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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Antiviral drugs are an important measure of control for influenza in the population, particu-

larly for those that are severely ill or hospitalised. The neuraminidase inhibitor (NAI) class of

drugs, including oseltamivir, have been the standard of care (SOC) for severe influenza ill-

ness for many years. The approval of drugs with novel mechanisms of action, such as balox-

avir marboxil, is important and broadens potential treatment options for combination

therapy. The use of antiviral treatments in combination for influenza is of interest; one poten-

tial benefit of this treatment strategy is that the combination of drugs with different mecha-

nisms of action may lower the selection of resistance due to treatment. In addition,

combination therapy may become an important treatment option to improve patient out-

comes in those with severe illness due to influenza or those that are immunocompromised.

Clinical trials increasingly evaluate drug combinations in a range of patient cohorts. Here,

we summarise preclinical and clinical advances in combination therapy for the treatment of

influenza with reference to immunocompromised animal models and clinical data in hospi-

talised patient cohorts where available. There is a wide array of drug categories in develop-

ment that have also been tested in combination. Therefore, in this review, we have included

polymerase inhibitors, monoclonal antibodies (mAbs), host-targeted therapies, and adjunc-

tive therapies. Combination treatment regimens should be carefully evaluated to determine

whether they provide an added benefit relative to effectiveness of monotherapy and in a

variety of patient cohorts, particularly, if there is a greater chance of an adverse outcome.

Safe and effective treatment of influenza is important not only for seasonal influenza infec-

tion, but also if a pandemic strain was to emerge.

Introduction

What is the role of antiviral drugs for influenza?

Influenza viruses belong to the OAU : PleasenotethatasperPLOSstyle; phylum; order; family; etc:; shouldnotbeitalicized:rthomyxoviridae family, are divided into 4 types (A, B, C,

and D), and cause a respiratory illness in humans [1]. Seasonal epidemics cause significant lev-

els of morbidity and mortality worldwide, and pandemics can occur at irregular intervals and

further exacerbate the burden on human health (1918, 1957, 1968, and 2009). Spillover of
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zoonotic infections in humans, including H5N1 and H7N9, are also a major concern [2]. Vac-

cination and antiviral drugs are 2 control measures for influenza; annual vaccination programs

for influenza are well established in many countries; however, vaccine formulation must antic-

ipate the virus that will circulate in an upcoming influenza season based on influenza activity

in the reciprocal hemisphere of the world. Antigenic mismatch between circulating viruses

and vaccine strains can occur [3] and vaccine responses elicited in high-risk groups, including

the elderly and immunocompromised persons, may be inadequate [4,5]. Vaccine production

to novel influenza strains is estimated to require 6 months; during this time, antiviral drugs

may be of significant public health benefit. Antiviral drugs are important for the treatment of

patients that are critically ill or hospitalised or can be utilised to treat spillover zoonotic infec-

tions [6].

Currently approved antiviral drugs for influenza

Three classes of antiviral drugs are currently approved for the treatment of influenza. The ada-

mantanes target the M2 proton channel of influenza A viruses and were first identified in 1964

but have limited clinical use as nearly 100% of viruses have an M2 substitution (S31N) that

confers resistance [7].

The neuraminidase inhibitors (NAIs) inhibit the enzymatic function of the neuraminidase

(NA) protein and were formulated with rational drug design. The NAIs include oseltamivir,

zanamivir, peramivir and laninamivir; these have been licensed since the early 2000s and are

widely used to treat influenza [8,9]. The NA/H275Y amino acid substitution is a major path

for viral resistance to oseltamivir.

Baloxavir marboxil is a polymerase inhibitor and targets the endonuclease function of the

PA protein [10]. The drug was first licensed in 2018 in Japan and the United States and contin-

ues to be licensed in many countries [11,12]. In clinical trials, baloxavir has been shown to be

more effective than oseltamivir at reducing viral shedding in patients [13].

Why are we interested in antiviral combinations?

Reduced selection of antiviral resistance mutations. Resistant viruses have been

detected for all licensed influenza antivirals and can lead to poor clinical outcomes in patients

[14,15], viral spread in geographic clusters [16,17], or if sufficiently fit can circulate globally

and limit the usefulness of antiviral treatment [18]. Combination antiviral therapies for human

immunodeficiency virus (HIV) and hepatitis C virus (HCV) have been shown to decrease the

selection of resistant viruses, as drug combinations with different mechanisms of action should

remain effective if viruses with drug resistance emerge [19–22]. Combination therapy may be

a useful option for immunocompromised or severely ill patients [23–25], as antiviral therapy

in these patients over extended periods (several weeks or months) can increase the probability

of selecting for resistant viruses [26–30].

Correlation of in vitro synergy with clinical outcomes. In preclinical studies, the effect

of drug interactions can be defined as antagonistic, additive, or synergistic. Antagonistic or

synergistic effects are lower or greater, respectively, than the sum of the drug effects alone—

which would be additive [31]. Combinations of antiviral drugs may show synergy on the

reduction of viral replication in cell-based or preclinical studies; however, in clinical trials, the

primary endpoint of antiviral drug treatment is often based on time to the improvement of

clinical symptoms while reduction in viral titre is a secondary endpoint. The correlation of

symptoms and viral load in patients relative to monotherapy is an important consideration as

higher viral loads can be associated with increased severity of influenza symptoms and the con-

verse with lower viral loads [32–35].
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Reduction in severe outcomes or complications of infection. In patients at risk of com-

plications due to influenza, severe outcomes or death may be averted with antiviral treatment.

For example, studies in pregnant women and hospitalised children have shown that timely

antiviral treatment could greatly reduce the length of hospital stay or progression to severe dis-

ease [36,37]. Drug combinations are increasingly evaluated with standard of care (SOC),

which is important to understand how severe outcomes with combination therapy compare to

monotherapy [38–40].

Reduced drug dose that results in decreased drug toxicity or adverse effects. Drug

interactions can occur at several stages including drug absorption, elimination, or metabolism.

Adverse interactions between drugs can lead to undesirable effects, and therefore, drug–drug

interactions must be carefully assessed [41]. Dose-related drug effects may be reduced by com-

bining antiviral drugs if a lower dose of either drug can be administered [42].

Why is it important to consider different population groups for clinical

trials of antiviral treatments?

High-risk groups include the elderly, pregnant women, patients on immunosuppressive treat-

ments, and individuals with chronic conditions such as obesity, asthma, and diabetes. Pro-

longed viral replication and severe disease may increase the risk of complications and death in

these populations. Diverse medical histories pose a challenge for the design of randomised

controlled trials in hospitalised patients, and it may be considered unethical to withhold the

SOC from a severely ill patient; investigational drugs may therefore be added to SOC and com-

pared to SOC alone [43].

Purpose of this review

In this review, we summarise the available data on drugs used in combination to treat influ-

enza. Due to limited clinical use, the adamantanes are excluded and NAI combinations with

other NAI drugs are not discussed. However, NAIs are often SOC and combined with investi-

gational antivirals and discussed in this context. Some excellent reviews have been published

on adamantanes and NAIs in combination therapies [44–47]. This review will summarise pre-

clinical data, including immunosuppressed animal models, and clinical trials including in

high-risk patient cohorts for direct-acting influenza antivirals, monoclonal antibodies (mAbs),

and host-targeted therapies.

Viral polymerase inhibitors

There are 3 major polymerase inhibitors in clinical development, baloxavir (formerly S-

033188), which inhibits the polymerase acidic (PA) protein [48]; favipiravir (formerly T-705),

which is a purine nucleoside analogue that blocks the function of polymerase basic protein 1

(PB1) [49]; and pimodivir, which inhibits the polymerase basic protein 2 (PB2) (Table 1) [50].

Baloxavir is active against influenza A and B viruses, and pimodivir is only active against influ-

enza A due to structural differences, whereas favipiravir has broad-spectrum antiviral activity

against RNA viruses including filoviruses, arenaviruses, coronaviruses, and bunyaviruses [51–

53].

For baloxavir, resistant viruses have been detected in adult patients (>12 years: 1.1% to

14.6%) and children (<12 years: 18.9% to 52.2%) and is most commonly associated with PA/

I38 amino acid substitutions, the most frequent variant is PA/I38T [54]. Several resistant

viruses to pimodivir were identified in clinical trials including S324C, K376R, F325L, and

M431L/R/V in the PB2 protein [55,56].
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Baloxavir in vitro and preclinical studies

In vitro and in vivo synergy of baloxavir and the NAIs has been shown for A(H1N1), A

(H1N1pdm09), A(H3N2), and influenza B viruses [57,58]. Fukao and colleagues studied

delayed treatment (96 hours postinfection) in a mouse model with baloxavir, oseltamivir, or

the combination of both drugs using a lethal dose of influenza A/PR/8/34 [58]. Combination

therapy was just as effective as monotherapy with 15 or 50 mg/kg BID (twice a day) of baloxa-

vir for reduction of viral lung titres and mouse lung pathology [58]. However, for reduction in

mortality baloxavir (0.5 mg/kg) + oseltamivir (either 10 or 50 mg/kg) was more effective than

monotherapy.

Table 1. Summary of antiviral drugs and adjunctive therapies used in combination treatment in clinical trials.

Drug name Mechanism of action Route of

administration

Typical monotherapy dose Clinical trial/

licensed

Drug combinations tested in clinical trials

Polymerase inhibitors
Baloxavir

marboxil

PA endonuclease

inhibitor

Oral 40-mg single dose (weight < 80

kg) or 80 mg single dose

(weight > 80 kg)

Licensed SOC NAIs: hospitalised participants with

severe influenza (NCT03684044)

Favipiravir Purine nucleoside

analogue

Oral (intravenous

under development)

Day 1: 1,800 mg BID

Days 2 to 5: 800 mg BID

Restricted

licensure

Oseltamivir: pharmacokinetics for severe

influenza (NCT03394209)

Oseltamivir: prospective study in patients

critically ill with influenza

Pimodivir PB2 inhibitor Oral (intravenous

under development)

600 mg; BID for 5 days III Oseltamivir: pharmacokinetic study in

healthy volunteers (NCT02262715)

Oseltamivir: patients with uncomplicated

influenza (NCT02342249)

Oseltamivir: hospitalised adolescents

(NCT03376321)

Oseltamivir: high-risk outpatients

(NCT03381196)

mAbs
VIS410 Influenza A HA stem Intravenous Single fixed dose II Oseltamivir: hospitalised adults with

influenza A infection requiring oxygen

support (NCT03040141)

MHAA4549A Influenza A HA stalk Intravenous Single fixed dose II Oseltamivir: patients with severe influenza A

infection (NCT02293863)

MEDI8852 Influenza A HA stem Intravenous Single fixed dose IIa Oseltamivir: patients with uncomplicated

influenza (NCT02603952)

Anti-inflammatory
Celecoxib Nonsteroidal anti-

inflammatory drug

Oral 200 mg; once a day III (for

influenza

treatment)

Oseltamivir: severe influenza A infection

(NCT02108366)

Diltiazem Calcium channel

blocker

Oral 60 mg; TID II (for influenza

treatment)

Oseltamivir: severe influenza A infection

(NCT03212716)

Host targeted
Nitazoxanide HA glycosylation Oral 300 mg; BID III Oseltamivir: acute uncomplicated influenza

(NCT01610245)

Antivirals + antibiotics
Azithromycin Antibiotic Oral 500 mg; TID Not listed Oseltamivir: high-risk seasonal influenza

(UMIN000005371)

Clarithromycin Antibiotic Oral 500 mg; once a day II (for influenza

treatment)

Naproxen and Oseltamivir: hospitalised

pediatric patients (NCT04315194)

BID, bis in die (twice a day); mAb, monoclonal antibody; NAI, neuraminidase inhibitor; SOC, standard of care; TID, ter in die (3 times a day).

https://doi.org/10.1371/journal.ppat.1010481.t001
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In an immunodeficient mouse model, antiviral treatment with favipiravir, baloxavir, or

oseltamivir was commenced 48 hours postinfection with a mouse-adapted A/Switzerland/

9715293/2013 (H3N2) [59]. Significant weight loss was observed with oseltamivir (20 mg/kg

BID) and favipiravir (100 mg/kg BID) monotherapy, combination treatment prevented weight

loss similarly to baloxavir (20 mg/kg BID) monotherapy. Baloxavir monotherapy, oseltamivir

+ baloxavir and oseltamivir + favipiravir + baloxavir reduced mortality equally, but oseltamivir

and favipiravir monotherapy offered no protection [59]. Mouse viral lung titres reduced the

most with treatments that contained baloxavir (including monotherapy); however, favipiravir

or oseltamivir were not synergistic in reducing lung titres when combined with baloxavir [59].

Viruses recovered from 50% of the mice (2 of 4) treated with oseltamivir had an NA/E119V

substitution, but this was not identified with combination treated mice [59].

A serial passage experiment in mice compared the effect of treatment with baloxavir mono-

therapy, oseltamivir monotherapy or baloxavir + oseltamivir in combination on selection of

resistant viruses [60]. With oseltamivir monotherapy, no drug-resistant viruses were identified

and for baloxavir monotherapy 2 of 3 mice had viruses with PA/I38X substitutions. For balox-

avir + oseltamivir combinations, an NA/N274Y substitution was identified, but no amino acid

substitutions were noted in the PA protein [60].

Baloxavir clinical studies

The combination of baloxavir with SOC NAIs is of particular interest as both drugs are

licensed and available in many countries (Table 1). No significant adverse effects or meaning-

ful drug–drug interactions were observed in 18 healthy patients when baloxavir or oseltamivir

monotherapy were compared to baloxavir + oseltamivir combination therapy. [61]. A retro-

spective study in Japan measured reduction of mortality in patients hospitalised with influenza

and treated with peramivir + baloxavir [62]. The mortality rate was 4.5% in the peramivir only

treatment group (132 patients) and none in the peramivir + baloxavir group (10 patients). A

larger multicentre study would be required to confirm this; however, this study suggests that

this combination may reduce patient mortality.

A Phase III clinical trial (Flagstone; NCT03684044) conducted in hospitalised patients with

severe influenza compared the combination of SOC NAIs with baloxavir or placebo (Table 2)

[40]. Combination treatment did not add clinical benefit compared to NAI alone; the median

time to clinical improvement was 97.5 hours for baloxavir + NAI and 100.2 hours for SOC

[40]. A secondary endpoint of the study was time to cessation of viral shedding; the median

time was 23.9 hours for baloxavir + NAI and 63.7 hours for SOC, respectively [40]. Dual drug

resistance (NA/H275Y + PA/I38T) emerged in viruses isolated from 2 immunocompromised

patients treated with an NAI (oseltamivir) in combination with baloxavir [40].

Favipiravir in vitro and preclinical studies

Synergistic interactions between favipiravir and the NAIs have been shown in vitro [63]. Smee

and colleagues showed in vivo synergy in mice infected with A(H1N1) and A(H3N2) when

treated 24 hours postinfection with favipiravir + oseltamivir showed synergy, but there was

only a small improvement in survival with A(H5N1) challenge [64].

Delayed (96 hours postchallenge) treatment with favipiravir and peramivir twice daily for 5

days in mice infected with A/California/4/2009 (A(H1N1pdm09)) showed synergistic interac-

tions with favipiravir at 20 mg/kg combined with 0.025, 0.05, or 0.1 mg/kg/day of peramivir

[65]. The combination of peramivir + favipiravir was beneficial at suboptimal doses and led to

greater improvement for survival and body weight, but not for lung viral titres relative to

monotherapy with higher doses [65]. Favipiravir + peramivir treatment in mice infected with
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Table 2. Clinical trials with antiviral or other drugs used in combination for the treatment of influenza.

Drug combination Clinical

trial

phase

Target population/eligibility

criteria (actual enrollment)

Treatment intervention Primary outcome measures ClinicalTrials.

gov NTC

identifier

Baloxavir + SOC NA

(oseltamivir,

zanamivir, or

peramivir)

III Hospitalised patients with severe

influenza, ages 12 years or older

(n = 373)

At least 2 doses of baloxavir

marboxil (day 1 and 4), third dose

on day 7 for participants that had

not improved based on predefined

criteria. Alternatively, a placebo

comparator is administered on the

same schedule as baloxavir marboxil.

Baloxavir marboxil or placebo are

given in combination with local SOC

NAI (oseltamivir, zanamivir, or

peramivir)

Time to clinical improvement based

on hospital discharge or NEWS2

NCT03684044

Favipiravir

+ oseltamivir

II Patients with severe influenza,

aged 18 years and older (n = 34)

For the low-dose group, favipiravir

1,600-mg BID for 1 day and then on

days 2 to 9 600-mg BID in

combination with oseltamivir 75-mg

BID for 10 days.

For the high-dose group, favipiravir

1,800-mg BID for 1 day and then on

days 2 to 9 800-mg BID in

combination with oseltamivir 75-mg

BID for 10 days

The number of patients that reach

the minimum plasma concentration

of favipiravir

NCT03394209

VX-787 (pimodivir)

+ oseltamivir

I Healthy participants, aged 18 to

55 years (n = 38)

VX-787 (pimodivir), or a matching

placebo, 600-mg BID on day 1 to 4,

and 1 dose 600 mg on day 5.

Compared to oseltamivir, 75-mg

BID on day 1 to 4, 1 dose 75 mg on

day 5. VX-787 and oseltamivir given

in combination at doses and times

described for monotherapy

To assess potential drug–drug

interaction between VX-787

administered with oseltamivir in

healthy participants

NCT02262715

VX-787 (pimodivir)

+ oseltamivir

IIb Adults with uncomplicated

seasonal influenza, aged 16 to 84

years (n = 292)

VX-787 (pimodivir) 300-mg BID

with placebo BID for 5 to 6 days.

VX-787 600-mg BID with placebo

BID for 5 to 6 days.

VX-787 600-mg BID in combination

with oseltamivir 75-mg BID for 5 to

6 days

AUC of nasal viral load on day 8,

measured by qRT-PCR

NCT02342249

Pimodivir

+ oseltamivir

II Adult and elderly patients

hospitalised with influenza, aged

18 to 85 (n = 102)

JNJ-63623872 (pimodivir) 600-mg

BID, or a matching placebo, in

combination with oseltamivir 75-mg

BID for 7 days

Maximum and minimum observed

plasma concentration of pimodivir

and area under the plasma

concentration–time curve

NCT02532283

Pimodivir + SOC III Adolescent, adult, and elderly

patients hospitalised with

influenza A, ages 13 to 85

(n = 334)

Pimodivir 600-mg BID for 5 days, or

a matching placebo, on days 1

through 5 and 1 dose day 6

administered with local SOC

Clinical status based on number of

participants with hospital recovery

scale on day 6

NCT03376321

Pimodivir + SOC III Adolescent, adult, and elderly

participants that are not

hospitalised with influenza A,

but at risk of complications, age

13 to 85 years (n = 553)

Pimodivir 600-mg BID for 5 days, or

a matching placebo, on days 1

through 5 and 1 dose day 6

administered with local SOC

Time to resolution of 7 primary

influenza-related symptoms as

assessed by the PRO and measure

flu-intensity and impact

questionnaire (Flu-iiQ)

NCT03381196

VIS410 + oseltamivir II Hospitalised patients infected

with Influenza A that require

oxygen, age 18 years or older

(n = 89)

Either “low dose” or “high dose” or

matching placebo of VIS410

intravenously in combination with

oseltamivir

(1) Clinical outcome assessed by

ordinal day 7 scores between

treatment groups. (2) Safety and

tolerability of intravenous doses of

VIS410 when administered in

combination with oseltamivir in

hospitalised subjects with influenza

A infection. (3) The proportion of

subjects with adverse events

following administration of VIS410

NCT03040141

(Continued)
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oseltamivir-resistant A(H1N1pdm09) virus showed monotherapy with either drug resulted in

severe weight loss in all mice [66]. The combination was synergistic at higher doses of favipira-

vir (20 and 40 mg/kg) to reduce mortality. Favipiravir monotherapy (40 mg/kg) was as effec-

tive as favipiravir (20 mg/kg) + peramivir (50 or 100 mg/kg) in combination [66]. Delayed

treatment of A(H5N1) infection with favipiravir (50 mg/kg/day) + oseltamivir (20 mg/kg/day)

protected 100% of mice from mortality and reduced weight loss more effectively than mono-

therapy [67]. Several substitutions emerged following treatment in the PB1 gene, but these

mutations did not change the in vitro drug susceptibility [67].

Treatment was commenced 48 hours postinfection with oseltamivir (20 mg/kg) and a low

or high dose of favipiravir (20 or 40 mg/kg/day) twice daily for 5 or 10 days in mice immuno-

suppressed with cyclophosphamide treatment and infected with A(H1N1pdm09) [68]. A low

dose of favipiravir + oseltamivir did not reduce mortality in mice compared to monotherapy;

however, lung viral titres were lower on days 8 and 12 postinfection. A high dose of favipiravir

(40 mg/kg/day) resulted in equivalent survival rates in all treatments (monotherapy and

Table 2. (Continued)

Drug combination Clinical

trial

phase

Target population/eligibility

criteria (actual enrollment)

Treatment intervention Primary outcome measures ClinicalTrials.

gov NTC

identifier

MEDI8852

+ oseltamivir

IIa Adults with uncomplicated

influenza, age 18 to 65 years

(n = 126)

Intravenous MEDI8852 750 mg or

MEDI8852 3,000 mg or matching

placebo on day 1 in combination

with oseltamivir 75-mg BID from

day 1 to 5

(1) Number of participants with

influenza symptoms on day 1 to 10

and then day 10 to 13. (2) Number of

participants with treatment-

emergent adverse events, treatment-

emergent serious adverse events or

treatment emergent adverse events of

special interest

NCT02603952

MHAA4549A

+ oseltamivir

II Patients with severe influenza A

infection, age 18 years or older

(n = 168)

Intravenous MHAA4549A 3,600 mg

or 8,400 mg or matching placebo in

combination with oseltamivir 75 or

150-mg BID for 5 days

(1) Percentage of participants with

adverse events. (2) Number of

participants with anti-therapeutic

antibodies to MHAA4549A during

and following administration of

MHAA4549A. (3) Time to

normalisation of respiratory function

NCT02293863

Celecoxib III Severe influenza A, age 18 years

or older (n = 107)

Celecoxib 200 mg daily, or a

matching placebo, in combination

with oseltamivir 75-mg BID for 5

days

Mortality rate at 28 days mortality

from hospitalisation

NCT02108366

Diltiazem II Severe influenza A, age 18 years

or older (n = 300)

Diltiazem 60 mg, 3 times a day, in

combination with oseltamivir

150-mg BID, for 10 days. Or a

placebo of diltiazem with

oseltamivir, 150-mg BID, for 10 days

Percentage of alive patients without

detection of influenza A virus by

RT-PCR in nasopharyngeal swabs

NCT03212716

Nitazoxanide III Acute uncomplicated influenza,

age 13 to 65 years (n = 1941)

Nitazoxanide 300 mg in

combination with oseltamivir 75-mg

BID for 5 days or either drug alone

at the same dose administered with

placebo

Time to resolution of all clinical

symptoms of influenza as reported

by the subjects

NCT01610245

Clarithromycin II Hospitalised pediatric influenza

patients, 1 to 18 years (n = 54)

Clarithromycin (500 mg), naproxen

(250 mg), oseltamivir (adjusted by

weight 30 to 75 mg) combination

therapy to that of oseltamivir

treatment alone

Time to resolution of fever and

decrease of the PRESS

NCT04315194

TheabbreviationlistofTable2hasbeenupdated:Pleaseverifythatallentriesarecorrect:AUCAU : PleasedefineAUCintheabbreviationlistofTable2ifapplicable=appropriate:, Area Under the Curve; BID, bis in die (twice a day); NAI, neuraminidase inhibitor; NEWS2, national early warning score 2; PRESS, Pediatric Respiratory Severity

Score; PRO, patient-reported outcome; qRT-PCR, quantitative reverse transcription PCR; SOC, standard of care; TID: ter in die (1 times day).

https://doi.org/10.1371/journal.ppat.1010481.t002
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combination therapy) [68]. Oseltamivir + favipiravir reduced lung viral titres to a similar mag-

nitude as favipiravir monotherapy, and both were more effective than oseltamivir alone [68].

Favipiravir clinical studies

A Phase IIa, open-label trial tested pharmacokinetics of favipiravir and oseltamivir in combi-

nation in patients with severe influenza [39,69]. The dosing regimens were well tolerated; how-

ever, patients may require higher drug doses to achieve the desired threshold for favipiravir

concentration in plasma [69].

A separate retrospective analysis from this study compared oseltamivir + favipiravir treat-

ment (NCT03394209) to oseltamivir alone (40 and 128 patients, respectively (Table 2)) [69].

Both treatment groups had the same median time to clinical improvement; however, combina-

tion treatment reduced the number of severe outcomes compared to monotherapy [69]. Ten

days posttreatment, the proportion of patients with no detectable viral RNA was 67.5% and

21.7% for combination and oseltamivir monotherapy, respectively [69].

In a case study of a severely immunocompromised child with influenza B virus infection, a

combination of oseltamivir, zanamivir, and nitazoxanide failed to clear infection [70]. With an

alternative treatment combination of favipiravir, oseltamivir and zanamivir, the patient tested

negative for influenza for 2 months, after which influenza B was detected again [70]. The infec-

tion was cleared after further treatment with favipiravir + zanamivir for 2 weeks [70]. This

combination failed to prevent the emergence of zanamivir resistance; the resistant virus repre-

sented a proportion of the virus selected following treatment [70].

Pimodivir in vitro and preclinical studies

In vitro studies have shown synergy between pimodivir and oseltamivir, zanamivir, or favipir-

avir [71]. To our knowledge, in vivo studies have only assessed pimodivir monotherapy

[71,72].

Pimodivir clinical studies

A Phase Ia safety and pharmacokinetic study with pimodivir and oseltamivir shown no clini-

cally relevant drug–drug interactions or safety concerns (Table 2) [73].

A Phase II double-blind trial in patients with uncomplicated influenza compared 3 treat-

ment groups; pimodivir monotherapy at either 300 or 600 mg and the combination of pimodi-

vir (600 mg) + oseltamivir (75 mg) (NCT02342249) (Table 2) [74]. The time to viral clearance

relative to placebo based on qPCR was reduced by 31%, 13%, and 18% for oseltamivir + pimo-

divir, 300 mg pimodivir, and 600 mg pimodivir, respectively [74]. The primary endpoint of

reduction of viral load was met, and the study was terminated early [74]. Viruses with PB2 sub-

stitutions such as S324K/N/R, F325L, or reduced susceptibility to pimodivir were detected in

6.9%, 10.5%, and 1.8% of 300 mg pimodivir, 600 mg pimodivir, and pimodivir +oseltamivir

patients, respectively [56].

A Phase II clinical trial compared combination treatment with pimodivir + oseltamivir ver-

sus oseltamivir alone in hospitalised patients with influenza A(NCT02532283) (Table 2) [38].

Pharmacokinetics, the primary endpoint, in elderly and nonelderly patients was the time to

patient-reported symptom resolution; for pimodivir + oseltamivir was 72.45 hours versus

94.15 hours for the oseltamivir group [38]. Viral clearance was faster in the pimodivir + oselta-

mivir group than the oseltamivir monotherapy group (72 and 96 hours, respectively) [38].

Two Phase III placebo-controlled trials were initiated for pimodivir, one was in hospitalised

adolescents and adults (NCT03376321) and the second was in high-risk outpatients

(NCT03381196) (Table 2). The study in hospitalised patients was terminated early based on
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interim analysis, but the results have not been published yet. Summary results for both trials

are available on the ClinicalTrials.gov website. The primary outcome was clinical status based

on a hospital recovery scale; there was no difference between pimodivir and SOC treatment

(based on the local practice; either antivirals or supportive care) for avoiding hospitalisation

(48.03% and 47.59%, respectively) or for other measures on the recovery scale. The time to

hospital discharge in the pimodivir group was 113 hours and 108 hours for SOC. The viral

load over time, measured by qPCR, showed no significant differences between the treatment

groups. The viruses from study participants were also analysed for “mutations of interest” in

the NA and PB2 genes that are known to confer drug resistance. Although the specific amino

acid changes are not listed, participants treated with pimodivir + SOC had no mutations of

interest in the NA gene, and 1.3% (2/159) participants had mutations of interest in the PB2

gene. In patients treated with SOC, 1.9% (3/159) had mutations of interest in the NA gene and

none in the PB2.

The second Phase III study was conducted in adolescent, adult, and elderly patients at high

risk of developing complications (NCT03381196) where the primary endpoint was the resolu-

tion of influenza-related symptoms. The median time was 92.62 and 105.13 hours in the pimo-

divir and SOC treatment groups, respectively. Mutations of interest (not disclosed) in the

pimodivir + SOC treatment group occurred in 5.6% (4/71) of viruses isolated from partici-

pants while none occurred (0/108) in the group treated with SOC.

Concluding remarks on polymerase inhibitors

Preclinical studies in mice show that the combination of baloxavir and favipiravir or oseltami-

vir does not have an added benefit over monotherapy for reduction of lung titres and weight

loss, but does for mortality. However, the combination of an NAI with baloxavir may reduce

the selection of resistant viruses particularly the frequency of PA/I38X substitutions. Preclini-

cal studies suggest that favipiravir can be synergistic with NAIs to reduce mortality and weight

loss, but the reduction in lung titres is variable.

In immunocompromised patients, the combination of baloxavir and NAIs provided no

clinical benefit over monotherapy, but did reduce the duration of viral shedding. Pimodivir

showed early promise as an influenza antiviral treatment, with less safety concerns than favi-

piravir and encouraging results in Phase II trials. The termination of the pimodivir Phase III

trials due to lack of efficacy based on primary endpoints is a disappointing outcome, but it will

be interesting to see if pimodivir continues to be investigated in the future in different patient

cohorts or in other antiviral combinations. Interestingly, favipiravir clinical trials had similar

results to baloxavir, where combination treatment with oseltamivir did not improve the time

to alleviation of symptoms but reduced the duration for which virus could be detected.

The combination of baloxavir and NAIs, including those hospitalised with severe influenza,

warrants further investigation. However, the emergence of dual resistant viruses must be mon-

itored especially in those that are severely immunocompromised. For pimodivir, the incidence

of mutations of interest was low in both treatment groups; however, further information on

the amino acid changes will be useful.

Monoclonal antibodies (mAbs)

There are several mAbs and broadly neutralising antibodies (bnAbs) targeting conserved

regions on the influenza hemagglutinin (HA) or NA in clinical development. These antibodies

may be useful in combination with direct-acting antiviral drugs to treat drug-resistant viruses

or in severe influenza.
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VIS410

VIS410 is an HA stem-targeted mAb (IgG1) that has been assessed as monotherapy in a Phase

I (NCT02045472) and 2 Phase IIa clinical trials (NCT02989194 and NCT02468115) (Table 1).

An early preclinical study of VIS410 by Tharakaraman and colleagues showed that a low dose

of VIS410 (5 mg/kg) + oseltamivir (10 mg/kg daily) resulted in significantly less weight loss

than either monotherapy and a high-dose combination (VIS410 20 mg/kg + oseltamivir 60

mg/kg) resulted in faster weight loss recovery than monotherapy. Infection of mice with A/

Shanghai/2/2013 (A(H7N9) and VIS410 + oseltamivir alone or in combination showed that

VIS410 and combination treatment provided similar protection against weight loss. A Phase II

clinical trial (NCT03040141) is listed on the ClinicalTrials.gov website, to evaluate the combi-

nation of oseltamivir + VIS410 for hospitalised adult patients that require oxygen. The primary

clinical outcome was based on a 7-level ordinal recovery scale (Tables 1 and 2). Although the

study is complete, results are not yet available.

MHAA4549A

MHAA4549A is a mAb that targets a highly conserved HA stalk epitope on the HA stalk of

influenza A viruses and was synergistic in combination with oseltamivir in vitro [75]. There

are 3 Phase II clinical trials listed on ClinicalTrials.gov website involving MHAA4549A, 2 are

monotherapy studies (NCT02623322 and NCT01980966), and 1 is a combination study with

oseltamivir in severely ill patients (NCT02293863) (Table 1).

The trials for uncomplicated influenza and hospitalised patients with severe influenza both

showed that MHAA4549A was present in the serum of patients, and there were no negative

pharmacokinetic interactions when MHAA4549A was administered in combination with osel-

tamivir [76,77]. The combination study in hospitalised patients had a primary endpoint of

time to cessation of supplemental oxygen support, for which there was a nonsignificant

decrease compared to placebo (4 days) in the 3,600 mg (2.8 days) and 8,400 mg (2.7 days)

groups [78]. Other endpoints such as the time to ICU discharge, 30 day all-cause mortality and

duration of viral shedding showed nonsignificant differences between the treatment groups

[78].

CF-404

Vigil and colleagues investigated CF-404, a 3 mg/kg triple combination that included 3 anti-

HA stalk bNAbs that target influenza A group 1 (TRL053/CF-401), group 2 (TRL579/CF-402),

and influenza B (TRL849/CF-403) viruses [79]. CF-404 protected mice infected with A

(H1N1), A(H3N2), or influenza B (B/Victoria and B/Yamagata lineages) viruses from death

and weight loss. The effectiveness of monotherapy or dual combinations with the antibodies

that constitute the triple combination formula was not shown, likely because the aim of the

paper was to achieve broad-spectrum activity rather than to demonstrate synergy. Nonetheless,

a triple bNAb combination that is effective against influenza A and B viruses is likely to be of

clinical value.

Favipiravir + CR9114 + F3A19

Immunocompromised (nude) mice were infected with A/California/04/2009 (A

(H1N1pdm09)) and treated with a triple combination of 2 mAbs targeting the receptor bind-

ing site (RBS) of HA (F3A19, 1 mg/kg every 3 days for 14 days), HA stem (CR9114, 5 mg/kg

every 3 days for 14 days), and favipiravir (100 mg/kg daily for 28 days) [80]. All mice treated

with a triple combination had greater survival than monotherapy. Virus titres were lower in
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favipiravir combinations, compared to monotherapies. Although in an immunocompromised

model, viruses with reduced susceptibility to favipiravir were not identified posttreatment, and

some HA mutations were found but not deemed to be antibody escape mutants based on their

location on the HA protein [80].

1D2 + 1F2 (influenza B anti-HA and NA)

Influenza B/Brisbane/60/2008 was used to study infection of immunosuppressed mice and

subsequent treatment with anti-influenza B mAbs [81]. Combination treatment with 1D2

(anti-HA, 10 mg/kg) or 1F2 (anti-NA, 1 mg/kg) was compared to monotherapy at 24, 48, and

72 hours postinfection [81]. Combination treatment administered at 48 hours postinfection

was more effective than either monotherapy to prevent death and extended mean survival

time, but was equal to monotherapy for both parameters when administered at 24 and 72

hours postinfection [81]. There was no difference in virus lung titre of mice following mono-

therapy or combination treatment, but less immunopathology and lung damage from viral

infection occurred in the combination treatment group [81]. No viral escape mutants were

identified from HA and NA gene sequencing [81].

CT-P27

CT149 (influenza bNab; HA fusion domain binding) has previously been shown to neutralise

most group 2 and some group 1 influenza viruses and showed encouraging efficacy in vitro and

in vivo [82]. The authors further developed another antibody to be used in combination with

CT149 (CT120, influenza bNab; to broaden the spectrum of viruses neutralised [83]. Mice

treated with the resultant bNAb, CT-P27, had 90% survival when infected with A/California/

04/2009 (A(H1N1pdm09)) or A/Philippines/2/1982 (A(H3N2)) at the 2 higher doses tested (15

or 30 mg/kg) [83]. Prophylaxis with CT-P27 at 30 mg/kg; administered 14 days prior to infec-

tion had 100% and 90% survival with A/California/04/2009 and A/Philippines/2/1982, respec-

tively [83]. CT-P27 (1.875 or 3.75 mg/kg) in combination with oseltamivir (20 mg/kg) had

improved compared to monotherapy at all doses, with a 100% survival at the higher dose [83].

There are 2 clinical trials with CT-P27 monotherapy listed on the ClinicalTrials.gov website

(NCT02071914 and NCT03511066), but results are not yet available.

MEDI8852

MEDI8852 is an HA stalk mAb that is active against all 18 influenza A subtypes. For H7N9

and H5N1 infection in ferrets, antiviral treatment was commenced 8 or 24 hours following

infection with A/Anhui/01/2013 (H7N9) with MEDI8852 (25 mg/kg, single dose), oseltamivir

(12.5 mg/kg BID 5 days), or oseltamivir + MEDI9952 in combination [84]. Treatment 24

hours postinfection showed combination therapy was more effective than either monotherapy

for reduction in body weight loss [84]. In a dose-ranging experiment with H5N1 virus chal-

lenge in ferrets, the combination of MEDI8852 with oseltamivir improved survival rates and

protection from weight loss more than either monotherapy alone [84]. A Phase IIa trial for

treatment of uncomplicated influenza enrolled 128 participants to receive a low (750 mg) or

high (3,000 mg) dose of MEDI8852 with oseltamivir (75 mg) or oseltamivir monotherapy or

high-dose MEDI8852 alone (Table 2) [85]. The time to resolution of symptoms was similar in

each group: 106.75, 128, 138.10, and 106.75 hours, respectively, and there was little difference

in viral shedding measured by qRT-PCR [85]. Sequencing of the NA gene showed that none of

the samples have known resistance mutations to the NAIs [85]. Six HA mutations were identi-

fied in patient samples, but none of them corresponded to MEDI8852 binding sites or have

altered susceptibility to MEDI8852.
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Concluding remarks on mAbs

A diverse range of mAbs have been investigated in preclinical trials, most showing encourag-

ing results and low selection of escape mutants. mAbs treatment for severe influenza is of

interest; however, at the present time, few have progressed to clinical trials. Given the mecha-

nism of action, mAbs have the potential to provide synergistic benefits for the treatment of

influenza with antiviral drugs that directly target the replication cycle of the virus.

Host-targeted therapies, anti-inflammatory drugs, and

immunomodulators

Nitazoxanide. Nitazoxanide is a repurposed, host-targeted antiparasitic drug that has also

been shown to have broad-spectrum antiviral activity against influenza viruses (Table 1). In

vitro drug synergy with nitazoxanide and either oseltamivir or zanamivir has been identified

against A(H1N1) and A(H5N9) viruses [86,87]. In ferrets, the combination of oseltamivir

+ nitazoxanide administered as prophylaxis 2 hours prior to infection had significantly lower

virus shedding and no virus in the lower respiratory tract, compared to either monotherapy

[87]. However, the effectiveness was lower when antiviral treatment was commenced 24 hours

postinfection [87]. A further study comparing oseltamivir + nitazoxanide combination therapy

in ferrets infected with a mixture of 1% oseltamivir resistant (NA/H275Y) and 99% wild-type

drug-sensitive virus (A/Perth/261/2009 and A/Perth/265/2009) showed no difference in the

selection of oseltamivir resistant NA/H275Y virus and viral titres in nasal washes compared to

monotherapy [88]. A Phase III clinical trial (NCT01610245) with oseltamivir + nitazoxanide

combination treatment has been completed, but results are not yet available (Tables 1 and 2).

Diltiazem. Diltiazem, a calcium channel blocker, was predicted by in vitro transcriptional

profiling to have an antiviral effect against influenza [89]. A retrospective study was completed

by Wang and colleagues to analyse patients in a de-identified medical database. Data for adult

patients (n = 302) treated with oseltamivir were extracted; of these, the author identified 36

patients who had also received diltiazem during their hospital admission. This analysis showed

that there was a decrease of in-hospital mortality in those treated with oseltamivir and diltia-

zem. A Phase II clinical trial (NCT03212716) evaluating oseltamivir + diltiazem versus placebo

was initiated (Table 2). The primary outcome is mortality in patients with severe influenza;

results of the Phase II clinical trial will be of interest when they become available [90].

Celecoxib. Celecoxib is a nonsteroidal anti-inflammatory drug that inhibits COX-II and

is of interest to prevent excessive inflammation that can result in severe lung disease. The com-

bination of celecoxib with antisense RNA oligonucleotides targeting the PB2 gene significantly

reduced the viral load (based on qPCR) and inflammatory markers in mice [91]. Survival rate

and inflammatory markers were improved in H5N1 virus infected mice treated at 48 hours

postinfection with a combination of zanamivir (3-mg BID), celecoxib (2 mg once a day), gem-

fibrozil (lipid regulating drug; 1 mg once a day), and mesalazine (aminosalicylate used for

inflammation; 1 mg once a day) [92]. The triple drug combination improved lung viral titres,

which was with combination treatment and zanamivir monotherapy [92]. Based on these

results, a Phase III clinical trial was initiated for severe influenza A infection (NCT02108366)

(Table 2), a significant reduction in 28-day mortality (primary endpoint) in the oseltamivir

+ celecoxib treatment group compared to oseltamivir alone was shown [93].

High mobility group box-1 (HMGB1)

HMGB1 is a nuclear protein that regulates gene transcription when released from immune

cells or from necrotic cells. This protein is being investigated as a therapeutic target to reduce
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elevated inflammatory cytokine and chemokine levels during infection [94]. Treatment with

anti-HMGB1 was studied for severe influenza in combination with NAIs for A/Puerto Rico/8/

34 infection in mice [94]. Delayed treatment improved survival in mice and there was less his-

topathology and neutrophil and macrophage aggregation compared to monotherapy, but anti-

HMGB1 alone did not inhibit viral replication [94].

Anti-inflammatory and immunomodulators concluding remarks

Since the resolution of symptoms is a key endpoint in clinical trials for the treatment of influ-

enza, the addition of an anti-inflammatory drug may provide faster recovery of symptoms. For

direct-acting influenza drugs such as baloxavir and pimodivir, the combination with an anti-

inflammatory drug may be an interesting area of research. In addition, a host-targeted drug in

combination with influenza antiviral drugs is of interest particularly if the selection of drug-

resistant viruses is reduced.

Antiviral and antibiotic combinations

Azithromycin. Azithromycin (broad-spectrum macrolide antibiotic; 100 mg/kg single

dose) + oseltamivir (10 mg/kg once daily) treatment in mice at 48 or 72 hours postinfection in

mice infected with A/California/07/2009 (A(H1N1pdm09)) showed no improvement in lung

viral titres, inflammatory cytokine levels, or mouse survival rates compared to monotherapy

[95]. A retrospective study (Table 2) showed patients infected with influenza A or B and

treated with oseltamivir + azithromycin (102 patients) required less oxygen support and had

shorter hospitalisation time and compared to oseltamivir alone (227 patients) [96]. An open-

label, randomised, multicentre trial (107 patients) showed the combination of oseltamivir and

azithromycin in patients had no difference, relative to monotherapy, for inflammatory mark-

ers or the resolution of influenza related symptoms [97].

Clarithromycin. Clarithromycin is also a broad-spectrum macrolide antibiotic. Mice

were treated with a triple combination of flufenamic acid (nonsteroidal anti-inflammatory

drug, 50 mg/kg, for 3 days) + clarithromycin (50 mg/kg BID for 3 days) + zanamivir (100 mg/

kg BID for 4 days) following infection with A/415742Md/Hong Kong/2009 (A(H1N1)) [98].

The triple drug combination was the most effective treatment to prevent lethality and body

weight loss [98]. A prospective, single-blind study in children showed resolution of fever was

halved with clarithromycin-naproxen-oseltamivir treatment compared to oseltamivir mono-

therapy and had transiently greater reduction in viral titre. However, the length of hospitalisa-

tion was similar in the 2 treatment groups [99]. A Phase IIb/III, open label study in

hospitalised patients, evaluated clarithromycin + naproxen + oseltamivir and the 30 day mor-

tality (primary endpoint) was reduced compared to oseltamivir alone, as was the length of hos-

pital stay and viral titres (Tables 1 and 2) [100].

Concluding remarks on antiviral and antibiotic combinations. Secondary bacterial

infections following influenza infection have the potential to lead to more severe outcomes,

especially in high-risk patients. The combination of an antiviral drug with an antibiotic is

hypothesised to prevent the progression of influenza illness to secondary bacterial infection

that may require further hospitalisation or lead to more severe outcomes. However, the pro-

posed benefit of the use of antibiotics should be balanced against the risks of the selection of

antibiotic resistance.

Conclusions

The licensure of antiviral drugs like baloxavir marboxil with novel mechanisms of action will

expand the potential for combinations of drugs for the treatment of influenza. Clinical trials
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with combination therapy must include diverse patient cohorts, especially patients at high risk

of complications who may accrue the greatest benefit from such therapy. However, diversity of

patient cohorts adds complexity to our understanding of the effectiveness of combination ther-

apies. Host-targeted or adjunctive therapies combined with direct-acting antiviral drugs are of

great interest, but more studies in the best use of such treatments is required. Finally, antiviral

resistance is a major concern for direct-acting antiviral drugs, and there is some evidence to

suggest that combination treatment may reduce the likelihood of selecting resistant virus.
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