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Abstract

Objectives. A better understanding of antitumor immunity will
help predict the prognosis of gastric cancer patients and tailor the
appropriate therapies in each patient. Therefore, we propose a
novel immunological classification of gastric cancer. Methods. We
performed whole-exome sequencing (WES), RNA-Seq and flow
cytometry in 29 gastric cancer patients who received surgery. The
TCGA data set of 323 gastric cancer patients and RNA-Seq data of
45 patients who received pembrolizumab (Kim et al. Nat Med
2018; 24: 1449–1458) were also analysed. Results. Immunogram
analysis of cancer–immunity interaction of gastric cancer revealed
immune signatures of four main types, designated Hot1, Hot2,
Intermediate and Cold. Immunologically hot tumors displayed a
dysfunctional T-cell signature, while cold tumors had an exclusion
signature. Ex vivo tumor-infiltrating lymphocyte analysis
documented T-cell dysfunction with the expression of checkpoint
molecules and impaired cytokine production. The T-cell function
was more profoundly damaged in Hot1 than Hot2 tumors. Patients
in Hot2 subtypes had better survival in our cohort and TCGA
cohort. Although these immunological subtypes overlapped to
some degree with the molecular subtypes in the TCGA,
intratumoral immune responses cannot be predicted solely based
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on histological or molecular subtyping of gastric cancer. Molecular
and immunological classifications complement each other to
predict the responses to anti-PD-1 therapy and have the potential
to be a biomarker for the treatment of gastric cancer. Conclusion.
The immunological classification of gastric cancer resulted in four
subtypes. Hot tumors were further divided into two subtypes,
between which the functional status of T cells was different.

Keywords: gastric cancer, immunogram, RNA-Seq, T-cell function,
tumor immunity

INTRODUCTION

Gastric cancer was the fifth most frequent cancer
(over 1 000 000 new patients) and the third
leading cause of cancer death (783 000 deaths)
worldwide in 2018.1 The introduction of
checkpoint blockade was expected to change
gastric cancer treatment regimens.2,3 However,
monotherapy response rates (RRs) are low, and a
better understanding of antitumor immunity and
immunosuppressive mechanisms active in the
tumor microenvironment (TME) is required to
facilitate the development of more effective
immunotherapies.

Recently, it has been proposed that there are
distinct molecular subtypes of gastric cancer.4–8

Kim et al. reported that there was a dramatic
overall RR to pembrolizumab in 86% of patients
with microsatellite unstable tumors, and even
100% in Epstein–Barr virus-(EBV) positive tumors.9

However, predicting the clinical benefits of
checkpoint inhibitors in the majority of gastric
cancer patients remains an unmet need for
treatment selection.

Antitumor immunity is a spatiotemporal
process, where many cell types and molecules are
positively and negatively regulated.10 Besides,
overcoming one obstacle in the cancer–immunity
cycle with a currently available therapy will leave
many other independent immunosuppressive
regulatory systems operative in the TME, and
adaptive or acquired resistance to therapy may be
induced. This, together with considerable
variation between patients in the induction of
antitumor immunity, necessitates an assessment of
each case for a better understanding of that
individual’s immune response to the tumor. Based
on the concept of ‘immune contexture’ that
consists of the combination of immune variables
associating the nature, density, immune
functional orientation and distribution of immune

cell within the tumor, the first immune-based,
rather than a cancer-based, classification was
proposed as the immunoscore.11–13 It is unlikely
that a single biomarker will reflect the very
complex TME and numerous host–tumor
interactions. To this end, we generated an
immunogram for the cancer–immunity cycle in
which comprehensive profiling of the dynamic
interactions between tumor and the immune
system is depicted on a radar plot for each
individual patient.14,15 This contributes to
understanding the immunobiology of each case
and personalising the most suitable therapy for
each patient.

In a previous immunogram study, we divided
non-small-cell lung cancers into T-cell-rich and T-
cell-poor phenotypes.14 Parameters associated
with T-cell immunity and factors reflecting tumor
biologies such as tumor antigens and antigen
presentation machinery were separately clustered,
suggesting that antitumor immunity is shaped by
the interaction between tumor and the immune
system. In the present study, we extended this
type of analysis to 29 gastric cancer patients using
a modified approach. Here, improved
immunograms with nine axes consisting of innate
immunity, priming and activation, T cells, IFN-c
response, inhibitory molecules, regulatory T cells
(Tregs), recognition of tumor cells, proliferation
and glycolysis to reflect cancer–immunity
interaction were employed to classify individual
patients.

Here, we propose a novel immunological
classification of gastric cancer using immunogram
scores. We further applied it to 323 gastric cancer
patients from the TCGA data set and 45 patients
who received anti-PD-1 therapy reported by Kim
et al.9 A better understanding of antitumor
immunity will help predict the prognosis of gastric
cancer patients and tailor the appropriate
therapies in each patient.
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RESULTS

Patient characteristics

Baseline characteristics of the 29 enrolled gastric
cancer patients are listed in Table 1 and
Supplementary table 1. All cases were of
adenocarcinoma, two being oesophagogastric
junction cancer and the other 27 gastric cancer.
The median age was 71.0 years (range 57–88), and
most patients were male (83%). Twenty-five
patients (Stages I–III) received radical surgery, and
four (Stage IV) underwent palliative surgery. The
median follow-up after surgery was 14.8 months
(range 1.6–51.2).

Immunogram analysis

To evaluate the antitumor immune response in
gastric cancer using RNA-Seq data, we focused on

the nine gene sets associated with antitumor
immunity, proliferation and metabolism. A single-
sample gene set enrichment analysis (ssGSEA) of
the tumors was performed, and the scores for
these nine gene sets were converted into
immunogram scores (IGSs) as described in the
Methods (Supplementary table 2). As we reported
elsewhere,15 we selected an appropriate gene set
for each axis of the immunogram by the
Spearman correlation analysis. We modified our
previous immunogram for the cancer–immunity
cycle, which we had used for lung cancer
patients.14 Antigenicity was eliminated from the
axes; glycolysis and proliferation were newly
adopted in the current version in order to
incorporate tumor cell factors into the evaluation
of cancer–immune cell interactions. Nine IGSs for
each patient were accordingly plotted onto a
radar chart to generate individual immunograms
(Figure 1), which differ substantially from patient

Table 1. Characteristics of patients.

Baseline characteristics No. (%)

Sex

Male 24 (83)

Female 5 (17)

Age

Median (years) 71

Range (years) 57–88

pStage

I 4 (14)

II 7 (24)

III 14 (48)

IV 4 (14)

pT

1b 2 (7)

2 2 (7)

3 14 (48)

4a 8 (28)

4b 3 (10)

Histology

Intestinal 15 (52)

Diffuse 11 (38)

Mixed 3 (10)

Primary lesion location

Oesophagogastric junction 2 (7)

Upper 9 (31)

Middle 7 (24)

Lower 11 (38)

Macroscopic type (Borrmann)

1 (Mass) 2 (7)

2 (Ulcerative) 13 (41)

3 (Infiltrative ulcerative) 11 (38)

4 (Diffuse infiltrative) 2 (7)

5 (Unclassifiable) 1 (3)

Baseline characteristics No. (%)

HER2 status

Positive 6 (21)

Negative 18 (62)

Unknown 5 (17)

Helicobacter pylori infection

Positive 20 (69)

Negative 9 (31)

Surgical treatment

Total gastrectomy 15 (52)

Distal gastrectomy 13 (45)

Proximal gastrectomy 1 (3)

Tumor infiltrative (INF) pattern

INFa 4 (3)

INFb 18 (62)

INFc 5 (17)

Unknown 2 (7)

Lymphatic invasion (ly)

ly0 10 (34)

ly1 5 (17)

ly2 8 (28)

ly3 5 (17)

Unknown 1 (3)

Venous invasion (v)

v0 9 (31)

v1 2 (7)

v2 5 (17)

v3 12 (41)

Unknown 1 (3)
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to patient, suggesting that the immune responses
in the tumor and TME are unique in each case.

Classification of the immune response in
gastric cancer

Using the nine gene sets or the IGS, we
performed a hierarchical cluster analysis and, as
shown in the upper part of Figure 2, all 29 cases
were initially classified into two clusters, one of
which was characterised by high scores for innate
immunity (IGS1), priming and activation (IGS2), T
cells (IGS3), IFN-c response (IGS4), inhibitory
molecules (IGS5) and Tregs (IGS6). This suggests
that an active immune response is ongoing in the
tumor. Therefore, we designated these tumors
‘Immune-Hot’. In contrast, the IGS1–6 scores were
low in the other cluster, designated ‘Immune-
Cold’. Immune-Hot tumors were further
subdivided into three clusters, ‘Hot1’, ‘Hot2’ and
‘Intermediate’. Low scores for recognition of
tumor cells (IGS7) and proliferation (IGS8)
characterised Intermediate tumors. Hot1 and Hot2
were distinguished from one another by glycolysis
(IGS9), which was low in the latter. Overall, the
immune responses in these 29 gastric cancers were
classified into four signatures, namely Hot1, Hot2,
Intermediate and Cold (Supplementary table 3).

Correlation between immune responses and
clinical characteristics

The clinical characteristics of patients are depicted
in the middle part of Figure 2 to visualise
correlations between the immune response in the
tumor and these variables.16 Histology by the
Lauren classification,17 macroscopic classification
according to Borrmann,18 primary site location,
TNM clinical stage, overexpression of human
epidermal growth factor receptor 2 (HER2)
protein and the presence or absence of
Helicobacter pylori infection all failed to correlate
with intratumoral immune responses. Recently,
the TCGA project defined four molecular subtypes
of gastric cancer, namely EBV, microsatellite
instability (MSI), genomically stable (GS) and
chromosomal instability (CIN).5 As expected, EBV
and MSI tumors were classified as Immune-Hot
with all four MSI tumors in Hot1, and all three
EBV in Hot2 (Figure 2). Most tumors in the Cold
and Intermediate groups were CIN in the TCGA
classification, while the CIN subtype was present
across all four immunological signatures. GS

subtypes were present in the Hot2, Intermediate
and Cold groups (Figure 2). Molecular
classification according to Asian Cancer Research
Group (ACRG) was also compared with these
results.6 According to the expression of 71 genes
reported by the ACRG, gastric cancer is divisible
into Mesenchymal or Non-Mesenchymal subtypes
(Supplementary figure 1).19 Among our 29 gastric
tumors, six (21%) were classified as Mesenchymal
and the other 23 (79%) as Non-Mesenchymal. The
Hot2 group included two of the six Mesenchymal
tumors, and the other four were Intermediate
(Figure 2). MSI tumors were all in Hot1. MSS/TP53+

and MSS/TP53� subtypes were distributed over all
four immunological categories. These results
suggest that intratumoral immune responses
cannot be predicted solely on the basis of
histological or molecular subtyping of gastric
cancer.

Tumor-infiltrating cells

To evaluate immune responses in the tumor, the
profiling of tumor-infiltrating cells (TICs) was
performed by CIBERSORTx.20 Absolute TIC scores
are incorporated into Figure 2, and
subpopulations of TICs in individual patients are
shown in Supplementary figure 2a. Absolute
scores of TICs for Immune-Hot tumors were higher
than for Immune-Cold tumors (P < 0.001, t-test,
Supplementary figure 2b). Absolute scores of TICs
were highest in the Hot2 subtype, and lowest in
the Cold subtype (P < 0.001, one-way ANOVA test;
Supplementary figure 2c). The absolute score of
CD8+ T cells was high in Hot1 and Hot2 subtypes
(P = 0.0011, one-way ANOVA test; Supplementary
figure 2d), whereas activated memory CD4+ T cells
were high in Hot1 subtype (P < 0.001, one-way
ANOVA test; Supplementary figure 2e). There
were no statistically significant differences
between the four subtypes for any of the other
cell populations (Supplementary figure 2f–k).

To investigate the immunosuppressive TME,
expression signatures were evaluated by the TIDE
web application (http://tide.dfci.harvard.edu/).21

Consistent with data on TICs by CIBERSORTx,
exclusion scores by TIDE were high in the
Intermediate and Cold subtypes (P < 0.001,
Figure 2 and Supplementary figure 3a). In
Immune-Hot tumors, dysfunction scores by TIDE
were high (P = 0.0064, Figure 2 and
Supplementary figure 3b). Both exclusion and
dysfunction scores were high in the Intermediate

2020 | Vol. 9 | e1194

Page 4

ª 2020 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of

Australian and New Zealand Society for Immunology, Inc.

Immunological subtypes of gastric cancer Y Sato et al.

http://tide.dfci.harvard.edu/


Figure 1. Immunograms for cancer–immunity interactions in 29 patients with gastric cancer. Immunograms were generated using RNA-Seq data.

We selected nine gene sets, including innate immunity (for immunogram score 1, IGS1), priming and activation (IGS2), T cells (IGS3), IFN-c

response (IGS4), inhibitory molecules (IGS5), Tregs (IGS6), recognition of tumor cells (IGS7) proliferation (IGS8) and glycolysis (IGS9). We

performed a single-sample gene set enrichment analysis (ssGSEA). The ssGSEA scores for each IGS were assessed, normalised and scored onto

these axes of the immunogram, which was generated for each patient by integration onto a radar chart.
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Figure 2. Immunological subtypes of gastric cancer. Immunogram analysis of 29 gastric cancer patients was performed. By hierarchical cluster

analysis of the immunogram scores, gastric cancer cases were first divided into Immune-Hot and Immune-Cold subtypes. Then, Immune-Hot

subtype was further divided into Hot1, Hot2 and Intermediate subtypes. Clinical profiles with histology by the Lauren classification, macroscopic

classification by the Borrmann classification, locus of the primary site, TNM clinical staging, overexpression of human epidermal growth factor

receptor 2 (HER2) protein and the presence or absence of Helicobacter pylori infection are depicted. EBV, MSI, GS and CIN subtypes of molecular

classification by TCGA5 and MSI, MSS/EMT, MSS/TP53+ and MSS/TP53� subtypes of ACRG classification6 are indicated by colour. Absolute scores

of tumor-infiltrating cells (TICs) were estimated by CIBERSORTx.20 Scores for exclusion and dysfunction and signatures for MDSCs, TAM-M2 and

CAF were evaluated by TIDE.21 The EMT subset was determined by a Mesenchymal or Non-Mesenchymal signature.19
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group. MDSC and TAM-M2 signatures were
significantly higher in Cold tumors than in the
others (P < 0.001, P < 0.001, one-way ANOVA test,
Supplementary figure 3c and d). The cancer-
associated fibroblast (CAF) signature was
significantly higher in the Intermediate subtype
(P < 0.001, one-way ANOVA test, Supplementary
figure 3e). These factors are thus considered to
contribute to the immunosuppressive TME in the
Intermediate and Cold subtypes.

Mutational analysis

Because high tumor mutational burden (TMB)
could increase the chance to produce
immunogenic neoantigens,22 TMB was compared
in the four immunological subtypes (Figure 3a).
All MSI patients in the Hot1 subtype and one
patient (BKT020) in the Hot2 subtype have high
TMB. The BKT020 tumor had POLE exon19:
c.A2151C:p.K717N mutation and POLD2 exon5:
c.A614C:p.K205T and exon6:c.A509C:p.K170T
mutations, which caused mismatch repair
proficient, but hypermutated phenotype.23,24

There is increasing evidence that the activation
of the different oncogenic pathways has a
profound impact on the immune evasion.25 Thus,
driver gene alterations were investigated
(Figure 3b). TP53 mutations were detected in
79% of the tumor. Amplification of Myc was
observed in 66% of the tumor. Deletion and/or
loss of heterozygosity (LOH) of PTEN were
detected in seven of 29 patients. MAP3K1,
PIK3CA, CTNNB1 and RHOA gene alterations
were also detected. These driver gene alterations
were detected more frequently in Hot tumors
than Cold tumors.

Antigen presentation and sensitivity to IFN-c are
major tumor cell-intrinsic factors determining
antitumor immunity.26–28 Therefore, nucleotide
and copy-number variants in genes related to
antigen presentation (Figure 3c) or the IFN-c
pathway (Supplementary figure 4) were
investigated. In contrast to driver gene
alterations, more nucleotide and copy-number
variants in genes related to antigen presentation
were detected in Cold tumors (Figure 3c and
Supplementary figure 5). The same was true for
the IFN-c pathway (Supplementary figures 4 and
5). A combination of LOH (yellow) and deletion
(blue) or mutation (green) that resulted in losses
of function (LOFs) was detected more often in
Cold tumors (Supplementary figures 4 and 5).

Because IFN-c is known to up-regulate human
leukocyte antigen (HLA) molecule expression,
LOFs in the IFN-c pathway are also associated with
reduced antigen presentation. These tumors
might thus be invisible to the immune system,
rendering them Cold. MSI tumors contained many
mutations but few LOHs, and as a result, immune
responses in these subtypes were maintained and
tumors remain Hot.

Tumor antigens

To seek differences in tumor antigens in each
subtype, we predicted neoantigens by estimating
the MHC binding capacity of predicted mutated
peptides using MHCflurry 1.4.0.29 We considered
mutated peptides as predicted neoantigens
(pNeoAg) if their KD was < 500 nM. Because not
all of them were expressed in the tumor, we
considered them as expressed neoantigens
(eNeoAg), only if their expression was confirmed
by RNA-Seq [transcripts per million (TPM) ≥ 1,
variant allele frequency (VAF) ≥ 0.04]. As shown in
Figure 4, MSI tumors contained many mutations,
including missense single nucleotide variants
(SNVs), insertions and deletions (indels) and fusion
genes that resulted in many neoantigens. As a
result, Hot1 tumors had more mutations, pNeoAg
and eNeoAg than any others (P < 0.001, one-way
ANOVA, Figure 4, Supplementary figure 6b–d). In
contrast, the number of CT antigens expressed in
the tumor was low in Immune-Hot and high in
Immune-Cold tumors (P = 0.030 using one-way
ANOVA or t-test; Figure 4; Supplementary figure
6e). These results suggest that NeoAgs, rather
than CT antigens, are the main targets of
antitumor immunity in gastric cancer.

Because immune selection pressure affects the
number and expression of neoantigens, we
compared the ratio of eNeoAg to pNeoAg
designated the ‘neoantigen expression ratio’ in
the four immune-related subtypes (Supplementary
figure 6f). The neoantigen expression ratio was
reduced in Hot2 and Intermediate tumors but not
Hot1 (P = 0.0067), presumably because active
immune selection pressures had eliminated tumor
cells expressing those neoantigens.30

Phenotypes and functions of TICs

Tumor-infiltrating cells were isolated from the
tumors and their phenotypes and functions
analysed by flow cytometry (Figure 5;
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Figure 3. Mutational analysis. (a) Tumor mutational burden (TMB) was calculated as the total number of nonsynonymous mutations divided by

the actual number of bases analysed (per Mb). (b) Heatmap representation of the distribution of gene alterations in known driver genes. (c)

Nucleotide and copy-number variants found in the antigen presentation pathway. Stacked bar plot summarising the total numbers of

amplification, deletion, mutation and loss of heterozygosity (LOH) per patient (longitudinal) or per gene (horizontal). Different colours represent

different types of nucleotide variants, red for amplification, blue for deletion, green for mutation and yellow for LOH.
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Supplementary figures 7–12). More CD3+T cells
were observed in Hot1 tumors than other
subtypes (P = 0.046, Supplementary figure 7a).
More CD4+ than CD8+ T cells were present in most
of the tumors, but their percentages did not
differ between the four subtypes (Figure 5a and
Supplementary figure 7b and c). Infiltrations of
Tregs in the tumors were similar among four
subtypes (Supplementary figure 7d–f). CD8+ TICs
exhibited exhausted phenotypes, with about 70%
expressing PD-1 in most patients. They expressed
TIM3 and LAG3, though a lesser extent to PD-1
(Figure 5a and Supplementary figure 8). The
activation markers were also expressed on these
cells, while there were no statistically significant

differences in the levels of expression among
subtypes.

To determine the capacity of these CD8+ T cells
to produce cytokines, we applied two different
stimulation procedures, namely CytoStim, which
activates T cells via TCR signalling, and PMA
together with ionomycin that bypasses TCR-
mediated signalling and directly activates several
intracellular signalling pathways (Figure 5;
Supplementary figures 9 and 10). The T-cell
stimulation by CytoStim was under the influence
of inhibitory molecules, while forced cytokine
production by PMA/ionomycin indicated their
maximal capacity of cytokine production. As
examples, FACS data of one patient from each

Figure 4. Tumor antigens. The number of single nucleotide variants (SNVs; green), indels (orange) and fusion genes (purple) is depicted in a

stacked bar plot. The numbers of predicted neoantigens (pNeoAg), expressed neoantigens (eNeoAg), CT antigens (yellow) and neoantigen

expression ratio (eNeoAg/pNeoAg) in each patient are depicted as bar graphs.
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Figure 5. Summary of T-cell phenotypes and functions. (a) Tumor-infiltrating cells (TICs) were analysed by flow cytometry. Bar graphs show the

percentage of CD3+CD4+ T cells, CD3+CD8+ T cells, CD8+PD-1+ T cells, CD8+Tim-3+ T cells, CD8+IFN-c+ T cells, CD8+IL-2+ T cells, CD8+TNF-a+ T

cells, CD8+IFN-c+ T cells, CD8+IFN-c+IL-2+ T cells, CD8+IFN-c+TNF-a+ T cells, CD8+IL-2+ TNF-a+ T cells and CD8+ IFN-c+IL-2+ TNF-a+ T cells. TICs

were stimulated with CytoStim (Blue) or PMA/ionomycin (orange); the percentages of cytokine-producing cells were measured by the intracellular

cytokine staining. (b) TICs were unstimulated (Unstim) or incubated with CytoStim (CS) or PMA/ionomycin (PI) for 4 h. Examples of staining

patterns are shown. CD45+CD3+CD8+ T cells were gated. The percentage of IFN-c-, TNF-a- and IL-2-producing cells are shown.
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subtype are shown in Figure 5b. More IFN-c, TNF-
a or IL-2 was produced by PMA/ionomycin
stimulation than CytoStim. Similarly, the
production of TNF-a and IL-2 upon stimulation
with CytoStim was lower than that of those after
PMA/ionomycin stimulation (Figure 5b).

Although there were no statistical differences
between the four subtypes regarding the
presence of CD8+ T cells producing one of the
cytokines IFN-c, TNF-a or IL-2, TNF-a-producing
CD8+ T cells were lower in Hot1 than in Hot2
(Supplementary figure 9). IFN-c and TNF-a double
producers were also low in Hot1 tumors
(Supplementary figure 10). These results indicate
the severe CD8+ T-cell dysfunction in Hot1.
Cytokine production of CD4+ TICs was also
compared; there were no differences between the
four subtypes (Supplementary figures 11 and 12).

Immunological subtypes of gastric cancer
and association with survival

We explored the prognostic implications of these
immunological subtypes for survival after surgery.
Although there were no statistically significant
differences between the patients in these groups
regarding OS (P = 0.18) and PFS (P = 0.13), both
OS and PFS of Hot2 tended to be longer
(Figure 6a and b). All patients with tumors of the
Hot2 subtype survived over the follow-up period.

To develop a simple approach for
immunological subtyping of gastric cancer
without cluster analysis, a decision tree was
constructed (Figure 6c). Immune-Hot and Immune-
Cold tumors were distinguished by the sum of
immunogram scores of innate immunity (IGS1),
priming and activation (IGS2), T cells (IGS3), IFN-c
response (IGS4), inhibitory molecules (IGS5) and
Tregs (IGS6) being < or > 18.21 (Supplementary
figure 13a). Intermediate tumors were then
defined by the recognition of tumor cells (IGS7)
being < or > 3.78 (Supplementary figure 13b).
Finally, Hot1 and Hot2 were determined by
glycolysis (IGS9) being < or> 2.11 (Supplementary
figure 13c). These cut-off values and the decision
tree classified 29 gastric cancers into six Hot1, six
Hot2, six Intermediate and 11 Cold subtypes
(Figure 6c).

We applied this decision tree to 323 gastric
cancer patients from the TCGA data set
(Figure 6d). They were stratified into 56 Hot1, 27
Hot2, 70 Intermediate and 170 Cold subtypes.
Consistent with the results from our cohort, Hot1

contained MSI subtypes, and EBV subtypes were
classified into Hot2. The Cold subtype included
mainly CIN (Figure 6e and f). We analysed the OS
of 311 patients whose survival data were
available. Again, consistent with our cohort, OS of
Hot1 and Hot2 was different, and as in our
cohort, although not significant, the OS of
patients with Hot2 tumors was the best
(Figure 6g).

Immunological subtypes of gastric cancer
and response to anti-PD-1 therapy

Kim et al.9 reported the molecular features of 61
gastric cancer patients associated with responses
to pembrolizumab. For the 45 patients for whom
RNA-Seq data were available, immunogram
analysis was performed (Supplementary table 4)
and the association of immunological subtypes
with responses to anti-PD-1 therapy was
examined. As shown in Figure 7a, 22, 5, 2 and 16
patients were classified into Hot1, Hot2,
Intermediate and Cold subtype, respectively. MSI
and EBV patients were determined as
immunological Hot, though one MSI patient (EP-
43) was immunological Cold (Figure 7b and c). All
three CR patients, two MSI and one CIN subtype,
were classified in Hot1(Figure 7d and e). Nine PR
patients were classified seven in Hot1, one in Hot2
and one in Cold, respectively. The RR of Hot1
subtypes was 45% and higher than other subtypes
(P = 0.033, Fisher’s exact test).

DISCUSSION

We generated an immunogram for each patient to
visualise the state of cancer–immune system
interactions and have investigated the tumor–
immune microenvironment in gastric cancer. Our
results demonstrate that the antitumor immune
response in gastric cancer is heterogeneous
(Figure 1). Based on IGSs, the hierarchical clustering
of gastric cancers from 29 patients resulted in four
novel immunological subtypes (Figure 2). We also
examined the phenotypes and functions ex vivo of
tumor-infiltrating T cells by flow cytometry
(Figure 5), integrated them together with next-
generation sequencing (NGS)-based immunological
subtyping and defined the intratumoral
immunological status of gastric cancer.

The immunogram approach conceptually
proposed by Blank et al.,31 which has been
applied to lung cancer14 and urothelial cancer,32
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Figure 6. Immunological subtypes of gastric cancer and associations with survival. (a, b) The association between immunological subtypes and

overall survival (OS) and progression-free survival (PFS) was analysed by the Kaplan–Meier method, and the log-rank test was used to determine

the statistical significance of the differences. (c) A decision tree for the immunological subtypes of gastric cancer was applied to 29 gastric cancer

patients. The sum of IGS1 to IGS6 of < 18.21 was taken as the cut-off value to identify the Cold subtype. Similarly, IGS7 < 3.78 was determined

as the cut-off value for Intermediate and IGS9 < 2.11 was used to discriminate Hot1 from Hot2 tumors. (d) A decision tree for the

immunological subtypes of gastric cancer was applied to 323 gastric cancer patients in the TCGA cohort. (e) The frequency of molecular

subtypes of TCGA in each immunological subtype. (f) The frequency of immunological subtypes in each molecular subtype of TCGA. (g) Kaplan–

Meier analysis and log-rank test for OS of 311 gastric cancer patients for the four immunological subtypes.
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integrates multiple parameters that influence
cancer–immune system interactions and facilitates
a comprehensive evaluation of patients’
intratumoral immune status. It has the potential
to overcome the limitations of a single biomarker
approach.33 Although not exactly matching each
other, our immunological classification and the
TCGA and ACRG molecular classifications do have
something in common. Four of six Hot1 tumors
were MSI in the TCGA subtype, while two were

CIN. Three of six tumors in Hot2 were EBV in the
TCGA subtype, while two CIN and one GS subtype
were also included. The Intermediate subtype
included four tumors in the Mesenchymal subtype
according to the ACRG classification, and a
further two ACRG Mesenchymal subtypes were
classified as Hot2 (Figure 2). These results suggest
that there is still missing information that
determines the antitumor immune response in the
tumor and further investigation is necessary to

Figure 7. Immunological subtypes of gastric cancer and responses to anti-PD-1 therapy. (a) A decision tree for the immunological subtypes of

gastric cancer was applied to 45 gastric cancer patients who received anti-PD-1 therapy from Kim et al.9 (b) The number of patients by molecular

subtypes of TCGA in each immunological subtype. (c) The number of patients by immunological subtypes in each molecular subtype of TCGA.

(d) The number of patients by responses to anti-PD-1 therapy in each immunological subtype. (e) The number of patients by responses to anti-

PD-1 therapy in each molecular subtype of TCGA.
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achieve a complete understanding of the
immunological status of each patient.

Our immunological subtypes identified the
different T-cell dysfunctional status between Hot1
and Hot2. As shown in Figure 5, maximal cytokine-
producing capacity induced by PMA/ionomycin was
lower in Hot1 than in Hot2 tumors despite many
CD3+ T cells in the Hot1 tumors (Supplementary
figure 7a). Consistently, the T-cell dysfunctions in
Hot1 tumors resulted in the low immune selection
pressure and maintaining the neoantigen
expression (Supplementary figure 6f). Rooney
et al.34 reported that high cytolytic activity was
associated with a modest but significant pan-
cancer survival benefit. However, in our gastric
cancer cohort, prognosis after surgery differed
between Hot1 and Hot2 subtypes (Figure 6). Both
OS and PFS of patients with Hot1 subtype tumors
were shorter than those of patients with Hot2,
albeit not significantly so. These results might be
explained by the fact that the more profound
dysfunction of CD8+ T cells was observed in Hot1
than in Hot2 (Figure 5), despite many CD8+ T cells
infiltrating the former. There are two major
differences distinguishing between Hot1 and Hot2
tumors, one being glycolysis (Figure 2) and the
other tumor antigen expression (Figure 3).
Considering that neoantigens and viral antigens
are likely to drive cytolytic activity,34 the difference
in antigens is not likely to explain impaired T-cell
functions in Hot1 tumors. Recently, metabolic
competition in the tumor has been acknowledged
as one of the mechanisms for the
immunosuppressive microenvironment, because
cancer cells take up large amounts of glucose that
are also required for T-cell activity.35 Ottensmeier
et al. reported that tumor glucose metabolism was
negatively correlated with tumor-infiltrating T cells
in squamous cell carcinoma.36 Active glycolysis in
Hot1 tumors might explain more severe T-cell
dysfunction in the Hot1 subtype.

To examine the association between
immunological subtypes and the responses to
anti-PD-1 therapy, we re-analysed the Korean
cohort reported by Kim et al.9 Unlike our cohort
and TCGA cohort in which patients undergoing
surgery were analysed, patients in the Korean
cohort had metastatic and/or recurrent gastric
adenocarcinomas. They already received a couple
of regimens prior to anti-PD-1 therapy. This might
explain that more patients were classified into
Hot1 or Cold subtype than Hot2 or Intermediate
subtype (Figure 7a). Nevertheless, 45% of Hot1

patients responded to anti-PD-1 treatment.
Therefore, it is recommended that gastric cancer
patients with Hot1 subtype receive anti-PD-1
therapy as early as possible.

Intermediate subtype tumors are characterised
by a moderate immune response in the tumor
with positive signatures for both exclusion and
dysfunction (Figure 2). Low IGSs for recognition of
tumor cells impair the T-cell response. Abundant
CAF and the Mesenchymal phenotype create an
immunosuppressive microenvironment.6,19 The
relatively slow growth of tumor cells with low
IGSs in proliferation balances out the lower
immune response in this subtype. As shown in
Supplementary figure 6f, a low neoantigen
expression ratio in this subtype suggests that
immunoediting had operated in the tumors of
Intermediate subtype. These results suggest pre-
existing antitumor immune responses in the
Intermediate subtype.30

Gastric cancer is a type of tumor with a high
rate of HLA mutation.34 Consistently, IGS for
recognition of tumor cells was low in
Intermediate and Cold subtypes; Cold tumors
were characterised by an exclusion signature
(Figure 2). Davoli et al.37 reported that elevated
expression of cell cycle and cell proliferation
markers and reduced expression of immune
signatures were associated with tumor
aneuploidy. Furthermore, high somatic copy-
number alterations in tumors correlated with
reduced response to immunotherapy. Consistently,
Cold tumors in our cohort displayed high IGS for
proliferation and copy-number variations (CNVs)
in genes associated with antigen presentation and
IFN-c signalling pathways. These results suggest
that the treatment of Cold gastric tumors by
current checkpoint blockade immunotherapy
alone might be difficult. Combination therapies
with other modalities are warranted.

There were no significant differences in OS and
PFS between immunological subtypes. This may be
because of the small study cohort and different
postoperative treatments, even though patients
were treated according to the current guidelines.
Additionally, our study was not designed to
develop a biomarker for postoperative gastric
cancer patients. However, it is encouraging that
our classification is also supported by the analysis
of the TCGA cohort.

In conclusion, antitumor immunity in gastric
cancer was quite heterogeneous. We have
developed a novel immunological classification of
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gastric cancer based on comprehensive molecular
analysis. Incorporation of factors related to T-cell
immunity together with tumor cell factors, including
antigen presentation, proliferation and glycolysis,
identified four immunological subtypes of gastric
cancer. Intratumoral immune responses cannot be
predicted solely on the basis of histological or
molecular subtyping of gastric cancer. Molecular and
immunological classifications complement each
other to predict the responses to anti-PD-1 therapy
and have the potential to be a biomarker for the
treatment of gastric cancer. Among the
immunological hot tumors, some patients with Hot
1 subtype are recommended to receive anti-PD-1
therapy earlier than is currently approved.

METHODS

Patients and data sets

In all, 29 patients histologically diagnosed with gastric
cancer at Tokyo Metropolitan Bokutoh Hospital from June
2014 to October 2015 were enrolled. Tumors, adjacent
tissues and peripheral blood from the same patients were
collected at the time of surgery. After surgery, patients
received standard therapy according to Japanese gastric
cancer treatment guidelines.38 The clinicopathological data
for individual patients are summarised in Table 1. All
procedures in this study were performed following the
ethical standards of the institutions and in conformity with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.

Besides, the TCGA data set of 375 gastric cancer patients
was downloaded from the TCGA data portal site
(https://portal.gdc.cancer.gov/). Because patients in our
cohort and TCGA cohort went through surgery and did not
receive immunotherapy, RNA-Seq data of PRJEB25780
study9 with 45 metastatic or recurrent gastric cancer
patients who received anti-PD-1 therapy were downloaded
from the European Nucleotide Archive (https://www.ebi.ac.
uk/ena/data/view/PRJEB25780) and analysed.

DNA and RNA preparation

Tumors and adjacent normal tissues were obtained
immediately after surgical resection and stored in RNAlater
RNA Stabilization Reagent (Qiagen, Hilden, Germany).
Peripheral blood (30 mL) was also obtained, and peripheral
blood mononuclear cells (PBMCs) were isolated by density
gradient centrifugation using LymphoprepTM (Axis-Shield Poc
AS, Oslo, Norway), and cryopreserved in BambankerTM freezing
medium (NIPPON Genetics, Tokyo, Japan) until use. Genomic
DNA and total RNA samples from fresh-frozen tissues and
matched PBMCs were extracted using either AllPrep DNA/RNA
Mini Kit or AllPrep DNA/RNA/miRNA Universal Kits (Qiagen)
according to the manufacturer’s instructions. Quality of DNA
was assured by Qubit Assay Kit� (Thermo Fisher Scientific K.K.,

Tokyo, Japan); samples with a DNA concentration
≥ 12.5 ng lL�1 and a total amount ≥ 2.0 lg were used for
NGS. RNAs were accepted for NGS when the concentration
was ≥ 20.0 ng lL�1, total amount ≥ 0.4 lg and RNA integrity
number ≥ 7.0 using the Agilent 2200 TapeStation (Agilent
Technologies, Santa Clara, CA, USA).

Whole-exome sequencing

Sequencing libraries of genomic DNA from tumors and
matched normal tissue were prepared using the SureSelect
XT Human All Exon V6 Kit (Agilent Technologies) following
the manufacturer’s protocols. The enriched libraries were
sequenced as 150-bp paired-end reads using the HiSeq X or
NovaSeq (Illumina, San Diego, CA, USA) at CHEMICAL
DOJIN (Kumamoto, Japan) or BGI Japan K.K (Kobe, Japan).
The mean coverage of all protein-coding sequences (CDS)
by WES was 197.29. Exome reads were independently
mapped to the human genome (GRCh38/hg38) using
Burrows–Wheeler Aligner (v0.7.15).39 Picard (version 2.1.1;
Broad Institute, Cambridge, MA, USA) was used to remove
duplicate reads. The Genome Analysis Tool Kit (version 3.7)
was used for the realignment of reads around indels.40 The
average of total mapped reads in WES was 89.4 M for the
tumor samples and 86.7 M for normal samples. Putative
somatic variants in tumor DNA were called against DNA
taken from normal tissue using VarScan2 (version 2.4.2)
and/or MuTect (version 1.1.7).41,42 Default parameters were
used for variant calling. Nonsynonymous mutations and
splice site mutations were annotated by Annovar.43 TMB
was calculated as the total number of nonsynonymous
mutations divided by the actual number of bases analysed.

Copy-number variations

Alignments in the BAM format for tumor–normal pairs
were read simultaneously to detect copy-number alterations
using GATK (v 4.0.1.2).40 The circular binary segmentation
algorithm was used, and LOH was determined by VarScan
(v2.3). Bedtools (v2.27.1) was used for detecting copy-
number alterations of the specific gene.44

RNA-Seq

An RNA-Seq library was prepared using the NEBNext�

UltraTM RNA Library Prep Kit for Illumina� (Agilent
Technologies) following the manufacturer’s protocols. The
enriched libraries were sequenced as 150-bp paired-end
reads using NovaSeq (Illumina) at CHEMICAL DOJIN or
GENEWIZ Japan (Saitama, Japan). An average of
35.1 million reads of 150 base length per sample was
obtained on each sample and mapped to the reference
genome (GRCh38/hg38) using STAR (v.2.5.2b).45 Expression
values were calculated as fragments per kilobase of exon
per million fragments mapped (FPKM) using HTSeq
(v.0.6.1)46 and R (version 3.4.3; https://www.r-project.org/).

VAF of each missense mutation in the RNA read was
calculated as the proportion of variant read count per
depth using bam-readcount (https://github.com/genome/ba
m-readcount).
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HLA typing and prediction of neoantigens
by estimating MHC class I peptide binding

HLA types of the 29 gastric cancer patients were assigned
from WES data of normal tissues using HLA-HD.47 WES data
were subjected to DRAGEN Bio-IT Platform 3.5.7 (Illumina)
to detect SNVs and insertions and deletions (indels).
Phasing (or haplotyping) of any combination of SNVs and
indels was performed with HapCUT2 1.248 before
evaluating the binding of the mutated peptide to MHC
class I. Variants were annotated by SnpEff 4.3T.49 RNA-Seq
data were also analysed with DRAGEN Bio-IT Platform 3.5.7
8 (Illumina) to detect fusion genes. BLASTn 2.6.0+ was used
to eliminate false-positive gene fusions.50 The binding
affinities of 8-mer to 11-mer mutated peptides for the
specific HLA alleles of each patient were predicted using
MHCflurry 1.4.0.29 In the case of fusion genes, peptides
with upstream and downstream 10 amino acids from the
breakpoint were evaluated. Mutated peptides with
predicted KD values ≤ 500 nmol L�1 were considered
candidate neoepitopes. We defined a mutated gene
capable of generating one or more HLA-A-, HLA-B- or HLA-
C-restricted neoepitopes as a pNeoAg. The expression of
pNeoAgs was checked by RNA-Seq data, and they were
considered to be eNeoAg only when their TPM value and
VAF were ≥ 1 and ≥ 0.04, respectively.

Immunograms

To depict the immunological status of the tumor in each
patient, we constructed an immunogram based on RNA-Seq
data.14,15 We focused on factors related to the cancer–
immunity cycle and tumor cell proliferation and metabolism
using nine selected gene sets. These were innate immunity,
priming and activation, T cells, IFN-c response, inhibitory
molecules, Tregs, recognition of tumor cells, proliferation
and glycolysis. We then ran ssGSEA.51 Incorporated gene
sets are listed in Supplementary table 2. Similar ssGSEA was
applied to the TCGA mRNA data of 375 gastric cancer
patients. We obtained the mean (M) and standard
deviation (SD) of the ssGSEA score of these 375 gastric
cancer patients for each gene set. The score for each axis of
the immunogram in each patient was calculated as the
IGS = 3 + 1.5 9 (ssGSEA score � M)/SD. This formula was
applied for all axes of the immunogram of a patient.

Molecular classification of gastric cancer

Molecular classification of gastric cancer was performed as
previously reported;5 29 gastric cancers were classified as
being EBV, having MSI, genomic stability (GS) or
chromosomal instability (CIN). EBV tumors were identified
by the BAM file format of RNA-Seq using BioBloom
software.52 MSI testing was performed on all tumor DNA
using the MSI Analysis System (Promega KK, Tokyo, Japan).
The remaining tumors were further grouped by the number
of somatic copy-number alterations defining GS or CIN
subtypes. According to the ACRG project, these 29 gastric
cancers were grouped as Mesenchymal or Non-
Mesenchymal subtypes by their 71-gene Mesenchymal
signature (Supplementary table 5).19 To quantify TICs, we

analysed RNA-Seq data with the CIBERSORTx algorithm.20

Signatures for immune evasion by T-cell dysfunction or
exclusion were examined by the TIDE web application
(http://tide.dfci.harvard.edu/).21

Tumor-infiltrating cell isolation and flow
cytometry

Tumor-infiltrating cells were prepared using a tumor
dissociation kit (Miltenyi Biotec Inc., Auburn, CA, USA)
according to the manufacturer’s instructions. Briefly,
surgically resected tumors were cut into pieces, transferred
to gentleMACS C Tubes containing an enzyme mix (Miltenyi)
and then passed through a 70-lm cell strainer (Fisher
Scientific, Hampton, NH, USA) to obtain TICs, which were
cryopreserved in BambankerTM freezing medium (NIPPON
Genetics, Tokyo, Japan). Cryopreserved TICs were thawed in
RPMI supplemented with 50 IU mL�1 BenzonaseTM Nuclease
(Sigma-Aldrich, St. Louis, MO, USA) , and then stained using
a Zombie AquaTM Fixable Viability Kit (BioLegend, San Diego,
CA, USA) with Alexa Fluor� 700-labelled anti-CD45
(BioLegend) and Brilliant Violet 605TM-labelled CD3
(BioLegend), CD4 (Thermo Fisher Scientific K.K.), CD8
(BioLegend), IFN-c (Beckman Coulter, Brea, CA, USA), TNF-a
(BioLegend), IL-2 (BioLegend), PD-1 (BioLegend) or Tim-3
(R&D Systems, Minneapolis, MN, USA). For intracellular
cytokine staining, cells were stimulated with 10 ng mL�1

phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich)
together with 1 lg mL�1 ionomycin (Sigma-Aldrich) or
CytoStim (Miltenyi Biotec) in the presence of 10 µg mL�1

brefeldin A (Sigma: I0634) at 37�C for 4 h. Cytokine-
producing cells were then evaluated by intracellular cytokine
staining carried out according to the manufacturer’s
instructions (using IntraPrep Permeabilization Reagent;
Beckman Coulter). Stained cells were analysed on a Gallios
flow cytometer (Beckman Coulter) and data processed using
Kaluza software (Beckman Coulter) and FlowJo (version
7.6.5; TreeStar, Ashland, OR, USA).

Statistics

Ward’s hierarchical clustering method was used for
generating a hierarchical cluster of the 29 gastric cancer
patients. The Kaplan–Meier method was used to generate
survival curves for the subtypes in each data set, and the log-
rank test was used to determine the statistical significance of
differences. For comparisons of two groups, statistical
significance for normally distributed variables was estimated
by unpaired Student’s t-tests. For comparisons of more than
two groups, one-way analysis of variance (ANOVA) was used.
All statistical analyses were performed with JMP Pro 14 (SAS
Institute Japan, Tokyo, Japan) or EZR (Saitama Medical
Center, Jichi Medical University, Saitama, Japan),53 which is a
graphical user interface for R (https://www.r-project.org/). A
value of P < 0.05 was considered significant.

Data repository and accession numbers

Data are deposited on the Japanese Genotype–Phenotype
Archive (Accession no. JGAS00000000210) and DDBJ
Sequence Read Archive (Accession no. DRADRA009379).54
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