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Abstract

Background: Chikungunya virus (CHIKV) originated in a sylvatic cycle of transmission between non-human animal
hosts and vector mosquitoes in the forests of Africa. Subsequently the virus jumped out of this ancestral cycle into
a human-endemic transmission cycle vectored by anthropophilic mosquitoes. Sylvatic CHIKV cycles persist in Africa
and continue to spill over into humans, creating the potential for new CHIKV strains to enter human-endemic
transmission. To mitigate such spillover, it is first necessary to delineate the distributions of the sylvatic mosquito
vectors of CHIKV, to identify the environmental factors that shape these distributions, and to determine the
association of mosquito presence with key drivers of virus spillover, including mosquito and CHIKV abundance. We
therefore modeled the distribution of seven CHIKV mosquito vectors over two sequential rainy seasons in
Kédougou, Senegal using Maxent.

Methods: Mosquito data were collected in fifty sites distributed in five land cover classes across the study area.
Environmental data representing land cover, topographic, and climatic factors were included in the models. Models
were compared and evaluated using area under the receiver operating characteristic curve (AUROC) statistics. The
correlation of model outputs with abundance of individual mosquito species as well as CHIKV-positive mosquito
pools was tested.

Results: Fourteen models were produced and evaluated; the environmental variables most strongly associated with
mosquito distributions were distance to large patches of forest, landscape patch size, rainfall, and the normalized
difference vegetation index (NDVI). Seven models were positively correlated with mosquito abundance and one
(Aedes taylori) was consistently, positively correlated with CHIKV-positive mosquito pools. Eight models predicted
high relative occurrence rates of mosquitoes near the villages of Tenkoto and Ngary, the areas with the highest
frequency of CHIKV-positive mosquito pools.

Conclusions: Of the environmental factors considered here, landscape fragmentation and configuration had the
strongest influence on mosquito distributions. Of the mosquito species modeled, the distribution of Ae. taylori
correlated most strongly with abundance of CHIKV, suggesting that presence of this species will be a useful
predictor of sylvatic CHIKV presence.
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Background

Mosquito-borne chikungunya virus (CHIKV) was first
identified in Tanzania in 1953. Until 2004, CHIKV was
considered a minor tropical pathogen responsible for a
small number of cases of chikungunya fever, typified by
high fevers and severe joint pain but not death [1]. How-
ever, in 2005 and 2006 chikungunya disease incidence
surged, with more than 272,000 CHIKV cases and up to
225 deaths in the Indian Ocean islands as well as 1.5
million cases in India [1, 2]. In 2007, chikungunya fever
cases were reported in Europe for the first time [1, 3].
Most recently, CHIKV established autochthonous trans-
mission in the Americas; the first cases were reported
from the Caribbean island of Saint Martin in December
2013 and the virus has since spread across South Amer-
ica, Central America, and into the USA [4-9].

CHIKYV originated in Africa in a sylvatic cycle in which
non-human primates and possibly other animals, such
as rodents, squirrels and cattle, serve as reservoir hosts
[10]. Sylvatic CHIKV exists as two genetically-distinct
lineages: one in West Africa (the West African lineage)
and the other in East, Central, and South Africa (the
ECSA lineage) [9]. The latter has jumped into a human-
endemic cycle, which was initially transmitted predom-
inantly by the domestic mosquito Aedes aegypti [9].
Phylogenetic evidence indicates that the human-endemic
cycle is comprised of an Asian and an Indian Ocean
lineage, each of which arose independent from the ESCA
lineage [9, 11]. Additionally, a series of envelope glyco-
protein gene mutations in the Indian Ocean lineage
allowed this virus to be transmitted by the peridomestic
mosquito species Ae. albopictus. Aedes albopictus is
more cold-hardy than Ae. aegypti and consequently this
vector switch enabled transmission of CHIKV in more
temperate areas [12, 13].

Thus, sylvatic CHIKV has a well-documented history
of emerging into human-endemic transmission and
launching widespread epidemics. Moreover, sylvatic
CHIKYV continues to spill over into humans living near
foci of sylvatic transmission in Africa and to cause dis-
ease there [10, 14]. In particular, our research team has
demonstrated the circulation and spillover of sylvatic
CHIKYV in the Department of Kédougou in southeastern
Senegal, where several other sylvatic arthropod-borne vi-
ruses (arboviruses) including dengue, yellow fever and
Zika virus, also occur [14-26]. Kédougou is the site of
fifty years of continuous mosquito and arbovirus surveil-
lance by the Institut Pasteur de Dakar, Senegal. More-
over we recently concluded an intensive five-year study
(2009-2013) of the spatio-temporal distribution and
abundance of arboviruses and their mosquito vectors in
Kédougou. Over the course of these studies CHIKV has
been detected in multiple mosquito species, primarily
Ae. africanus, Ae. aegypti formosus, Ae. dalzieli, Ae.
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furcifer, Ae. luteocephalus, Ae. taylori and Ae. vittatus
[17, 18, 22, 23]. CHIKYV is amplified (i.e. is detected dur-
ing regular screening of homogenized groups or “pools”
of mosquitoes) cyclically in these vectors at roughly
four-year intervals; evidence of virus infection is often
also detected in monkeys [African green monkeys
(Chlorocebus sabaeus), patas monkeys (Erythrocebus
patas), and Guinea baboons (Papio papio)] and humans
during amplifications [14, 16, 18, 19]. Our intensive eco-
logical study encompassed a CHIKV amplification in
2009 [23].

To mitigate sylvatic CHIKV spillover and thereby di-
minish the likelihood of emergence of new human-
endemic lineages, it is first necessary to delineate the
distributions of sylvatic mosquito vectors of CHIKYV, to
identify the environmental factors that shape these dis-
tributions, and to determine associations between the
occurrence of particular mosquito species with the
abundance of that species and also the abundance of
CHIKY, e.g. [27-33]. In our study of the ecology of syl-
vatic CHIKV circulation in Kédougou [23], we first
tested whether broad classifications of land cover could
explain the distribution of CHIKV and its vectors. We
identified five major classes of land cover (village, sa-
vanna, agriculture, barren and forest) in the region and
collected mosquitoes at replicate sites within each.
While we found complex associations between the abun-
dance of particular CHIKV vector species and land cover
type, most species were found in all land covers sam-
pled. To our surprise, we did not find significant differ-
ences among the land cover classes in the frequency of
mosquito pools positive for CHIKYV, although we did de-
tect significant spatial variation in the distribution of
CHIKV-positive pools. We concluded that more fine-
grained analyses of the associations of environmental
factors with mosquito distributions and CHIKV distribu-
tions were needed in order to predict the distribution of
viruses and vectors and to identify the factors that shape
these distributions. Thus, in the current study we under-
took an ecological niche analysis of the seven putative
CHIKV vectors listed above. This study utilized data
from the rainy seasons of 2009 and 2010. We used data
from 2009 because that was the year during which a
CHIKYV amplification occurred; we used data from 2010
to assess the temporal stability of mosquito distributions.
Because mosquito abundance may be a stronger pre-
dictor of disease rates than mosquito presence, we tested
whether model predictions of presence of a particular
species correlated with our measures of abundance of
that species. The ultimate goal of our research program
is to enhance prediction and prevention of CHIKYV spill-
over, so we also tested whether model predictions of a
particular species’ presence correlated with abundance
of CHIKV-positive mosquito pools.
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Methods

Study area

The study area encompassed 1650 km? in the Kédougou
Department in southeastern Senegal (Fig. 1). The area is
characterized by a tropical savanna climate [34] with one
dry (generally December to May) and one wet (generally
June to November) season (Fig. 2). The Kédougou
region has traditionally been sparsely populated (mean
of 4 people/km?) but recent expansion of gold mining in
the area has increased the population with migrants
coming from Mali, Guinea, Gambia, Ghana, Burkina
Faso, Togo and Nigeria [35, 36]. The study area is
mostly rural with only one urban center, the town of
Kédougou. The landscape can be divided into five major
land cover classes: savanna (74.3% of the study area),
agricultural land (7.9%), forest (12.5%), barren land (5.0%)
and villages (0.1%) ([23]; percentages are representative of
11 June 2009).

There is high mosquito diversity in Kédougou: 102
species have been collected using a combination of hu-
man landing collections, light traps, and animal baited
traps [18]. Fifty mosquito species from six genera were
collected via human land collections as part of our study
[23], of which seven (i.e. Ae. africanus, Ae. aegypti for-
mosus, Ae. dalzieli, Ae. furcifer, Ae. luteocephalus, Ae.
taylori and Ae. vittatus) are known to be competent vec-
tors of sylvatic CHIKV in laboratory studies and/or to
show high rates of infection in the field [17-19, 21, 23].
These seven species are classified as tree-hole mosqui-
toes, although Diallo et al. [22] found larvae of all but
one (Ae. africanus) in other water-holding containers,
including fresh fruit husks, decaying fruit husks, pud-
dles, bamboo holes, discarded containers, tires, rocks
holes and storage containers.

Overview of research data and methods

The workflow for data collection and analysis is summa-
rized in Fig. 3. Briefly, we integrated detection of mos-
quito occurrences with data on environmental factors
thought to influence mosquito species distributions in a
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series of fourteen Maxent models. Fifty sites for mos-
quito collection were selected using a blocked stratified
random sampling design and mosquitoes in these sites
were then collected using human landing collections.
Fifty-two environmental data layers representing land
cover, Normalized Difference Vegetation Index (NDVI),
bioclimatic and topographic variables were derived from
three sources (Landsat 5 TM, MOD13Q1, WorldClim).
Using a two-step variable selection process, 11 of these
variables were identified for Maxent modeling. Maxent
models were developed for seven mosquito species and
three time frames: the rainy seasons of 2009 and 2010
combined; November 2009; and November 2010. The
importance of environmental variables influencing
mosquito distributions was evaluated using percent con-
tributions and permutation importance. Model perform-
ance was assessed using the area under the receiver
operating characteristic curve (AUROC). AUROC values
range from 0 to 1; an AUROC value of 0.5 indicates that
the model performs no better than random, an AUROC
value of 1 would indicate perfect accuracy, and an
AUROC value > 0.8 indicates robust performance of the
model [37]. Maxent models are generated using
presence-only rather than abundance data; however, be-
cause we had abundance data available, we thought it
important to test the correlation of Maxent model
outputs with both species abundance and CHIKV
abundance. Each of these steps is described in greater
depth below.

Data

Mosquito data

Mosquitoes were collected at 50 sampling sites, includ-
ing ten in each of five major land cover classes (agricul-
tural land, barren land, forest, savanna and village), as
defined by Diallo et al. [23], during the periods of June
2009 to February 2010 and May 2010 to February 2011
(Fig. 4). The 50 sites were chosen using a blocked design
and stratified random sampling methods that are de-
scribed in detail in Diallo et al. [23]. Briefly, we randomly
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Fig. 1 Location of the study area in the Kédougou Department (c) of southeastern Senegal (b) in western Africa (a)
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Fig. 2 Mosquito abundance, precipitation, and temperature for June 2009 - March 2011. The 2009 data were previously presented in [23]. The
June 2009 abundance data are not shown here because only one study block was sampled during that month. Precipitation and temperature
data are for Kédougou, Senegal (12°34'1.2"N, 12°13'1.2"W; 178 m a.s.l; [100]). Error bars on the temperature line indicate mean maximum and
minimum monthly temperatures. Precipitation and temperature vary slightly across the study area, but trends displayed in the graph area are
representative of the entire study area

selected three sites for each of the six land cover types
in each of ten blocks within one-kilometer buffer zones
around roads. The block design eliminated spatial auto-
correlation among mosquito observations within a given
land cover class. The limitation of sites to fall within a
certain distance of roads was necessary to facilitate site
accessibility. Three sites per land cover were visited ini-
tially to assess whether the land cover on the ground
matched the land cover on the map; of the correctly
mapped and accessible sites, one was selected randomly
for actual sampling. Following the initial site selection
process, two of the 50 sampling locations were moved
outside of the one-kilometer buffer around roads for lo-
gistical reasons.

Mosquitoes were collected using human landing col-
lections, the most effective method for collecting sylvatic
Aedes species [23, 38—40]. In this study, three people per
site collected the mosquitoes that landed on them be-
tween 18:00 and 21:00 h. Collections took place monthly
for one to four consecutive days. Collectors in the forest
were stationed at ground level and on 9 m high plat-
forms; collectors in villages were stationed inside and

outside of houses and in the center and periphery of the
village. At the end of each collection evening, mosqui-
toes were frozen and then sorted on a chill-table using
morphological identification keys established by Edwards
[41], Ferrara et al. [42], Huang [43] and Jupp [44] for the
culicines and by Diagne et al. [45] for the anophelines.
Identified specimens were sorted into monospecific
pools of up to 40 individuals, and tested for CHIKV after
cell culture inoculation by RT-PCR.

Environmental data

As summarized in Fig. 3, we considered 52 environmen-
tal layers from three sources for modeling mosquito spe-
cies distributions in the study area: a previously derived
land cover map [23], Moderate Resolution Imaging
Spectroradiometer (MODIS) NDVI 16-Day L3 Global
250m (MOD13Q1; [46]), and WorldClim [47]. These
layers were selected for their biological relevance to Ae-
des species distributions [48-51]. All layers were pro-
jected to the same spatial reference system (Universal
Transverse Mercator, Zone 28P, World Geodetic System
1984) and resampled to 30 m using the nearest neighbor
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Fig. 3 Methods flowchart. See Methods section for details. Abbreviations: DistForest, distance from any forest patch; DistForestMed,
distance from medium to large forest patches; DistForestlLar, distance from large forest patches; DistEdge, distance from patch edge;
PatchSize, size of patch; NDVIMeanON0910, mean NDVI for 2009 and 2010 October-November; NDVIRanON0910, range of NDVI for 2009
and 2010 rainy seasons; PrecipWetQ, precipitation of the wettest quarter; CHIKV, chikungunya virus

resampling technique to match the finest spatial reso-
lution dataset (i.e. the land cover map) while maintain-
ing the original data values. To maximize model
performance using the smallest possible set of uncorre-
lated predictor variables, we used a multi-step process,
which is outlined in the modeling section below. This
process reduced the set of 52 initial variables to a set of
18 candidate variables of which three to six were ultim-
ately selected as optimal variables in each of the final
species distribution models. Additional file 1: Table S1
lists the complete set of 52 variables as well as the final
variables used in the models.

The land cover map (Fig. 4), derived from Landsat
5 Thematic Mapper imagery [23], was used to create
five variables relating to the fragmentation and con-
figuration of the landscape at the time of image

acquisition, 11 June 2009. These variables thus relate
directly to habitat preferences by mosquitoes. The
variables included distance to patch edge, patch size,

distance from any forest patch, distance from
medium to large forest patches (= 0.52 km?), and
distance from large forest patches (= 2.14 km?).

Forest patch size classes used for analysis were
determined using Jenk’s natural breaks. All five
landscape fragmentation and configuration variables
served as candidate variables in the species
distribution models (Additional file 1: Table S1).

The MODI13Q1 product was used to derive 25
NDVI variables. The NDVI represents vegetation
abundance and thus serves as a proxy measure for
cover and nectar available to the mosquitoes, as well
as rainfall. MOD13Q1 data are produced on 16-day
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intervals and were summarized here to capture differ-
ent NDVI aspects of potential relevance to mosquito
habitat selection: maximum, minimum, mean, stand-
ard deviation and range of NDVI. To best represent
the variation of NDVI across years and seasons, three
different time periods were grouped and summarized.
The first included all images available for the study
period (June 2009 to March 2011), the second all
available images for both rainy seasons (July to
November 2009/2010), and the third all available im-
ages for the two months when the majority of CHIKV
isolates were collected (October/November); in this
last period we used data from 2009 and 2010 even
though CHIKV was only detected in 2009. Of the ini-
tial 25 NDVI variables, five were retained as candi-
date variables in the species distribution models
(Additional file 1: Table S1). We recognize that mos-
quitoes develop over an approximately two-week
period and that NDVI during the months preceding
the peak of the CHIKV amplification has the potential
to be highly predictive of mosquito occurrence.

Unfortunately, because of the excessive cloud cover
that accompanies the rainy season in Senegal, no
NDVI data were available for August and September
in either of the rainy seasons included in this study.
WorldClim was used to obtain 22 variables, includ-
ing 19 bioclimatic and three topographic variables
representative of average conditions between 1960
and 1990. Of the 19 bioclimatic variables considered
for our model, three (isothermality, precipitation of
the driest month and precipitation of the driest quar-
ter) were excluded because they had no or negligible
spatial variation in the study area. The remaining 16
bioclimatic variables reflect both the average and ex-
treme temperature and precipitation conditions in the
area, both of which have strong influences on mos-
quito distributions. In addition, the WorldClim alti-
tude layer was used to derive slope and aspect layers
and collectively these three serve as indirect measures
of microclimate, which also drives mosquito distribu-
tions. Of the initial 22 WorldClim variables, five bio-
climatic and all three topographic variables were
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retained as candidate variables in the species distribu-
tion models (Additional file 1: Table S1).

Modeling

Rationale for choice of modeling method and of time
periods included in the models

Maxent is a machine learning algorithm for modeling
species distributions using the principle of maximum
entropy in conjunction with species point presence
records and environmental raster data. We used Max-
ent for modeling the distribution of chikungunya vec-
tors because it can create models from as few as five
presence points and generally has a similar or better
accuracy than other species distribution modeling
methods [52-54]. Because multiple basic functions
can be used within a single model, it can approximate
the complex variable relationships commonly found
in ecological data [55]. Additionally, it has been used
successfully in multiple studies of the distributions of
mosquito vectors of arboviruses and of arboviruses
themselves [27, 28, 54, 56—63].

Models used data collected over two general time
periods. The first, termed “Two-Year” models, used
data collected during all months of the study (June-
December) in both years of the study (2009 and
2010) in order to capture overall spatial distribu-
tions of each of the seven species. The second,
termed “November-Only” models, used data from
November, the peak month for the 2009 CHIKV
amplification and the only month in the rainy sea-
son for which cloud-free imagery could be obtained.
Moreover, to detect changes in spatial distributions
between the two study years, data from November
2009 and November 2010 were modeled separately.

Although Maxent has been run on samples as small as
five, we excluded any model for which there were fewer
than ten presence points to improve model accuracy.
Moreover, four mosquito species (Ae. dalzieli, Ae. furci-
fer, Ae. luteocephalus and Ae. vittatus) were detected at
all 50 sampling sites over the course of the two years,
and therefore they were treated as a single unit, termed
a “Four-Species Model”, in the Two-Year models. These
constraints resulted in a total of 14 models, including
four Two-Year models for Ae. aegypti, Ae. africanus, Ae.
taylori and the Four Species group; five November-Only
models for Ae. dalzieli, Ae. furcifer, Ae. luteocephalus,
Ae. taylori and Ae. vittatus in 2009; and five November-
Only models for Ae. dalzieli, Ae. furcifer, Ae. luteocepha-
lus, Ae. taylori and Ae. vittatus in 2010.

Model implementation

We fitted our models using the following settings for
background (i.e. locations for which presence was
unknown), features (i.e. mathematical transformations
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of the environmental predictor variables), regularization,
sampling bias (i.e. more intense sampling of some envir-
onmental conditions than others), model output and
model evaluation [64]. The entire study area was chosen
as background, because no information was available to
justify limiting the geographic or environmental space in
which the seven species may occur in the study area. Fea-
tures were selected automatically as suggested by Phillips
& Dudik [55] and further supported by numerous test
runs which revealed that, based on their AUROC, models
with automatically selected features performed the same
or better than models with manually selected features.
The default regularization coefficient of 1 was used to se-
lect individual features for each predictor following a
number of model test runs that showed that both smaller
(0.01, 0.1, 0.5) and larger (2, 10) coefficients had higher
AUROC values than the default of 1. Sampling bias was
taken into account through a bias layer in which a value
of 48 was assigned to areas within the original 1 km
sampling buffer around roads and a value of 2 to
areas outside this buffer; these values represent the
number of sampling sites within and outside the buf-
fer, respectively. Each model was run using 15 cross-
validation replicates with 75% of samples used for
training and 25% used for testing. If there were fewer
than 15 data points, the number of replicates equaled
the number of points. Predictions from the 15 model
runs were averaged to produce final maps of species’
relative occurrence rates, in which a pixel’s value
represents the probability that the pixel was in-
cluded in a collection of presence pixels and in
which the values of all pixels in the study area sum
to unity [64, 65]. Relative occurrence rates (i.e.
Maxent’s raw output) were used as recommended
by Merow et al. [64] because they avoid post-
processing assumptions. Model performance was
evaluated using the AUROC statistic, the most
commonly used measure of Maxent model fit [64],
despite its potential pitfalls [66, 67].

The relative importance of variables in predicting
species distributions was evaluated using jackknife es-
timates and both percent contributions and permuta-
tion importance values. Moreover, to assess how well
the models reflected individual species abundance and
CHIKYV risk, we correlated Maxent model outputs for
relative occurrence of a given species (or group of
species) at a given site with that species’ abundance
(mean females/collector/night) as well as total number
of mosquito pools positive for CHIKV (across all spe-
cies) collected at that site. Correlations were tested
using Spearman’s rank correlation, as previous studies
have shown that the association between relative oc-
currence and abundance is often wedge-shaped rather
than linear [68].



Richman et al. Parasites & Vectors (2018) 11:255

Variable selection

To maximize model performance (maximize AUROC),
minimize model overfit (minimize number of variables
in model), and minimize multicollinearity (minimize
correlation among variables in models), we used a
two-step process to select final predictor variables
from the initial pool of 52 environmental variables
described above. In the first step, we selected 18 can-
didate variables from the initial 52 using Pearson's
correlation coefficients (r). From each set of highly
cross-correlated (r > 0.75) variables, we retained one
variable that seemed the most plausible as a biological
predictor of mosquito presence and removed all
others. In addition, we retained all variables that were
not highly cross-correlated (r < 0.75). The threshold
r-value of 0.75 was chosen after Maxent test runs
with variables selected based on arbitrary r cutoffs of
0.6, 0.75 and 0.9. The r threshold of 0.6 was rejected
because variables selected using this threshold re-
sulted in models with substantially lower AUROC
values than models produced with variables selected
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using the other r thresholds. The r threshold of 0.75
was chosen over that of 0.9 because it helped produce
models with similar AUROC values while more dras-
tically reducing multicollinearity. In the second step,
we used an iterative process for each of the 14 spe-
cies distribution models to select between three and
six optimal variables from the 18 candidate variables
for the final models. This process began by running
each of the models using the 18 candidate variables,
removing the least predictive variable (ie. variable
that most decreased the AUROC), running the
models with the new reduced set of predictor vari-
ables, removing the next least predictive variable, and
so forth, until only variables with predictive power
remained.

Results

Mosquito species distributions and overall model
performance

We generated 14 models in total; all models except the
November-Only 2009 model for Ae. furcifer had AUROC

Table 1 AUROC and correlation values for Maxent models. The average AUROC for each model over fifteen replicates and
the standard deviation of those replicates are presented here. Also shown are the Spearman’s rank correlation coefficients (o)
between each model's predicted relative occurrence rate of a species and (i) that species’ abundance and (i) the total
number of pools positive for CHIKV across all species. P-values are listed in parentheses. Boldface text emphasizes statistically
significant correlations (P < 0.01, a = 0.01 to account for multiple testing)

Presence points AUROC o Abundance o CHIKV
Two Year Models
Ae. aegypti 49 0.720 + 0.126 0.13 (0.35) 0.39 (0.005)
Ae. africanus 11 0.769 + 0.201 0.45 (0.001) 0.14 (0.33)
Ae. taylori 45 0682 + 0.130 -0.22 (0.12) 0.44 (0.001)
Four-Species® 50 0.723 £ 0.151 Four-Species: 0.02 (0.89) 0.37 (0.008)
Ae. dalzieli: -0.10 (0.51)
Ae. furcifer: -0.11 (0.47)
Ae.luteocephalus: -0.04 (0.79)
Aewvittatus: -0.10 (0.51)
November 2009 Models
Ae. dalzieli 45 0.744 = 0.127 0.07 (0.64) 0.32 (0.03)
Ae. furcifer 35 0683 + 0.102 0.05 (0.71) 0.18 (0.21)
Ae.luteocephalus 10 0.727 £ 0233 0.45 (0.001) 0.25 (0.07)
Ae.taylori 16 0.773 £ 0.178 0.51 (0.002) 0.56 (< 0.0001)
Ae.vittatus 22 0.820 £ 0.126 0.67 (0.001) 030 (0.17)
November 2010 Models
Ae. dalzieli 42 0.746 = 0.130 0.25 (0.08) 0.50 (0.0002)
Ae. furcifer 30 0.741 £ 0.136 0.30 (0.04) 0.43 (0.0002)
Ae.luteocephalus 10 0.782 £ 0218 0.47 (0.0007) 0.24 (0.09)
Ae.taylori 17 0.786 +£0.190 0.63 (< 0.0001) 0.45 (0.009)
Ae.vittatus 12 0.811 +0.120 0.46 (0.0007) 0.01 (0.92)

*The Four-Species model includes the four species that were present at all 50 sites: Ae. dalzieli, Ae. furcifer, Ae. luteocephalus, and Ae. vittatus. Correlations between
the model’s predicted relative occurrence rate and both the four species’ overall combined abundance as well as the individual species’ abundances are shown.
To be conservative, we only tested the correlation of the four species together against number of CHIKV pools; however, individual species correlations are shown

in the November-Only models
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a Range:0 to 0.00267
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all 50 sites (Ae. dalzieli, Ae. furcifer, Ae. luteocephalus and Ae. vittatus)

Fig. 5 Results of the Two-Year models. a Ae. aegypti. b Ae. africanus. c Ae. taylori. d Four-Species model for the four species that were present at

values above 0.7 (Table 1). The relative occurrence rate
varied between species and between time periods
(Figs. 5, 6 and 7), but three general patterns emerged.
First, ten models revealed a pronounced area of high
relative mosquito occurrence rates between the vil-
lages of Tenkoto and Ngary. These ten models
include the Two-Year Ae. aegypti, Ae. taylori and
Four-Species (Ae. dalzieli, Ae. furcifer, Ae. luteocepha-
lus and Ae. vittatus) models (Fig. 5a, ¢ and d, re-
spectively); the November-Only Ae. dalzieli, Ae.
furcifer, Ae. taylori and Ae. vittatus models using data
from 2009 (Fig. 6a, b, d and e, respectively); and the
November-Only Ae. dalzieli, Ae. furcifer and Ae. tay-
lori models using data from 2010 (Fig. 7a, b and d,
respectively). Secondly, five of these ten models with
a hotspot around Tenkoto/Ngary also revealed a dis-
tinct area of high relative mosquito occurrence rates
south of the village of Itato. These five models in-
clude the Two-Year Ae. aegypti and Four-Species models
(Fig. 5a and d, respectively) and the November-Only Ae.
furcifer, Ae. taylori and Ae. vittatus models using data

from 2009 (Fig. 6b, d and e, respectively). Thirdly, a group
of three different models showed a less pronounced
though still high relative mosquito occurrence rate
north, northeast, and southwest of the village of Nde-
bou. These three models include the Two-Year Ae.
africanus model (Fig. 5b) and the November-Only Ae.
luteocephalus models using data from 2009 and from
2010 (Figs. 6¢ and 7c, respectively).

Environmental factors associated with mosquito presence
The 11 variables used in the final models (Table 2)
fall into three groups: (i) indicators of landscape
fragmentation (distance from any forest patch, dis-
tance from medium to large forest patches, distance
from large forest patches, patch size and distance
from patch edge); (ii) rainfall/vegetation cover dur-
ing the rainy season (precipitation of the wettest
quarter, mean NDVI for 2009 and 2010 for October
and November, range of NDVI for 2009 and 2010
rainy seasons between July and December, range of
NDVI for October and November 2009 and 2010);
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Fig. 6 Results of the November-2009-Only models. a Ae. dalzieli. b Ae. furcifer. ¢ Ae. luteocephalus. d Ae. taylori. e Ae. vittatus. Aedes aegypti and Ae.
africanus were detected at fewer than ten sites for this time period and were excluded from analysis
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and (iii) topography/microclimate (elevation, slope,
aspect). Of the 14 models, all included variables
from at least two of these groups and all also used
two or more landscape fragmentation variables.
Three indicators of landscape fragmentation were
the most commonly used explanatory variables:
patch size (11 models), distance from large forest
patches (ten models), and distance from patch edge
(seven models) (see Additional file 1: Table S1 for
the range in patch sizes and other variables used in
the models and Additional file 2 for the response
curves that show how each variable affected the
Maxent predictions in each of the models). The
mean NDVI for October/November of 2009 and

2010 was the most important precipitation/vegeta-
tion variable and included in six models. All other
variables were used less frequently and each of the
topography/microclimate variables was only relevant
in a single model each. Temperature did not explain
the distribution of mosquito species in any of the 14
models.

Correlation of predicted mosquito distributions with
mosquito and CHIKV abundance

The Two-Year Four-Species model was neither signifi-
cantly correlated with the individual abundance of each
species in the model (Ae. dalzieli, Ae. furcifer, Ae. luteo-
cephalus, Ae. vittatus) nor the overall, combined
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Fig. 7 Results of the November-2010-Only models. a Ae. dalzieli. b Ae. furcifer. ¢ Ae. luteocephalus. d Ae. taylori. e Ae. vittatus. Aedes aegypti and Ae.
africanus were detected at fewer than ten sites for this time period and were excluded from analysis
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abundance of the four species (Table 1; see Additional
file 3: Tables S2, S3 and S4 for mosquito abundance data
for all months, November 2009 and November 2010, re-
spectively). However, the model showed a significant
positive correlation with the total number of mosquito
pools positive for CHIKV. Of the three species that were
modeled individually in Two-Year models (Ae. aegypti,
Ae. africanus, Ae. taylori) only the Ae. africanus model
was significantly correlated with mosquito abundance.
However, that model was not correlated with number of
CHIKV-positive pools. Both the Ae. aegypti and Ae. taylori
models showed a significant positive correlation with
number of CHIKV-positive pools.

Of the ten individual species in November-Only 2009
and November-Only 2010 models, three, i.e. Ae. luteoce-
phalus, Ae. taylori and Ae. vittatus, were significantly
correlated with abundance during both years (Table 1).
Focusing on 2009, the year of the CHIKV amplification,
only the Ae. taylori model was correlated with the num-
ber of CHIKV-positive mosquito pools. The November-
Only 2010 model for Ae. taylori was also correlated with
number of CHIKV-positive mosquito pools.

Discussion
Vector-borne disease distributions have been suc-
cessfully predicted using ecological niche modeling
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Table 2 General magnitude and direction of influence of variables used in the final Maxent models. The numbers indicate the
variables’ relative contributions to the final models expressed as a percent contribution (regular numbers) and permutation

importance (italicized numbers)

Two Year Model

November-Only 2009 Model November-Only 2010 Model

Aeae Aeaf Aeta 4S Aeda Aefu Aelu Aeta Aevi Aeda Aefu Aelu Aeta Aevi
Distance from any forest patch - - - - -
26.2 273 339 264 239
30.6 358 422 396 211
Distance from medium to large forest patches cplx cplx  cplx cplx  cplx
19.5 207 224 172 327
308 31.9 343 33.0 487
Distance from large forest patches cplx + cplx cplx  + + + cplx  + +
388 522 387 292 319 393 429 353 362 11.6
337 494 362 308 228 487 258 253 14.6 7.2
Distance from patch edge - - - - - - - -
303 536 177 122 194 243 149 248
273 358 141 191 276 190 154 213
Patch size - - - - - - - - - -
248 375 233 192 191 329 320 298 337 146
235 383 195 11.2 34.9 283 26.0 198 373 105
Mean NDVI for 2009 and 2010 October-November cplx + + + + - -
47.8 292 378 94 6.3 123 331
506 23.7 499 58 19.8 192 575
Range of NDVI for 2009 and 2010 rainy seasons - -
84 84
15.9 3.1
Precipitation of the wettest quarter cplx  + cplx + cplx
169 363 17.3 14 11.8
120 311 12.2 81 5.0
Elevation +
18.3
16.3
Aspect +
10.1
89
Slope +
183
0.0

Abbreviations: Ae ae Ae. aeygpti, Ae af Ae. africanus, Ae da Ae. dalzieli, Ae fu Ae furcifer, Ae lu Ae.luteocephalus, Ae ta Ae. taylori, Ae vi Ae.vittatus; 4S, Four-Species

Model (includes the four species, i.e. Ae. dalzieli, Ae. furcifer, Ae. luteocephalus and Ae. vittatus, that were present at all 50 sites)
Notes: + indicates a generally positive relationship and - a generally negative relationship between mosquito site suitability and predictor variables; cplx indicates
a complex relationship that shifts between positive and negative as the predictor variable value increases

[54, 58, 69-73] and such modeling has led to more
effective implementation of vector control methods
[74]. In the current study, we used Maxent to model
the distribution of seven mosquito vectors of sylvatic
CHIKV in a known focus of sylvatic CHIKV trans-
mission in Senegal. While considerable effort has

been directed toward modeling distributions of the
Aedes mosquito vectors of human-endemic CHIKYV,
dengue virus and Zika virus (e.g. [63, 75, 76]), much
less attention has been paid to the distributions of
the suite of sylvatic Aedes species that maintain the
sylvatic cycles of these viruses.
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The current study spanned two rainy seasons: 2009,
a year in which a CHIKV amplification occurred; and
2010, a year without detectable CHIKV circulation.
One group of models utilized data from both rainy
seasons combined (Two-Year models) to predict rela-
tive occurrence rate of each vector species, while an-
other set of models (November-Only models) utilized
data from the one of the months of peak CHIKV
transmission (November) from 2009 and 2010 separ-
ately. Four of the seven species analyzed (Ae. dalzieli,
Ae. furcifer, Ae. luteocephalus and Ae. vittatus) were
collected from all 50 sites across the two years and
their distribution was modeled collectively in the
Two-Year models, whereas the remaining three spe-
cies (Ae. aegypti, Ae. africanus and Ae. taylori) were
collected from only a subset of the sites and their
distributions were modeled individually. Five of the
seven species (Ae. dalzieli, Ae. furcifer, Ae. luteoce-
phalus, Ae. taylori and Ae. vittatus) were collected in
a minimum of ten sites during both November 2009
and 2010 and modeled individually for these months.
Ae. aegypti in Kédougou comprise the sylvatic subspe-
cies formosus, which differs from the urban-dwelling
Ae. aegypti aegypti in genotype, phenotype, and
behavior [77-79].

In combination, these models predicted three distinct
spatial hotspots in mosquito distributions. First, Ae.
aegypti, Ae. dalzieli, Ae. furcifer, Ae. luteocephalus, Ae.
vittatus and Ae. taylori showed high relative occurrence
rates in a region between the villages of Tenkoto and
Ngary in at least one of the model classes. Secondly, Ae.
aegypti, Ae. vittatus, Ae. luteocephalus, Ae. taylori and
Ae. dalzieli had high occurrence rates south of Itato. Fi-
nally, Ae. africanus and Ae. luteocephalus showed high
occurrence rates in a region near Ndebou. It is intri-
guing that Ae. africanus showed a distinct distribution
from all other species. This suggests that Ae. africanus
differs in environmental preference from the remaining
suite of mosquito vectors. Diallo et al. [23] reported that
Ae. africanus and Ae. aegypti formosus both had a higher
abundance in forest than in other land cover classes in
Kédougou, but Ae. africanus was most abundant in the
forest canopy whereas Ae. aegypti formosus was most
abundant at the forest floor.

The single-species November-Only models also re-
vealed some interesting variation in distributions be-
tween the two study years. The distribution of Ae.
taylori showed a well-defined hotspot near Tenkoto and
Ngary in 2009 but a more diffuse hotspot in 2010. The
Ae. vittatus distribution showed a hotspot near Tenkoto
and Ngary in 2009 but no hotspots in 2010. Some of this
variation likely reflected changes in rainfall: 2009 was a
drier year (94.9 cm of rain) than 2010 (135.9 cm). In
contrast, the hotspot in Ae. [uteocephalus’ distribution
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was stable between the two years. However, the distribu-
tion of Ae. luteocephalus was substantially more diffuse
than other species distributions in November 2009; this
may be because Ae. luteocephalus populations decline
toward the end of the rainy season, and this decline was
particularly abrupt in 2009.

Of the environmental predictors analyzed, landscape
fragmentation measures, especially distance to any forest
patch, distance to large forest patch, distance from patch
edge, and patch size, had particularly large impacts on
mosquito occurrence. As we initially anticipated, occur-
rence of these sylvatic Aedes species decreased with in-
creasing distance from a forest patch. The association of
mosquitoes with forest patches reflects the sylvatic na-
ture of these species. We previously showed that, during
the 2010 amplification of yellow fever virus in Kédou-
gou, villages containing infected mosquitoes pools were
significantly closer to large forest patches than villages
that did not yield virus-positive pools [25]. Moreover,
during the 2011 Zika virus amplification in the region,
we detected Zika virus significantly more often in forests
than in other land cover classes [80]. In contrast to the
current study, models of the anthropophilic vector Aedes
aegypti have found that this species’ distribution is most
closely tied to urban infrastructure [63, 81].

However, and to our surprise, mosquito occurrence
generally increased or showed a complex relationship
with increasing distance from large forest patches. Com-
plex relationships between these two variables were “U”
shaped, with high mosquito occurrence very close to
large forest patches, which declined as distance in-
creased but then spiked again at very large distances
from large forest patches. The large forest patches in the
region were primarily found on mountains, likely be-
cause these were inaccessible for forest clearance. Thus,
there may be confounding effects between altitude and
distance to large forests in this case. Alternatively, col-
lection sites far from large forests may have been in re-
gions of greater fragmentation; as discussed below
mosquito occurrence was enhanced at patch edges.

Mosquito occurrence also decreased with increasing
distance from patch edge, suggesting that borders be-
tween land cover types may represent regions of elevated
risk for arbovirus exposure; patch edges have been previ-
ously identified as a risk factor for pathogen circulation
[82]. Additionally, mosquito occurrence decreased as
patch size increased; this is consistent with a positive ef-
fect of edge habitat as the edge-interior ratio decreased
as patch size increases. These findings indicate that con-
tinued fragmentation of the forests in the study region
for expansion of activities such as agriculture or mining
is likely to increase the risk of sylvatic arbovirus spill-
over, at least until a time where forest patches of ad-
equate size to support sylvatic Aedes species and their
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hosts are eliminated altogether. Importantly, the vector
species modeled here transmit not only sylvatic CHIKV
in the region, but also sylvatic dengue virus, yellow fever
virus and Zika virus [16]. Thus, our findings provide
insight into the environmental risk factors for spillover
of all of these viruses.

As we expected, mosquito occurrence generally
showed a positive association with variables reflecting
precipitation, with the notable exception of Ae. tay-
lori, whose occurrence showed a negative or complex
relationship with increasing precipitation. The associ-
ation with precipitation is no surprise given the
aquatic larval and pupal stages in the life-cycle of
mosquitoes. Schaeffer et al. [83] have previously dem-
onstrated the importance of water dynamics for the
distribution of Ae. africanus and Ae. furcifer in West
Africa using mathematical modeling. Moreover, Alt-
house et al. [16] analyzed the yearly association of
weather variables, vector abundance (Ae. luteocepha-
lus, Ae. taylori and Ae. furcifer) and virus abundance
in a temporally extensive (1972 and 2008) but
spatially limited dataset from Kédougou. Consistent
with our findings, they detected an approximately 1%
increase in mosquito abundance for each one inch in-
crease in annual rainfall in the region. Interestingly,
dengue virus isolations in that study were negatively
associated with rainfall, CHIKV isolations were not
associated with rainfall, and Zika virus isolations were
positively associated with rainfall, revealing the com-
plexity of the transmission dynamics of these viruses
and the value of spatially explicit analyses. It is not-
able in this context that we found that Ae. taylori
distributions most closely correlated with number of
CHIKV positive pools, and that the association be-
tween the distribution of this species and precipita-
tion was complex.

Our models did not find temperature to predict oc-
currence. Temperature is known to be limiting factor
for the mosquito life-cycle: Ae. aegypti require
temperature higher than 10 °C for larval survival [84]
and Ae. vittatus and Ae. aegypti have been found to
still be viable following 4.5 months of exposure to 40
°C temperatures [85, 86]. In the current study area,
the lowest minimum temperature of the coldest
month was 159 °C while the highest maximum
temperature of the hottest month was 40.2 °C. Thus,
the temperatures in the region never exceeded either
the lower or the upper threshold for mosquito viabil-
ity. Temperature also has more subtle effects on rate
and success of mosquito development [87, 88], and
there was substantial variability in temperature across
the study site (Additional file 1: Table S1). However,
this variation did not affect probability of occurrence
for these species, possibly because of their ability to
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behaviorally thermoregulate via selection of resting
sites and oviposition sites.

Having established that mosquito distributions var-
ied across the landscape, we next investigated
whether vector occurrence was correlated with spe-
cies abundance. Previous studies, e.g. [68, 89, 90]
have had mixed success in using Maxent predictions
of ecological suitability of a species to predict that
species’ abundance. In this study we also found con-
siderable variation in the correlation between model
predictions of relative occurrence and empirical mea-
sures of species abundance obtained via human
landing collections; a significant correlation was ob-
tained in only half of the fourteen comparisons.

Our overarching research goal is to predict and con-
trol CHIKV spillover [91, 92]. To achieve this goal it is
critical to be able to predict the distribution of CHIKV
across the landscape. To this end, we found that the dis-
tribution of one species, Ae. taylori, was strongly corre-
lated with the presence of CHIKV in the Two-Year
model, the November-2009 model, and the November-
2010 model. Although the distribution of this species
was most closely associated with CHIKV detection, this
does not necessarily imply that it is the major vector of
this virus. Nonetheless, we have shown that in 2009 Ae.
taylori had the highest infection rate with CHIKV of the
seven mosquito species considered in this study [23].
Diallo et al. [23] implicated Ae. taylori as a vector of the
sylvatic cycle of CHIKV within wildlife but suggested
that Ae. furcifer was the most likely vector of CHIKV
spillover into humans due to this species’ broad distribu-
tion and high parity in villages.

It must be emphasized that vector distribution
models reflect the potential rather than the compre-
hensive and complete distribution of vector [93, 94].
Nonetheless, vector models are usually the most ef-
fective way to model vector-borne pathogens because
vectors have more limited dispersal ranges than their
hosts. Attempts have been made to model vector-
borne pathogen distributions using human cases of
disease (e.g. [95, 96]), but the true distribution of
pathogens in these models may be obscured by the
high mobility of humans, misdiagnosis of the dis-
ease, and asymptomatic infection. Modeling based
on the presence of non-human hosts is even more
difficult, as it requires extensive trapping of wild
vertebrate animals. Our study demonstrates that
hotspots of presence of a particular vector species is
indeed correlated with detection of virus in those
areas. By integrating vector, virus and environmental
data in spatial models, studies such as this facilitate
disease risk analysis and the development and
improvement of vector and virus monitoring and
control efforts [97-99].
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Conclusions

We generated ecological niche models for the Aedes
mosquito vectors of four sylvatic mosquito-borne viruses
(CHIKYV, dengue virus, yellow fever virus, and Zika virus
[92]) in Kédougou, Senegal. These models revealed three
key environmental factors, i.e. proximity to large patches
of forest, land cover patch size and precipitation, that
are strongly associated with the presence of these vec-
tors. Moreover, the distributions of one vector species,
Ae. taylori, was highly correlated with detection of
CHIKV. It should therefore be possible to utilize data on
the environmental factors and vector distributions listed
above to predict the location of future CHIKV amplifica-
tions in the region.
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