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Gliomas, particularly high-grade gliomas including glioblastoma (GBM), represent the
most common and malignant types of primary brain cancer in adults, and carry a poor
prognosis. GBM has been classified into distinct subgroups over the years based on
cellular morphology, clinical characteristics, biomarkers, and neuroimaging findings.
Based on these classifications, differences in therapeutic response and patient
outcomes have been established. Recently, the identification of complex molecular
signatures of GBM has led to the development of diverse targeted therapeutic
regimens and translation into multiple clinical trials. Chemical-, peptide-, antibody-, and
nanoparticle-based probes have been designed to target specific molecules in gliomas
and then be visualized with multimodality molecular imaging (MI) techniques including
positron emission tomography (PET), single-photon emission computed tomography
(SPECT), near-infrared fluorescence (NIRF), bioluminescence imaging (BLI), and magnetic
resonance imaging (MRI). Thus, multiple molecules of interest can now be noninvasively
imaged to guide targeted therapies with a potential survival benefit. Here, we review
developments in molecular-targeted diagnosis and therapy in glioma, MI of these targets,
and MI monitoring of treatment response, with a focus on the biological mechanisms of
these advanced molecular probes. MI probes have the potential to noninvasively
demonstrate the pathophysiologic features of glioma for diagnostic, treatment, and
response assessment considerations for various targeted therapies, including
immunotherapy. However, most MI tracers are in preclinical development, with only
integrin aVb3 and isocitrate dehydrogenase (IDH)-mutant MI tracers having been
translated to patients. Expanded international collaborations would accelerate
translational research in the field of glioma MI.
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INTRODUCTION

Gliomas, especially glioblastoma (GBM), are the most malignant
primary brain tumors in adults (1). Numerous in vitro, in vivo,
and ex vivo studies have revealed multiple molecular fingerprints
of gliomas, such as methylation of the O(6)-methylguanine-
DNA methyltransferase (MGMT) promoter, mutant isocitrate
dehydrogenase (IDH), platelet-derived growth factor receptor
(PDGFR), vascular endothelial growth factor receptor (VEGFR),
integrin avb3 receptor, epidermal growth factor receptor
(EGFR), c-Met, etc. These tumor-specific molecules can be
used not only as targets for diagnosis and therapeutic response
assessment, but also as potential targets for glioma treatment.
Recently, advances in techniques for identifying new molecules
of interest and the rapid development of novel molecular
targeted inhibitors have given rise to new molecular imaging
(MI) agents that have been developed using this highly
selective approach.

Developments in MI techniques enable the visualization,
characterization, and measurement of biological processes at
the molecular and cellular levels in living systems (2). MI
probes are introduced noninvasively to determine the
expression of molecular targets of interest in tumors and, when
evaluated repeatedly over time in the same subject, enable the
evaluation of tumor response to a given therapy. Considering the
spatial and temporal heterogeneity are inherent in gliomas, MI
can serve as a useful tool for overcoming some of the limitations
of routine diagnostics. For example, although pathological
diagnosis is considered the gold standard, it provides
molecular characterization of the glioma at a single snapshot
in time (e.g., prior to chemoradiation, or in the case of recurrent
disease, after multiple treatments including chemoradiation) and
is limited in scope to the tumor region sampled by neurosurgeon.
In addition, multiple reports have demonstrated inter-rater
variability for glioma pathology diagnosis among trained
experts, and the superiority of molecular and genetic profiles
compared to histological analyses for prediction of overall
survival (OS) in patients with glioma (3, 4). Instead, by
implementing an advanced MI-based approach, the molecular
marker status of tumors could be interrogated repeatedly in vivo
over the course of the patient’s treatment regimens. Accordingly,
translational research involving these methods is currently
underway at different stages including subcutaneous glioma
animal models, orthotopic glioma animal models, and patients
with glioma (e.g., NCT03539731).

Here, we searched PubMed (2000 to 2020) using the search
terms “glioma” or “glioblastoma” in combination with
“molecular imaging”, “positron emission tomography (PET)”,
“fluorescence”, “magnetic resonance spectroscopy (MRS)”, and
“single-photon emission computed tomography (SPECT)”. We
included only articles published in English. The articles relevant
to this topic were included for analysis. Next, we address the MI
tracers developed for glioma and review their current stage of
clinical translation. We also discuss nonspecific tracers (e.g., 18F-
fluoro-2-deoxyglucose [18F-FDG] and radiolabeled amino acids)
that are used to monitor for treatment response to anti-glioma
therapies. Additional details about the tracers routinely utilized
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in glioma diagnosis and therapy have been reviewed previously
(5–8). The goal of this review is to narrow the gap between
multidisciplinary researchers in the fields of glioma molecular
diagnosis, therapy, and imaging techniques, in order to
ultimately help improve targeted diagnosis and therapy
in glioma.
APPLICATIONS OF CURRENT
MOLECULAR IMAGING TRACERS IN
TARGETED THERAPY

In Table 1, we summarize distinct MI modalities, and their
corresponding tracers, in the context of targeted therapies
against glioma. Other advanced MR imaging (MRI) techniques
such as MR perfusion imaging, dynamic susceptibility contrast
(DSC) MRI, and diffusion-weighted MRI are summarized
elsewhere (18, 19).

The widely used oncologic and neurologic radiotracer, 18F-
FDG, has been employed not only for evaluating the efficacy of
bevacizumab [the only U.S. Food and Drug Administration
(FDA)–approved targeted inhibitor for recurrent GBM (20)]
for newly diagnosed and recurrent GBM (9, 10), but also for
monitoring efficacy of novel inhibitors against molecular targets
of interest in glioma, such as c-Met [a receptor tyrosine kinase
(RTK) whose ligand is hepatocyte growth factor] (16),
phosphoinositide 3 (PI3)-kinase (21), mammalian target of
rapamycin (mTOR) (22), and other RTKs (17). These studies
demonstrate that 18F-FDG PET/computed tomography (PET/
CT) can potentially detect early metabolic changes that occur
before alterations discernable on traditional anatomic MRI (e.g.,
tumor volume) and can thus help predict OS in these patients.

To evaluate the efficacy of novel targeted medications in
glioma, other MI tracers besides 18F-FDG have been used.
Goggi et al. compared various PET imaging radiotracers,
including 18F-FDG, 3’-deoxy-3’-18F-fluorothymidine (18F-FLT),
and 2-18F-fluoroethyl-triazolyl-conjugated c(RGDyK) peptide
(18F-FtRGD), for early determination of tumor response to the
antiangiogenic agent axitinib in mice bearing U87MG
subcutaneous tumors (23). The results showed that the
retention of 18F-FtRGD exhibited a much earlier attenuation in
the tumor by Day 7 (Day 3 for 18F-FLT), compared to Day 10 for
18F-FDG. Moreover, a prospective study of 16 patients with
recurrent high-grade glioma (HGG) treated with bevacizumab
and irinotecan concluded that both 18F-FLT-avid and 18F-fluoro-
ethyl-tyrosine (18F-FET)-avid volume reduction after two
months of therapy predicted progression-free survival (PFS)
and OS, and the volume-based analysis of 18F-FET uptake was
superior to that of 18F-FLT in predicting patient survival (24).

18F-FLT PET has gained traction in neuro-oncology imaging
in Europe to help guide targeted therapy for gliomas. The use of
this probe allows for direct and correlated quantification of
proliferation rates through expression of the enzyme thymidine
kinase-1 during DNA synthesis at an early stage (25, 26). Other
studies have evaluated the 11C-methyl-L-methionine (11C-Met)
radiotracer, which has been demonstrated to be an early
October 2020 | Volume 11 | Article 592389
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indicator, at 3 weeks, of tumor proliferation and vessel
remodeling. By comparison, 18F-FLT uptake correlated with
positive Ki-67 staining only at 6 weeks in an analysis of the
dynamic growth of angiogenesis-dependent/independent
experimental GBM (27). Compared to the 110-min half-life of
18F, the 20-min half-life of 11C makes the latter radioisotope less
amenable to practical clinical translation.

In the United States, themore commonly used amino acid-based
PET radiotracer is 18F-FDOPA and its uptake has been
prospectively shown to be correlated with glioma grade and
cellularity (28). A prospective study of 30 patients with recurrent
HGG on bevacizumab therapy demonstrated that 18F-FDOPA PET
identified treatment responders as early as two weeks after starting
treatment (12). In an earlier study of 18F-FDOPA and 18F-FLT PET
in recurrent HGG patients treated with bevacizumab, a post-
treatment increase in uptake of both radiotracers on parametric
response maps (PRMs) predicted PFS, but only the 18F-FDOPA
PET PRMs predicted OS (13). One advantage of the amino acid-
based tracers, including 11C-Met, 18F-FET, 18F-FLT and 18F-
FDOPA, etc., is the fact that their uptake does not depend on
blood-brain barrier (BBB) permeability.

In another study, patients treated with the indoleamine 2,3
dioxygenase 1 (IDO1) pathway inhibitor indoximod (D1-MT)
and temozolomide underwent pre-treatment and on-treatment
a-11C-methyl-L-tryptophan (AMT) PET, and post-treatment
imaging showed decreased regional uptake of the radiotracer (29).
Because IDO1 metabolizes tryptophan into kynurenine, this
strategy of using AMT PET to monitor therapeutic response with
an IDO1 inhibitor serves as an example of a PET radiotracer
“companion diagnostic” to targeted molecular therapy in GBM.
Frontiers in Immunology | www.frontiersin.org 3
MOLECULES WITH TARGETED
INHIBITORS UNDER EVALUATION IN
CLINICAL TRIALS

Noninvasive imaging of the molecular events that occur in glioma
has attracted increased research interest. Several promising
molecular targets have been identified, including mutant IDH,
PDGFR, VEGFR, integrin avb3 receptor, EGFR, c-Met, etc., These
molecules and their specific inhibitors have been studied in multiple
trials, and we summarize the MI modalities that are being used to
visualize them in the context of glioma therapy. With a focus on
translation from pre-clinical models to human trials, relevant
studies are summarized in Table 2.
IDH MUTATION AND ITS INHIBITORS

IDH mutation was identified in most astrocytomas and secondary
GBM as an early and inducing event in gliomagenesis (65, 66). IDH
mutation status is a predictive marker of the therapeutic efficacy of
alkylating chemotherapy inHGG patients (67, 68) and has also been
associated with improved prognostic (i.e., OS) value in HGG and
low-grade glioma (LGG) (65, 69). Therefore, IDHmutational status
was introduced into the 2016 World Health Organization (WHO)
classification of cancers of the central nervous system as a crucial
molecular genetic feature (70). In addition, the presence of IDH
mutation itself represents a therapeutic target in glioma, and several
IDH1 mutation inhibitors have been evaluated in IDH-mutant
glioma patients (71).
TABLE 1 | Widely used nonspecific molecular imaging tracers to assess glioma response to targeted inhibitor therapies.

Probe Article Model for test Molecule targeted Agents Key details of study

18F-FDG1 Graham et al. (9) 31 recurrent HGG
patients

VEGF receptor Bevacizumab Prognostic of response to therapy and predictor of
OS

18F-FDG and MRI1 Omuro A et al. (10) 40 newly diagnosed
GBM patients

VEGF receptor Bevacizumab
and
temozolomide

Higher baseline ADC ratios and persistent 6-month
FDG-PET hypermetabolism predicted poor OS

18F-FET1 Fleischmann et al. (11) 72 recurrent HGG
patients

VEGF receptor Bevacizumab
and re-
irradiation

Minimal time-to-peak (TTPmin) provided a high
prognostic value prior to re-irradiation

18F-FDOPA Johannes et al. (12) 30 recurrent GBM
patients

VEGF receptor Bevacizumab Identified treatment responders as early as two
weeks after treatment initiation

18F-FDOPA Robert et al. (13) 24 recurrent GBM
patients

VEGF receptor Bevacizumab FDOPA or FLT PET uptake on parametric response
maps after treatment as a useful biomarker for
predicting PFS, FDOPA predicted patient OS

18F-FDG PET/MRI1 Benjamin et al. (14) 47 recurrent GBM
patients

PI3-kinase and mTOR GDC-0084 change in PET uptake, ADC, Ktrans, and relative
cerebral blood volume correlated with maximum
concentration of drug and PFS

18F-FLT, 18F-FET and
MRI

Philip et al. (15) U87MG (orthotopically
in mice)

PI3-kinase and mTOR Bevacizumab
and BEZ235

More accurately predict the clinical potential with
multimodality imaging

18F-FDG and 18F-FLT Rex et al. (16) U87MG
(subcutaneously in
mice)

c-Met Rilotumumab
and CE-
355621

Accumulation of both radiotracers reduced as early
as 2 and 4 days post-initiation of therapy

18F-FDG or 18F-FLT Moonshi et al. (17) U87MG (orthotopically
in mice)

RTK Sunitinib Longitudinal 18F-FLT imaging detected therapeutic
response at 7 days post-initiation of therapy, earlier
than MRI (10 days) or 18F-FDG PET (16 days)
1Clinically used in glioma patients. ADC, apparent diffusion coefficient; c-Met, one cell surface receptor tyrosine kinase; HGG, high-grade glioma; FDG, fluorodeoxyglucose; FLT,
fluorothymidine; FET, fluoro-ethyl-tyrosine; GBM, glioblastoma multiforme; MRI, magnetic resonance imaging; mTOR, mammalian target of rapamycin; OS, overall survival; PFS,
progression-free survival; PI3, phosphoinositide 3-kinase; RTK, receptor tyrosine kinase; U87, human GBM cell line; VEGF, vascular endothelial growth factor.
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TABLE 2 | List of in vivo visualization of specific molecules whose targeted inhibitors are under evaluation in clinical trials.

Key details of study Targeted drugs
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sing EGFR status
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IDH mutation can be detected using various ex vivo methods,
including direct sequencing (65, 72), allele-specific PCR (73), and
immunohistochemistry (IHC) (74). Several studies have also
focused on D-2-hydroxyglutarate (D-2HG). Santagata et al. used
desorption electrospray-ionization mass spectrometry to detect D-
2HG ex vivo and found that its signal overlaps with areas of tumor
and correlates with the tumor contents. They further suggested that
mapping the D-2HG signal onto anatomic 3D reconstructed MR
images of tumors can be integrated with advanced multimodality
image-guided neurosurgical procedures to enable rapid molecular
analysis of surgical tissue intraoperatively (75).

In vivo imaging of IDH mutation has attracted considerable
attention. However, because of the technical challenges associated
with imaging the gene mutation itself, the MI approaches are
currently based on D-2HG. Choi et al. estimated the
concentration of D-2HG by performing spectral fitting in the case
of tumors from 30 patients. Numerical and phantom analyses of
MRS pulse sequences were performed, and the results were
validated with mass spectrometry of ex vivo tissues and then
successfully translated to clinic with a larger prospective trial (30,
76). Such in vivoMRSmethods have also been shown to detect IDH
mutations (Figures 1A, B) that were missed in IHC analyses, and
the reduction in D-2HG levels has been used to monitor treatment
response in patients with IDH-mutant gliomas and correlated with
clinical status (82, 83). A recent clinical trial and pooled analysis
demonstrated the high sensitivity and specificity of MRS compared
to other imaging modalities for the detection of IDH mutational
status (84, 85). MRS was used to serially monitor for a decrement of
D-2HG levels in gliomas in a Phase I clinical trial of a new mutant
IDH1 inhibitor (86). To date, no specific IDH-mutant-specific
targeted MI probe has been developed for PET or SPECT.
Nonspecific probes such as 18F-FDOPA were shown to
accumulate in LGG with IDH mutation (87). A more recent
study suggests that dynamic 18F-FDOPA uptake parameters (e.g.,
time to peak SUV) rather than static uptake parameters (e.g.,
SUVmax) may be able to discriminate between IDH mutant and
IDH wild-type gliomas (88).

MI of D-2HG as a marker of IDH mutant status by MRS has
achieved successful clinical translation in glioma patients and
can be used to serially and noninvasively monitor for this
important pathophysiologic molecular marker. Further
research should be conducted to integrate this imaging
modality as a neuroimaging “companion diagnostic” in clinical
trials of therapies targeting the IDH1 mutation, to determine
whether it can stratify patients into the responder and non-
responder subsets. More novel MI techniques with higher
sensitivity, higher specificity, and lower dependence on BBB
permeability should be developed, in light of the low sensitivity
of MRS for detecting IDHmutant status in smaller tumors due to
partial-volume effects (89).
PDGFR AND SRC FAMILY KINASES
(SFKs) AND THEIR INHIBITORS

PDGFR plays a critical role in HGG and synergizes with SFKs,
which are nonreceptor membrane-associated tyrosine kinases.
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PDGFR and SFKs are both associated with the invasiveness (90),
self-renewal of glioma-initiating cells, and growth of tumor
vasculature in HGG (91). PDGFRb is expressed not only in
vasculature, but also in GBM-associated stromal cells, which exert
tumor-promoting effects on glioma cells in vitro and in vivo (92).

Specific targeted inhibitors of PDGFRb include first-
generation single-kinase inhibitors (e.g., imatinib) and second-
generation inhibitors of multiple protein tyrosine kinases (e.g.,
dasatinib, which targets both PDGFR and SFKs). Dasatinib has
been shown to inhibit bevacizumab-induced glioma cell invasion
in an orthotopic xenograft model, supporting the human
translation of combining dasatinib with bevacizumab in HGG
(93). However, recent clinical trials showed that dasatinib in
conjunction with bevacizumab did not appear to benefit patients
with newly diagnosed and recurrent GBM (94, 95). MEDI-575,
an immunoglobulin G2k monoclonal antibody that selectively
binds to platelet-derived growth factor receptor a (PDGFRa),
also showed limited clinical efficacy in recurrent GBM in a Phase
II clinical trial (96).
Frontiers in Immunology | www.frontiersin.org 6
Developments in visualizing PDGFR expression in glioma via
MI are relatively insufficient. Tolmachev et al. designed a
PDGFRb-binding affibody molecule, Z09591, which was labeled
with 111In to specifically visualize PDGFRb expression; the
affibody was used for imaging in an U87MG xenograft model by
applying small-animal SPECT/CT (33). Future studies of novel
PET radiotracers are warranted because they may provide
increased sensitivity, specificity, and quantification accuracy. In
conclusion, PDGFR can be used as a pathophysiologic marker of
glioma but much work still remains for further PDGFR-based
targeted therapy and imaging.

VEGFR AND BEVACIZUMAB

VEGF is the key pro-angiogenic protein that is overexpressed in
and released by gliomas into their microenvironment (97). Glioma
treatment with bevacizumab, an inhibitor of VEGF receptor
(VEGFR) expressed on vascular endothelium, has led to
increased PFS but no OS benefit in the patients with recurrent
A B

D

E F G

C

FIGURE 1 | Representative multimodality molecular imaging in glioma, including positron emission tomography (PET), single-photon emission computed
tomography (SPECT), optical, and MR spectroscopy (MRS). (A) The major catabolite of IDH-1 mutation in gliomas, D-2-hydroxyglutarate (D-2HG), can be visualized
by MRS, and this technique has been translated to clinical trials (30). (B) T2/FLAIR abnormal signal area in MRI is overlaid with the D-2HG multivoxel imaging spectra
in MRS (76). (C) Glioblastoma lesion uptake with the 123I-VEGF SPECT tracer (left) (37) and the 89Zr-bevacizumab PET radiotracer (144 h post-injection) fused with
gadolinium-enhanced T1-weighted MRI in a child with diffuse intrinsic pontine glioma (right) (38). (D) Integrin avb3 visualized in a patient with glioblastoma using 68Ga-
PRGD2 PET/CT by our team; RGD-Cy5.5 conjugate near-infrared fluorescence (NIRF) image showing integrin avb3 in a mouse bearing a subcutaneous U87MG
tumor (77). (E) 11C-PD153035 PET/CT for visualization of EGFR in human glioblastoma (78); in vivo optical imaging of epidermal growth factor receptor variant III
(EGFRvIII)-expressing U87MG cells orthotopically implanted in a mouse identifies the tumor after intravenous injection of a EGFRvIII single-domain antibody
bioconjugated to near-infrared quantum dots, with an extra cysteine for site-specific conjugation (55). (F) 89Zr-PRS-110 PET noninvasively shows c-Met positivity in a
U87MG subcutaneous tumor model (59). 64Cu-labeled recombinant human hepatocyte growth factor PET also detects c-Met expression in nude mice bearing
U87MG xenografted tumors (79). (G) Mouse bearing AC133/CD133-overexpressing U251 gliomas in a subcutaneous tumor model can be imaged with 64Cu-NOTA-
AC133 mAb PET/CT (80); IR700-conjugated AC133 can also identify the tumor using near-infrared fluorescence (NIRF) molecular tomography (FMT) (81). All images
have been reprinted with permission; (D) is previously unpublished data.
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GBM and was approved for GBM therapy in 2009 (98). However,
bevacizumab failed to show a survival advantage in two large
studies of patients with newly diagnosed GBM: AVaglio in Europe
and RTOG-0825 in North America (99, 100).

Selecting appropriate candidates for optimal antiangiogenic
therapy is critical, and this has recently attracted considerable
research attention. EGFR gene amplification are associated with
shorter time to progression in patients with recurrent GBM while
treated with bevacizumab (101). Other tissue-based and advanced
neuroimaging parameters that are used as potential biomarkers in
the setting of anti-VEGFR therapy are reviewed elsewhere (102).
The 18F-radiolabeled FET, FLT, and FDG PET tracers mentioned
earlier are based on cell proliferation and metabolism and can be
used to indirectly assess anti-VEGFR treatment response (103).
Here, we focus on VEGFR-specific MI, which may help in
identifying suitable candidates for antiangiogenic treatment, as
well as in evaluating treatment response and disease progression.
An anti-VEGFR probe (anti-VEGFR-albumin-gadolinium) was
designed to image VEGFR in C6 and RG2 glioma-bearing rats
with MRI, and the findings were further confirmed through
fluorescence staining and quantification of the fluorescence
intensity of the anti-VEGFR probe (35). Moreover, a PET tracer,
64Cu-DOTA-VEGF, was developed for use in small-animal PET to
quantify VEGFR expression levels in animal models in vivo (36).A
clinical research demonstrated the SPECT using recombinant
human VEGF labeled with 123I can visualize GBM rather than
LGG and stratify patients’ OS based on specific T/N ratio
threshold (37) (Figure 1C, left). In HGG, VEGF-based
radiotracer approaches used to assess response to therapy may
be confounded by endogenous VEGF levels in the tumor
microenvironment that compete to bind for the same VEGFR’s
on the vascular endothelium. Therefore, another approach would
be to develop an anti-VEGFR-based radiolabeled antibody. An
immunoPET tracer, 89Zr-bevacizumab, was designed using a
diagnostic radioisotope with the commercial antibody drug
(Avastin®) to visualize the heterogeneity of binding of this drug
on the vascular endothelium in diffuse intrinsic pontine glioma
(DIPG) (38) (Figure 1C, right).

In conclusion, VEGFR has been successfully targeted with
bevacizumab as an approved therapy for recurrent GBM, and its
effects could be monitored with several MI techniques. Further
investigation is required to correlate these VEGF- and VEGFR-
targeted MI techniques with treatment efficacy in clinical trials of
bevacizumab therapy for GBM, which has potential to identify the
patient subset that is most likely to respond to therapy. Taking the
relatively large molecular weights of VEGF or antibody into
consideration, the BBB influence of these tracers should be
investigated further. The newer anti-angiogenic agents in GBM,
e.g., anti-VEGF therapies like TTAC-0001 (NCT03856099), could
similarly be evaluated with this MI-based approach.
INTEGRIN avb3 AND CILENGITIDE

Integrin alpha(V)beta(3) (avb3) was shown to be overexpressed in
neogenic vessels and glioma cells in vitro (104) and ex vivo (105); the
Frontiers in Immunology | www.frontiersin.org 7
expression of this integrin generally correlates with malignancy
grade and is a negative prognostic factor (105). Several inhibitors
targeting integrin avb3 are under development. Cilengitide, a
selective aVb3 and aVb5 integrin inhibitor, has been shown to
inhibit GBM growth in preclinical tumor models, as well as in
patients with newly diagnosed and recurrent GBM in Phase I and II
clinical trials (106–110). However, in the Phase III CENTRIC
EORTC 26071-22072 trial, Stupp et al. reported no OS benefit
when this inhibitor was combined with standard chemotherapy in
newly diagnosed GBM patients with methylation of the MGMT
promoter (111).

Chinot noted several possible reasons for the failure of that
trial, including screening based on MGMT promoter
methylation status when this biomarker may not necessarily be
associated with integrin biology (112). Another reason for failure
of that trial may be the heterogeneity of integrin avb3 expression
in GBM, which was clearly demonstrated by ex vivo IHC (105)
and in vivo MI studies (42). Targeted therapy is likely to be
effective only when the defined target molecule is expressed at
high levels. Thus, for GBM treatment, a rational MI-based
approach for future clinical trials would be to (1) confirm the
existence of the target as a screening inclusion criterion before
initiating integrin-inhibitor treatment and (2) serially track
expression of the molecular target as a physiologic surrogate
for monitoring tumor response alongside traditional
anatomic MRI.

Noninvasive visualization of integrins in the setting of cancer
has been developed over the past decades. Sipkins et al. visualized
integrin avb3 by using Gd-containing liposomes coated with a
monoclonal antibody (mAb) in animal models of breast cancer
and malignant melanoma (113). Integrin imaging for several
tumor types via multimodality imaging including MRI,
ultrasound, near-infrared fluorescence (NIRF) imaging,
SPECT, and PET has been reviewed elsewhere (114).

NIRF dyes conjugated with a cyclic arginine-glycine-aspartic
acid (RGD) peptide were applied to visualize subcutaneously
inoculated integrin-positive gliomas (46, 77, 115). Chen et al.
confirmed that the specific RGD peptide−integrin interaction
which was detected using the NIRF technique could be employed
to noninvasively image integrin expression in almost real-time in
U87MG GBM xenografts (Figure 1D, right) (77). A study using
64Cu-cyclam-RAFT-c(-RGDfK-)4 in a mouse model of glioma
demonstrated its therapeutic efficacy and suitability for integrin
imaging in the tumor (116).

The RGD-based MI tracers and techniques have been
successfully translated to patients in clinical trials. 18F-
FPPRGD2, an RGD-dimer PET tracer, was evaluated for
imaging the expression of integrin avb3 in healthy volunteers
and in patients with GBM and other cancers requiring
antiangiogenic treatment (117). 18F-galacto-RGD was found to
have marked yet heterogeneous uptake in microvessels and glial
tumor cells (42). In another study, a relatively more specific
dimer, 68Ga-BNOTA-PRGD2, was utilized (Figure 1D, left) and
a semiquantitative feature of uptake was correlated with tumor
grade (41). A clinical study of 18F-AlF-NOTA-PRGD2 PET/CT
in newly diagnosed GBM patients showed that this integrin-
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targeting PET approach predicted response to chemoradiation
(84.6% sensitivity, 90.0% specificity, and 87.0% accuracy) as early
as 3 weeks post-initiation of treatment when using a SUVmax
threshold of 1.35 (118). How much these typical peptide-based
imaging tracers depend on BBB breakdown for imaging have not
thoroughly assessed in suitable models.

Although integrin avb3-targeted inhibitors were effective in
preclinical studies and small cohorts of GBM patients in phase I
and II clinical trials, they failed to demonstrate a survival benefit
in a Phase III trial. However, integrin receptor imaging has been
successfully translated to small pilot clinical studies of GBM
patients and can be used to noninvasively demonstrate the
integrin receptor distribution and expression density, which
supports its use as a predictive neuroimaging biomarker during
screening for prospective trial participants. Before this imaging
can become a reliable predictive indicator for a specific subgroup
of glioma patients, the imaging probes and techniques should be
further validated for improved sensitivity and specificity in
human patients.
EGFR AND ITS INHIBITORS

EGFR gene amplification and overexpression are striking
features of GBM, particularly primary GBM. In approximately
50% of tumors showing EGFR amplification, a specific EGFR
mutant, EGFR variant III (EGFRvIII), can be detected. EGFRvIII
is specifically expressed in 31% of primary GBM patients, and
compared to patients with wild-type EGFR GBM, those with
EGFR-mutant GBM tend to have an older age at diagnosis, worse
prognosis, and resistance to chemoradiotherapy (119, 120).

In addition to EGFR inhibitors (e.g., erlotinib), oncolytic HSV
retargeted to GBM EGFR (52) and EGFRvIII vaccines have been
evaluated in clinical trials. Rindopepimut (CDX-110) was
designed to generate a specific immune response against
EGFRvIII-expressing tumors, and the drug was demonstrated
to benefit EGFRvIII-positive GBM patients in a Phase II trial,
although it failed in a Phase III trial (ACT IV) of newly
diagnosed, EGFRvIII-positive GBM patients (121, 122). Binder
and colleagues reviewed possible reasons for failure of that trial,
including loss of GBM EGFRvIII expression in ~60% of cases
regardless of whether rindopepimut or control treatment was
administered, and the lack of control arms in the previous
promising Phase II trials (123). The incorporation of MI in
such clinical trials to non-invasively detect the loss of expression
of the target protein could prompt an earlier determination of
lack of treatment efficacy, so a new therapy could be initiated that
may lead to improved patient outcomes.

The first-in-human study of the chimeric antigen receptor
modified T cell (CART)-EGFRvIII, as a cellular immunotherapy,
in 10 recurrent GBM patients demonstrated on-target activity in
brain. One patient had stable disease for over 18 months.
However, the investigators found that the antigen expression
decreased in the biopsied tissue in most patients (54). We believe
that MI of antigen heterogeneity and reductions in antigen
Frontiers in Immunology | www.frontiersin.org 8
expression may provide earlier detection that the current
therapy may no longer be efficacious, so that a different
therapeutic strategy can be pursued earlier on.

EGFR-specific tracers were developed for multiple imaging
modalities including SPECT, optical imaging, and MRI. Mishra
et al. used anti-EGFR antibody-conjugated metal chelates in
SPECT to image EGFR expression in mice bearing glioma cell
lines (56). In another study, near-infrared imaging was performed
on mice bearing orthotopic GBM by using a method in which a
near-infrared quantum dot (Qd800) was conjugated to an anti-
EGFRvIII single-domain (sd) antibody containing an extra cysteine
to enable site-specific conjugation (EG2-Cys) (Figure 1E, right);
this quantum dot-modified probe showed increased accumulation
in tumors relative to the unconjugated quantum dot or the
quantum dot conjugated to the Fc region of the antibody (EG2-
hFc) (55). Another specific NIRF tracer, ABY-029, outperformed
5-ALA in detecting the tumor margin of EGFR-positive tumors
and has the potential to enhance fluorescence-guided surgery (50).
Lastly, 11C-PD153035 PET/CT was demonstrated to be positively
correlated with ex vivo EGFR immunostaining and Western blot
analysis in the case of glioma patients (Figure 1E, left) (78).

Davis et al. designed a MRI-coupled fluorescence molecular
tomography (FMT) system in which gadolinium (Gd)–based
contrast was used and a near-infrared fluorophore was bound to
EGF, the ligand of EGFR. By using this system, the EGFR
expression status in animal models of U251 and 9L-GFP
tumors was quantified with 100% sensitivity and specificity
(57). The FMT system was particularly effective when used in
combination with the anatomy-based information provided by
the Gd-enhanced MRI scan data.

Therefore, specific types of EGFR mutations should be
screened with MI probes to investigate their utilization as
imaging biomarkers for selecting patients for oncologic
vaccine-based approaches. Future studies should also examine
whether targeted EGFR-mutant MI tracers can be used to direct
EGFR-targeted therapy in vivo.
C-MET AND ITS INHIBITORS

Hepatocyte growth factor/scatter factor (HGF/SF) and its cell-
surface receptor, the tyrosine kinase c-Met, were found to be
closely linked with glioma cell invasion and tumor progression
(124), and c-Met has been widely confirmed as a crucial
predictor of GBM patient outcomes (125).

Nearly two decades ago, c-Met expression was not only
demonstrated in glioma cells and tumor microvasculature, but
was also shown to be associated with astrocytic tumors through
immunohistochemical staining of ex vivo glioma samples. Elevated
c-Met expression levels paralleled higher tumor grades: 21.4%
positive in astrocytoma (WHO grade II) and 53.8% positive in
anaplastic astrocytoma as compared with 87.5% in GBM (126).
Moreover, recent research has demonstrated increased efficacy of a
prognosis model that includes c-Met protein expression (127). Jun
et al. found c-Met was preferentially localized in the perivascular
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regions of human GBM tissues that are highly clonogenic,
tumorigenic, and resistant to radiation. Bioluminescence imaging
(BLI) was used to monitor tumor growth in nude mouse brains
implanted with c-Met-positive and c-Met-negative luciferase-
expressing GBM tumor cells, and this confirmed the relationship
between c-Met expression tumor growth in vivo (62).

Both c-Met pathway-targeting small molecules and mAbs
have been investigated in GBM, yielding promising results. AMG
102 (rilotumumab) enhanced the efficacy of temozolomide or
docetaxel in U87MG cells and xenografts (60). However, in a
Phase II clinical trial of rilotumumab in heavily pretreated
patients with recurrent GBM, monotherapy was not associated
with significant antitumor activity (128). Cabozantinib (XL184),
an oral inhibitor of multiple RTKs such as c-Met and VEGFR2,
yielded favorable results in the case of advanced prostate cancer
(129), thyroid cancer (130), and was approved by the U.S. FDA
in 2012. Interestingly, the Phase II trial of XL184 in recurrent
GBM demonstrated antitumor activity, particularly in the
antiangiogenic treatment-naive cohort, with a median PFS of
3.7 months in both the 140 mg/day and 100 mg/day groups
(131). In the subset of patients who had received prior
antiangiogenic therapy, the objective response rate was only
4.3% with a median duration of response of 4.2 months (132).

Knockdown of the c-Met protein can make tumor necrosis
factor related apoptosis-inducing ligand (TRAIL)-resistant brain
tumor cells sensitive to TRAIL treatment in vitro; moreover, in
nude mice intracerebrally implanted with a c-Met-knockdown
tumor cell line, the effect of stem cell-delivered S-TRAIL in vivo
was confirmed using BLI (133). Zhang et al. monitored gene
expression quantitatively and dynamically in cultured cells and
in a U87MG tumor xenograft model by using a genetically
engineered bioluminescent c-Met reporter gene (58). This
novel MI of the reporter gene has been gradually used to
visualize the crosstalk among different relevant molecular
targets in glioma animal models.

Several groups have developed new radionuclide tracers to
image c-Met expression in gliomas in vivo. With SPECT
imaging, the tumor can be visualized using 125I-labeled c-Met-
binding peptides in human U87MG tumor-bearing mice (63).
Onartuzumab, an experimental therapeutic anti-c-Met mAb, was
radiolabeled with 76Br or 89Zr, and the resulting probes showed
minimal background in normal brain (64). Terwisscha van
Scheltinga et al. visualized c-Met expression by using an
anticalin 89Zr-PRS-110 PET radiotracer in U87MG xenografts
Frontiers in Immunology | www.frontiersin.org 9
(Figure 1F, left); however, nearly 40% nonspecific uptake of this
probe was confirmed in the blocking experiment, and thus
further investigation is necessary (59). In another study,
recombinant human HGF was labeled with 64Cu, and this
probe had strong and specific binding to c-Met in a U87MG
tumor model (Figure 1F, right) (79).

In summary, all the MI techniques for visualizing c-Met
expression are in the preclinical phase, and they will be
clinically translated after the development of targeted drugs
evaluated in clinical trials.
VISUALIZATION OF SPECIFIC
MOLECULES THAT DO NOT YET HAVE
INHIBITORS UNDER EVALUATION IN
CLINICAL TRIALS

In addition to the molecular targets for diagnosis, treatment, and
imaging, other molecules exist that better characterize glioma
pathophysiology including glioma stem-like cells, newly formed
tumor blood vessels, etc. However, specific inhibitors against
these emerging molecular biomarkers have not yet been
evaluated in clinical trials. The relevant studies are summarized
in Table 3.
CD133 AND GLIOMA STEM CELLS

Glioma cancer stem cells (CSCs) are resistant to chemoradiotherapy
and have attracted the attention of multidisciplinary researchers.
Gaedicke et al. developed a new imaging tracer targeting the AC133
epitope of CD133, which is a well-investigated CSC marker. An
AC133-specific mAb was radiolabeled with 64Cu to generate 64Cu-
NOTA-AC133 mAb, which was used to monitor AC133-positive
GBM CSCs. High-sensitivity and high-resolution images were
obtained in animal models using both PET and NIRF imaging
(Figure 1G) (80). A novel small peptide, CBP4, was linked to gold
nanoparticles and the resultant probe was shown to be suitable as an
imaging agent for CD133-expressing GBM CSCs (135). Jing et al.
conjugated the AC133 antibody with an IR700 dye and showed that
the resulting probe can be used noninvasively to assess AC133-
positive gliomas via near-infrared FMT; the probe was employed in
near-infrared photoimmunotherapy to effectively induce cell death
and tumor shrinkage in an animal model (81).
TABLE 3 | List of in vivo visualization of specific molecules that do not yet have inhibitors under evaluation in clinical trials.

Molecule Article Utilized imaging probes Imaging
modality

Model for test Key details of study

CD133 Gaedicke et al. (80) 64Cu-NOTA-AC133 mAb MicroPET Orthotopic glioma xenografts
(subcutaneous)

Monitoring of AC133(+) glioblastoma stem cells

Jing H et al. (81) IR700-AC133 mAb NIRF Orthotopic gliomas (subcutaneous) Non-invasive detection of AC133 and linked
with photoimmunotherapy

ELTD1 Towner et al. (134) Anti-ELTD1 SPIO-based
probe

Molecular MRI F98 (orthotopic in rat) Signal correlated with grade and survival
CD133, promonin-1; ELTD1, epidermal growth factor, latrophilin, and 7 transmembrane domain-containing protein 1 on chromosome 1; F98, rat GBM cell line; mAb, monoclonal
antibody; NIRF, near-infrared fluorescence; NOTA, 1,4,7-triazacyclononane-1,4,7-triacetic acid; PET, positron emission tomography; SPIO, superparamagnetic iron oxide.
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ELTD1

EGF, latrophilin, and 7-transmembrane domain-containing protein
1 on chromosome 1 (ELTD1) was identified as a putative glioma-
associatedmarker using a bioinformatics method and reported to be
associated with glioma grade and patient survival by Towner et al.
(134). An anti-ELTD1 superparamagnetic iron oxide (SPIO)-based
probe was designed by coating SPIO nanoparticles with dextran and
conjugating an anti-ELTD1 antibody. This probe was used to assess
the in vivo levels of ELTD1, and further investigation revealed that
the anti-ELTD1 antibody inhibited glioma growth in mouse glioma
models, an effect that could be attributed to diminished
vascularization (136).
PROGRESS IN CLINICAL TRANSLATION
OF VARIOUS TRACERS WITH DIFFERENT
MOLECULAR IMAGING TECHNIQUES

We divided the translation process (from bench to bedside) into
three stages of development: (1) Preclinical stage that includes
subcutaneous animal models with glioma cell lines; (2) Preclinical
stage that includes orthotopic animal models with glioma cell lines;
Frontiers in Immunology | www.frontiersin.org 10
and (3) Clinical stage that involves glioma patients. In Figure 2, we
summarize the progress from pre-clinical to clinical translation of
the abovementioned targeted MI tracers. Most of the targeted
tracers have only been studied in animal models. The MI studies
evaluated in human glioma patients target integrin aVb3, IDH-
mutation and VEGFR, pyruvate kinase M2 and have been imaged
using PET/CT, SPECT andMRImodalities. The superior molecular
sensitivity of PET, the lack of radiation, and high spatial resolution
of MRI render these techniques much easier to translate, along with
the fact that they are routinely used in the medical field. Optical
imaging (e.g., NIRF and BLI), have also been utilized to image
molecular expression in glioma xenografts in subcutaneous and
orthotopic animal models. Although penetration depth remains a
challenge in optical imaging, intraoperative imaging could represent
a promising area of research following further development in both
imaging technique and tracer design. Multimodality imaging can
provide a possible solution to overcome certain limitations of
current methods (e.g., PET and MRI for imaging integrin avb3,
or optical imaging and MRI for imaging EGFR and IGFBP7). This
strategy could enable imaging to be performed, using a single probe,
on multiple imaging platforms with diverse disease models, ranging
from small animal models to large animal models and
even humans.
FIGURE 2 | Translational pipeline of molecular imaging probes in glioma using different imaging platforms. IDH, isocitrate dehydrogenase; MRS, magnetic resonance
spectroscopy; PDGFRb, platelet-derived growth factor receptor beta; SPECT, single-photon emission computed tomography; VEGFR2, vascular endothelial growth
factor receptor 2; PET, positron emission tomography; MRI, magnetic resonance imaging; Integrin avb3, integrin alpha(V)beta(3); EGFRvIII, epidermal growth factor
receptor variant III.
October 2020 | Volume 11 | Article 592389

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Visualization of Diagnostic and Therapeutic Targets
CONCLUSIONS AND PERSPECTIVES

With the discovery of multiple new molecular targets in glioma, the
design and clinical translation of novel targeted diagnostics,
treatments, and MI techniques have rapidly developed. MI offers
several promising advantages over conventional anatomic imaging
in glioma. Firstly, specific molecular expression patterns and
therapeutic responses can be serially imaged in vivo, particularly
for HGG patients, who typically undergo surgical treatment once at
the time of initial diagnosis. Because of the minimal risk to patients,
MI can be performed repeatedly if necessary, and can be used to
evaluate tumor heterogeneity across the entire tumor, including its
resected and residual components. Secondly, MI can potentially
visualize prognostic and predictive biomarkers of interest to aid in
selecting appropriate patients for molecular-targeted therapy. This
approach would promote the evidence-based selection of patients
for molecular-targeted therapeutic clinical trials and thereby
possibly increase the success of improving survival in the
appropriate patient cohort. Thirdly, MI can be applied routinely
for the development and assessment of novel anti-glioma drugs or
immunotherapy agents, because it can accurately monitor the
pharmacodynamic and bioavailability of therapeutics in tumors.

Multimodality imaging probes can be designed to detect
multiple biomarkers concurrently in glioma patients, and thus
noninvasively map crucial molecules in this heterogenous and
challenging disease. Given the advantages mentioned above, MI
can represent an optimal method for achieving personalized
medical care for glioma patients (137). To the previously
identified “3 Rs” (right patient, right time, and right drug), MI
enables us to add a fourth “R”: right dosing.

Although MI offers several advantages, the use of this method
in clinical research and practice currently remains at an early
stage. Most MI probes are in the preclinical stage, while MI
tracers targeting integrin aVb3, VEGF receptor, and IDH-
mutation have been successfully translated to pilot studies in
glioma patients. Another potential limitation is that most of
these studies are based on the use of peptides, proteins, and even
nanoparticles. Demand exists for designing small-molecule
tracers that can cross the BBB, which generally hinders the use
of MI in the case of LGG with relatively more intact BBB
functionality compared to HGG.

Accelerating the clinical translation of MI to benefit patients
with glioma will only be achieved with deft navigation of
Frontiers in Immunology | www.frontiersin.org 11
regulatory requirements and multi-center, international
cooperation. Firstly, after the potential toxicity of MI probes
has been tested in small-animal models, we recommend taking
advantage of early exploratory Investigational New Drug studies
(138). Due to the very low concentrations of injected tracers
visualized on exquisitely sensitive MI platforms, this regulatory
compliance strategy is more apt for MI research in an incurable
disease such as GBM. Secondly, accrual of a sufficient number of
patients into MI studies to make meaningful conclusions will
require international multi-center clinical trials that are guided
by uniform research protocols with built-in continual quality
assessment and quality control.
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