Fig. 7C), while in C82-models, it par-
ticipates directly in maintaining the ion for the catalytic reaction
) Close up view of catalytic histidine involved in one metal binding in S82-model and
ines, and metal coordinates are represented in blue dotted lines. (For interpretation
of this article.)



Fig. 8. (A) Surface presentation of plant-type ferredoxin (left) and FAD2 (right) oriented with their proposed interaction surfaces towards the viewer. (B) Proposed model of
the complex between ferredoxin and Chemlali Sfax variety FAD2 (Ferredoxin is colored in pale pink and FAD2 in blue). (C) Docked model of ferredoxin with Oueslati variety
FAD2 (Ferredoxin is colored in pale yellow and FAD2 in light brown). The inset shows a closer view of the proposed interaction region between the Histidine boxes shown as
yellow sticks and the last Cysteine residue in the ferredoxin protein. Substituted residues are shown as magenta sticks, and distances are shown in black dotted lines. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(Fig. 7D). It has been demonstrated that weakly bound metals lead
to accelerating the turnover reaction of the enzyme [65,66].
Accordingly, S82-FAD2 would be more effective than C82-FAD2
in desaturating C18:1. This result is in accordance with the fatty
acid profile of each variety, where Chemcheli and Oueslati varieties
(C82-FAD2) displayed lower linoleic acid level than Chemleli and
Chetoui varieties (S82-FAD2).

3.4.5. H213N substitution
Determination of the H213N effect was of great interest as

N213 was found only in the Oueslati variety, which was the most
interesting in terms of fatty acid composition. The model analysis
showed that the presence of H213 allows the formation of a short
helix at the protein surface, while in the case of N213 models, the
1240
helix was replaced by a large loop, which means a reduction of the
rigidity and stability in this region. Examination of the FAD2 struc-
ture shows that the dimetal centre could be accessible from the
cytoplasm via a groove at the top of the solvent-accessible domain
(Fig. 8A). In the docked models with ferredoxin, the active centre of
the latter lies along this groove allowing the placement of the elec-
tron donor group within 10 Å from the nearest catalytic histidine
centre. This distance is acceptable for electron transfer between
biological redox centres [67,68]. As shown in Fig. 8B, the helix com-
prising H213 is directly implicated in the surface interaction with
ferredoxin and especially with the loop carrying the [2Fe-2S] clus-
ter. In fact, H213 was suspected of playing an important role in the
correct positioning and orientation of ferredoxin so that the [2Fe-
2S] active centre, coordinated by the S side chains of four highly
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conserved cysteine residues, will be separated by a short distance
to the dimetal centre of the receptor enzyme and could easily
release electrons. As opposite, the presence of N213 could hamper
the correct placement of ferredoxin and consequently reduce the
catalytic activity. The differences in ferredoxin positioning
between Ouselati and Chemlali docked models was determined
in terms of distances between the lowest cysteine coordinating
the [2Fe-2S] ferredoxin active centre and the two nearest catalytic
histidine from the FAD2 molecule, which are implicated in the
electron transfer and are candidates to form the first electron
transfer interface (H109 and H110 from H1 box). In the case of
the Chemlali variety model, the distances C39-H109/C39-H110
were respectively 3.6 Å and 5.5 Å (Fig. 8B), whereas, for the Oues-
lati model, these distances were 6.4 Å and 5.5 Å, respectively
(Fig. 8C). Therefore, the electron transfer would be reduced and
catalytic activity as well for Oueslati FAD2.
3.4.6. E286G, H309R and G341W substitution
These three changes were analyzed together since all of them

exist as E, H, and G in Chemlali Sfax variety and as G, R, and W,
respectively in the other three varieties (Oueslati, Chetoui, and
Chemcheli). It should be noted that Chemlali Sfax exhibited the
highest level of C18:2. Firstly, E286G is a very interesting substitu-
tion since it is the first residue in a highly conserved sequence in
plant FAD2. This sequence corresponds to a long loop relating to
TM4 and a short amphipathic helix (namely AH7) located at the
solvent accessible domain in a horizontal conformation and was
described to provide interactions between the cytosolic domain
and the lipid bilayer [62]. The loop involving E286 seems to be very
close to the cytosolic domain in the Chemlali Sfax variety model.
Polar contact analysis shows that E286 was not implicated in H-
bond formation. However, G286 in all other models was implicated
in hydrogen contact, the loop is so much larger, and it seems to be
very flexible out of the cytosolic domain. The inspection of the
ferredoxin contact surface in G286 models showed that the big
loop is directly involved in molecular contact with ferredoxin resi-
dues. In contrast, in the E286 model, the loop was retracted, likely
hiding the H3 histidine box. A previous study on the ferredoxin
mechanism demonstrated that once the electrons are released,
the enzyme is broken down from the binding site of the enzyme
to begin the catalytic cycle.

For this reason, the interaction surface between ferredoxin and
its receptor enzymes cannot be too complimentary. In case of an
affinity increase between the two proteins, the activity of the
enzyme would be strongly reduced [64]. In our case, less interac-
tion with ferredoxin leads to increasing the catalytic activity of
FAD2, suggesting more linoleic acid production. Accordingly, the
Chemlali Sfax variety would have the highest amount of C18:2,
which is in agreement with fatty acid profile presented in Supple-
mentary Table 4. On the other hand, the inspection of H309R and
G341W substitutions allowed us to make conclusions concerning
the flexibility of the third histidine box (H3) helix. The latter is
located between these two changes. In fact, G341 could provide
some suppleness to the helix involving H3, while H309 could be
a part of the second coordination shell around the dimetal centre.
H309 residue in olive FAD2 sequence corresponds to E291 in
mouse stearoyl-CoA desaturase, which was demonstrated to play
a role in the enzyme reaction mechanism by coordinating a cat-
alytic histidine residue [62].
4. Conclusions

The FAD2 gene from 19 Tunisian olive oil varieties was
sequenced to identify SNPs related to oleic/linoleic acid levels. Fif-
teen polymorphic variations in FAD2 were identified among the 19
1241
olive oil varieties. Five SNPs were found to be significant, among
which eight different haplotypes could be distinguished through
interaction studies. Through in-depth analysis, three SNPs showed
a strong degree of linkage disequilibrium, with four haplotypes
exhibiting high oleic acid level and low linoleic acid level in Oues-
lati and Chemlali Sfax varieties, and medium levels of both oleic
and linoleic acids in Chetoui. Molecular modeling and docking
analyses were combined to study the structure–function relation-
ship of the poorly structurally characterized integral membrane
protein FAD2. The findings allowed us to investigate the role of
each substitution among the FAD2 sequences of the four olive vari-
eties. The results showed the vital role of these genetic substitu-
tions in reducing or enhancing the FAD2 activity to obtain more
or less oleic acid content, respectively. The study also highlighted
the importance of S82C and H213N substitutions that make the
Oueslati variety more promising in terms of fatty acid profile and
oleic acid content.
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