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Abstract: The environmental conditions of caves shape microbiota. Within caves’ microbial com-
munities, actinomycetes are among the most abundant bacteria. Cave actinomycetes have gained
increasing attention during the last decades due to novel bioactive compounds with antibacterial,
antioxidant and anticancer activities. However, their potential role in soil environments is still un-
known. This review summarises the literature dealing with actinomycetes from caves, underlining
for the first time their potential roles in soil environments. We provide an overview of their diversity
and biotechnological properties, underling their potential role in soil environments applications. The
contribution of caves’ actinomycetes in soil fertility and bioremediation and crops biostimulation and
biocontrol are discussed. The survey on the literature show that several actinomycetes genera are
present in cave ecosystems, mainly Streptomyces, Micromonospora, and Nocardiopsis. Among caves’
actinomycetes, Streptomyces is the most studied genus due to its ubiquity, survival capabilities, and
metabolic versatility. Despite actinomycetes’ outstanding capabilities and versatility, we still have
inadequate information regarding cave actinomycetes distribution, population dynamics, biogeo-
chemical processes, and metabolisms. Research on cave actinomycetes needs to be encouraged,
especially concerning environmental soil applications to improve soil fertility and health and to
antagonise phytopathogens.

Keywords: microbiota; culturable actinomycetes; bioactive compounds; antimicrobial activity; salt
stress; alkaline stress; mineral solubilisation; bioremediation; biostimulant

1. Introduction

Actinomycetes are prokaryotic organisms regrouped into the Bacteria taxonomic
group, playing an essential role within the microbiota of all environments [1]. This contri-
bution is significant under unfavourable conditions, such as saline and alkaline habitats,
drought stress, and high temperatures. The cellular characteristics (i.e., Gram-positive,
elongated cells forming filamentous or hyphal structures, and spores’ formation) and
metabolic versatility allow these bacteria to be present and survive in a wide range of
soil environments [2]. Figure 1 shows the diverse growth characteristics shown by some
actinomycetes and their ability to form biofilm structures and aggregations.

Studies concerning the use of bacteria, individually or in a consortium, may concern
the use of autochthonous or allochthonous organisms to improve the soil environment
status [3]. Depending on the purpose of the application, we can isolate microorganisms
from the final application site or another site with peculiar characteristics. For actinomycetes
used for agricultural purposes, the source of isolation can be the rhizosphere of plants
grown at the re-application site to improve their subsequent reuse [4]. However, if our
goal is to isolate bacteria with specific characteristics, we must look elsewhere to where the
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probability of finding them is much higher. The latter is the case of phosphate solubilising
bacteria.
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Figure 1. Actinomycetes’ biofilm and aggregations’ structures formed on surfaces visualised by
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Phosphate solubilising bacteria isolation is more probable from alkaline environments
(pH > 8), often inhospitable for cultivation because of nutrient imbalances. However, these
bacteria have a wide range of applications in different agricultural soils to provide the avail-
ability of this essential element for plant absorption. These situations lead most of the time
to the search for and application of allochthonous bacteria. Among the environments that
induce the selection of actinomycetes with unique characteristics, there are the hypogean
environments, particularly caves.

Caves are rich in carbonates, sulphates, phosphates, and potassium-rich sediments,
with diverse but approximately stable temperatures and humidity [5,6]. These conditions
shape a unique mineral solubilising microflora. Soil mineral solubilising microflora trans-
forms complex and insoluble forms of minerals into simple nutrients [7]. This capability
is significant in biogeochemical cycling and is a sustainable approach to improving crop
yields. Mining soil remediation is promoted by mineral solubilising microflora, which
speeds up mineral breakdown and soil restoration [8]. The adaptation of Actinobacteria to
extreme environments and the associated interactions have led to the evolution of different
biosynthetic potentials. Under harsh growth conditions, actinobacteria produce biosur-
factants, which accelerate biological oxidation and pollutant biodegradation. Bacteria
with these resistance mechanisms produce superoxide dismutase, efflux transporters, and
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metal-binding proteins. These resistance mechanisms allow bacteria to degrade herbicides,
pesticides, heavy metals, petrochemicals, and some aromatic compounds [9]. Microbial-
induced and biological-mediated calcification mechanisms mediate CO2 sequestration,
producing natural carbon sinks important in non-calcareous soils [10].

The caves’ environmental conditions also shape microbial secondary metabolites’ pro-
duction. Several authors have reviewed actinomycetes, mainly antibiotics, from caves for
their bioactive compounds. Actinomycetes are the most important producers of antibiotics
and a range of anticancer, anthelminthic, antifungal, and immunosuppressive drugs [11–14].
Actinobacteria produce enzyme inhibitors with various industrial and biotechnological
applications [15]. Moreover, they are involved in nanoparticle synthesis with biopotential
activities [16]. The recent review of Rangseekaew and Pathom-aree underlined that cave
environments harbour novel and diverse actinobacteria (mainly Streptomyces spp. [17]
with novel bioactive compounds with a broad spectrum of activities [18]. Within this
context, we hypothesised that actinomycetes selected from these environments could be an
essential source for soil environments in shaping and inducing enhancements in fertility,
and the health of soils. The purpose of this review is to underline the potential roles of
actinomycetes in soil environments and stimulate research to advance knowledge on the
topic. To evaluate the suitability of caves’ actinomycetes to be used in soil environments,
we summarised the literature dealing with actinomycetes from caves. Their diversity and
their role in antagonism against phytopathogens, soil fertility improvement, remediation
of contaminated soils, and improvement of crop productivity are described. The relevant
publications on actinomycetes were searched using several databases, with a total of 121 rel-
evant articles being included in the final electronic library. This review provides, for the first
time, useful information for future research on caves’ actinomycetes as soil environment
improvement agents.

2. The Diversity of Actinomycetes from Caves

Actinomycetes exhibit considerable diversity in caves because of the environmental
stresses, which shape microbiota and pave the development of new species. Cave ecosys-
tems drive unique evolutionary stressors, and the scarcity of energy determines complex
interactions between different microorganisms. For these reasons, caves are fascinating
and promising places, especially for investigating novel actinomycetes [19]. Most of the
actinomycetes can be seen by the naked eye adhering to the rock surface of the ceiling
and wall rocks with colonies from 1 to 10 mm in diameter [20–22]. The work of Long and
collaborators showed the differences among culturable and non-culturable actinobacteria
within Shuanghe Cave (Asia); even if culture-dependent methods led to unrepresentative
results of microbial communities, their study provided supplemental results and allowed to
obtain several antimicrobial strains useful in biotechnology [23]. As observed by Pašić and
collaborators [20], sometimes the composition of cave wall microbial communities can share
similarities to microbial formations appearing within human-impacted caves. This aspect
might be a notable facet to evaluate when investigating secondary metabolite production
of actinomycetes, assuming these bacteria are often observed in cave parietal biofilms.
Is there a noteworthy difference in bioactive compounds’ production between pristine
caves or human-impacted caves? Even if we believe we must study cave microbiology
comprehensively, focusing on this aspect could help us define more suitable environments
and/or characteristics shaping biota of more relevant interest for biotechnological pur-
poses. Indeed, various authors attest to the importance of pristine caves for searching novel
microbial species and bioactive compounds [19]. This aspect can also have implications
in conserving impacted cave environments, aiming to preserve what shapes the invisible
resource. Ultimately, the advent of NGS techniques could represent a powerful tool in
determining actinomycetes’ diversity and beyond.

Until the last decades, much of the identification of the actinomycetes species has
been based on chemical and cultural techniques, conceding a large portion of diversity
behind them. With the advent of new sequencing techniques, it will be possible to obtain
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more information about the subterranean microbial diversity and meld the information
deriving from cultivation techniques to succeed in cultivating non-cultivable cave mi-
croorganisms. These activities can thus constitute the basis for comprehensive knowledge
of cave actinomycetes and an industrialisation perspective of the strains of interest for
different and disparate biotechnological applications. Figure 2 summarises the possible
uses of actinomycetes isolated from cave environments.
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Many studies have focused investigations on actinomycetes’ isolation from cave-
culturable communities, discovering novel species with interesting biological properties.
Table 1 summarises the diversity of actinomycetes obtained from these studies.

The Streptomyces genus mainly constitutes the culturable microflora. Beyond Strep-
tomyces, the other most common genera are Micromonospora and Nocardiopsis, and the
isolation of rare genera (e.g., Kocuria) is frequent. According to the biological trait inves-
tigated, many authors found effective strains belonging to other genera different than
Streptomyces. Based on the intrinsic and extrinsic characteristics of the samples, isolation is
performed differently. The isolation media needs to be designed and selected considering
the key characteristics of the sample and the aim of the isolation, selecting inhibitors for
unwanted microflora, and addressing the isolation towards special actinomycetes [2]. For
example, if we aim to isolate thermotolerant actinomycetes, the sample must be air-dried at
room temperature (7–10 days) and then subjected to a heat treatment of 120 ◦C for 1 h. The
optimisation of the isolation medium is also important. For instance, if we want to isolate
halotolerant/halophilic actinomycetes, the medium salt concentration must be around
15–25%. If our goal is to isolate alkalitolerant/alkalophilic actinomycetes, the medium
selected needs to be adjusted to a pH of 10–12. The medium optimisation is also performed
to select peculiar species among the isolates (e.g., the addition of heavy metals to select
heavy metal-resistant strains).
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Table 1. Summary of the actinomycetes isolated from caves.

Strains Cave Location Activity Reference

Streptomyces spp. 52%; Actinoplanes spp. 13%;
Nocardioides 8.7%; Micromonospora 8.7%; Agromyces

8.7%; Oerskovia 4.4%; Rhodococcus 4.4%
Shuanghe Cave Asia Antimicrobial [23]

Streptomyces (54%); Micromonospora (18%);
Micrococcus (5%); Kocuria (4%); Corynebacterium (5%) Hampoeil cave Iran Heavy metal

tolerance [24]

Knoellia sinensis gen. nov. sp. nov.;
Knoellia subterranea sp. nov. Reed Flute Cave China [25]

Streptomyces; Agromyces; Arthrobacter; Rhodococcus Grotta dei Cervi Italy Halotolerance
Mineralisation [26]

Streptomyces (79.3%); Nocardia (<10%) Helmcken Falls cave Canada Antimicrobial [27]
Prauserella spp. Cave of Crystals Mexico [28]

Streptomyces (main) Nocardia; Rhodococcus;
Nocardioides; Amycolatopsis; Saccharothrix;

Brevibacterium; Microbacterium; coccoid actinomycetes
(family Micrococcaceae)

Altamira and Tito
Bustillo Spain [29]

Streptomyces; Micromonospora; Microbacterium; Kocuria;
Micrococcus; Nocardiopsis; Brevibacterium Pukzing cave India Antimicrobial [30]

Streptomyces (mainly) Actinocorallia; Actinomadura;
Agromyces; Alloactinosynnema; Amycolatopsis;

Beutenbergia; Cellulosimicrobium; Gordonia; Isoptericola;
Jiangella; Knoellia; Kocuria; Krasilnikoviella; Kribbella;

Microbacterium; Micromonospora; Mumia;
Mycobacterium; Nocardia; Nocardioides; Nocardiopsis;

Nonomuraea; Oerskovia; Pseudokineococcus;
Pseudonocardia; Rhodococcus; Saccharothrix;

Streptosporangium; Tsukamurella

Sigangli Cave China [31]

Microbispora thailandensis sp. nov. Tropical limestone
caves Thailand Antimicrobial [32]

Nonomuraea antri sp. nov. Tropical limestone
caves Thailand [33]

Studies aimed at isolating actinomycetes from caves are mainly related to their bioac-
tive compounds’ production, especially antibiotics. Among these studies, the manuscript
of Long and collaborators isolated a total of 239 actinomycetes from Shuanghe Cave
(Asia) [23]. Based on morphological characteristics of hyphae and spores, only 23 isolates
were subjected to DNA barcoding by 16S rRNA gene sequencing. The main genus found
was Streptomyces, accounting for 52% of the 23 isolates, followed by Actinoplanes with an
abundance of 13%. Among the 23 isolates, the authors also reported two putative novel
species. These new species were closely related to Streptomyces and Micromonospora gen-
era. The other strains belonged to the genera Nocardioides (8.7%), Micromonospora (8.7%),
Agromyces (8.7%), Oerskovia (4.4%), and Rhodococcus (4.4%). Other work has aimed to isolate
actinomycetes from caves as well as for heavy metal stress, salinity tolerance, and miner-
alisation capabilities. Hamedi and collaborators isolated 76 actinomycetes from 22 of the
33 samples collected from different sections of the Hampoeil cave (Iran) [24]. The 16S rRNA
gene barcoding showed that over half of the isolates belonged to the Streptomyces genus
(54%), followed by Micromonospora (18.4%). The other isolates belonged to Micrococcus (5%),
Kocuria (4%), and Corynebacterium (5%). Groth and collaborators isolated several strains
from soils, walls, and stalactites of Grotta dei Cervi (Porto Badisco, Italy). Even if many
of them were unidentified, the isolates belonged mainly to the Streptomyces genus (45%,
in soils, 75% in walls, and 8% in stalactites). The other genera found were Brevibacterium,
Amycolatopsis, Nocardia, Gordonia were, and Nocardiopsis [25,26].

The complete description of microbial communities can be achieved by next-generation
sequencing. Riquelme and collaborators carried out one of the most complete and extended
works describing the microbiota of caves [22]. The authors studied the diversity of volcanic
cave actinomycetes in Spain, Portugal, USA, and Canada. The same approach was carried
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out by many other authors of different cave systems in various parts of the world. Table 2
summarises the most abundant actinomycetes found in caves by these studies and their
relative abundances in microbial communities

Table 2. Summary of the actinomycetes characterised in caves microbiota.

Actinobacteria Described
Abundance of

Actinomycetes in
Bacterial Community

Cave Location References

Mycobacterium 29.9%; Nocardioides 21.9%;
Streptomyces spp. 15.1% 42–48% Shuanghe Cave Asia [23]

Streptomyces within the dominant order of
Streptomycetales 93% Pukzing cave India [30]

Arthrobacter; Acidimicrobidae;
Actinosynnemataceae; Brevibacterium;
Frankia; Kocuria; Microbacteriaceae;

Micrococcaceae; Nocardiaceae;
Nocardioidaceae; Pseudonocardiaceae;

Streptomycetaceae; Saccharothrix;
Rhodococcus

>25% Pajsarjeva jama Slovenia [20]

Actinomycetales order dominance - Different caves Spain, Portugal,
USA, Canada [22]

Mycobacterium; Corynebacterium;
Rubrobacter; Actinoplanes; Saccharothrix;

Pseudonocardia
Up to 65% Five different caves India [34]

- 14–34% Bellavista and
Royal Palm Caves Ecuador [35]

- 2–34% Pertosa-Auletta
Cave Italy [36]

From this survey, it was possible to underline that actinomycetes account for 2–93%
of cave bacterial communities, based on the sample investigated. The most abundant
genus is Streptomyces, followed by Micromonospora, Microbacterium, Micrococcus, Nocar-
dioides, Agromyces, Rhodococcus, and Saccharothrix. The different genera account for different
percentages of the actinomycetes community based on the type of cave and environmental
stressors present.

3. Expansion of Productive Landscapes

Climate change effects and anthropogenic activities associated with urbanisation
and non-food crop cultivation are expected to limit the landscapes dedicated for food
production. The major threats are represented by the spread of phytopathogens, excessive
use of agrochemicals, and decreases in soil fertility. As presented in Figure 3, caves’
actinomycetes could be a useful tool to overcome these problems and extend productive
landscapes by improving the productivity and stress tolerance of crops and improving soil
fertility and consolidation. These activities are described in detail in the following sections.
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3.1. Antagonism against Phytopathogens

With the emergence of multi-resistant pathogenic microorganisms, the search for new
antimicrobial metabolites has become one of the primary goals of sustainable agriculture.
To increase the possibility of discovering novel metabolites, research must shift towards
extreme and under-exploited ecosystems, such as caves. The production of secondary
metabolites is related to the phenomenon of quorum sensing promoted by biofilms, an
indispensable ecological response to survive and cope with the limiting environmental
pressures of the caves [37]. Cave actinomycetes are an excellent resource of new bioactive
compounds with several and complex structures [10,38]. Actinobacteria produce about
two-thirds of known antibiotics, most of them belonging to the Streptomyces genus [1].
Several actinobacteria are responsible for a wide range of bioactive compound productions,
such as enzyme inhibitors, immune modifiers, plant growth-promoting substances, and
natural dyes, and they exert several antimicrobial, antifungal, anticancer, antiparasitic, and
immunosuppressant activities [1,18,39–42]. So far, studies and reviews have been mainly
based on applying these compounds against human pathogens [18,43]. These studies
report a broad spectrum of effectiveness against Gram-positive (e.g., Bacillus subtilis and
Staphylococcus aureus) and Gram-negative bacteria (e.g., Pseudomonas aerungiosa), and fungi
(e.g., Candida albicans) [30]. Several studies are needed to show that this antimicrobial
activity is also effective against phytopathogens. However, the results achieved so far
are promising. The recent study of Axenov and collaborators described the effective use
of metabolites extracted from Streptomyces spp., isolated from a Siberian conglomeratic
karstic cave, against Fusarium verticilloides DSM 62264, the Zea mays rotting stalk’s causal
agent associated with human diseases [44]. Culturable bacteria (Bacillus, Nissabacter, Dick-
eya, and Serratia) isolated from seven caves of Brazil showed effective in vitro inhibition
against phytopathogenic strains of Xanthomonas citri subsp. citri, Fusarium oxysporum, and
Colletotrichum lindemuthianum [45].

The investigations on the actinomycetes’ communities in Four Windows Cave revealed
a diverse community of bacteria, including actinomycetes, producing secondary repellent
compounds to invertebrates [46] and thus were helpful in counteracting pathogenic inverte-
brates. Molecular studies identified multi-domain enzymes responsible for natural product
production with antimicrobial activities. These studies investigated the presence and diver-
sity of antimicrobial biosynthetic polyketide synthase (PKS) and non-ribosomal peptide
synthetase (NRPS) genes, and their clusters within the cave microbiome [47]. The presence
of these enzymes was detected in the caves’ microbiome of Belgium [48], India [11,49],
Bahamas [50], and Georgia [51]. Beyond antimicrobial compounds, cave actinomycetes
present many other assets to counteract phytopathogens, i.e., siderophores and other en-
zymes [52,53]. These characteristics are effective against microbial phytopathogens [54] and
have led to the speculation on the use of cave actinomycetes as biocontrol agents against
phytopathogens.
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3.2. Productivity of Crops Improvement

The scientific literature is lacking studies on the use of cave actinomycetes to improve
crop productivity. However, there are many reports of actinomycetes isolated from other en-
vironments acting as effective plant biostimulants. These reports, extensively summarised
by many authors [55–57], describe the isolation of actinobacteria, also from extreme envi-
ronments, and their applications under stressful conditions (e.g., heavy metal stress and
desertic, salty, and alkaline soil environments). Actinomycetes with a positive effect on
plant growth and crop productivity belong to the plant growth-promoting actinobacte-
ria (PGPA), a subgroup of the larger group of plant growth-promoting bacteria (PGPB).
Regardless of the type and characteristics of the association, the mechanisms of action
by which beneficial soil microorganisms can promote and/or maintain the physiological
and phytosanitary status of the plant fall into two broad categories: direct and indirect
mechanisms [58].

Direct mechanisms include atmospheric nitrogen fixation, plant hormone production,
and the solubilisation of essential elements in plants. Atmospheric nitrogen fixation is a
process carried out by microorganisms, both freely in the soil and in association or symbiosis
with plants, that enables the reduction of atmospheric nitrogen and makes it available for
microbial biosynthesis and plants. The production of plant hormones is promoted by the
association of plants and microorganisms, leading to changes in the hormonal homeostasis
of plants. Numerous microorganisms can synthesise or metabolise phytohormones, such as
auxins, ethylene, cytokinins, gibberellins, abscisic acid, jasmonic acid, and salicylic acid, or
influence hormone synthesis in plants [59]. The growth, development, and maintenance of
the cellular processes of plants are ensured not only by nitrogen and hormones but also by
essential elements such as phosphorus and potassium. These elements are hardly present in
the soil and can hardly be taken up directly by the plants, as they are usually in inaccessible
forms. As already described in the previous section, the availability of the accessible forms
is ensured by the direct action of beneficial microorganisms, which, by directly dissolving
the insoluble forms blocked in the minerals, promote the release of forms that can be taken
up by the plants [7].

The indirect promotion of plant growth occurs when PGPB reduces or prevents a
phytopathogenic organism’s harmful effects. Mechanisms of indirect promotion include
synthesis of antibiotics and other antagonistic molecules that counteract the growth and
development of the pathogen, secretion of siderophores, production of lytic enzymes, and
competition for nutrients, as well as space in niches. Siderophores are small molecules
with a high affinity for iron, forming complexes with this metal that make it unusable
for microorganisms not part of the plant’s ecosystem. The development and spread of
some phytopathogenic pathogens are closely linked to the presence of iron. Therefore,
the action of siderophores produced by beneficial microorganisms indirectly prevents the
development of pathogens by preventing them from developing, as they cannot use the
bound iron [60].

The production of lytic enzymes has an antagonistic effect against some significant
components of the cell walls of pathogenic organisms (e.g., the activity of the enzyme chiti-
nase on the chitin of pathogenic fungi) [58]. By competing for nutrients, PGPBs counteract
the development of pathogens in the environment of plants. By competing for ecological
niches, the beneficial microorganisms prevent pathogenic bacteria or fungi from entering
the niche, limiting their growth and development and thus their pathogenic activity [60]. In
addition to the direct and indirect mechanisms, beneficial microorganisms can help plants
improve their response to biotic stresses such as pathogens, but also abiotic stresses such
as salt, water, or temperature stress through induced systemic resistance (ISR) [61]. The
resistance mechanisms acquired by plants can be limited to the damaged organ or spread
systemically throughout the plant. The latter include systemic acquired resistance (SAR)
and ISR. B pathogens and parasites trigger SAR, while beneficial microorganisms mediate
ISR in the rhizosphere [62]. Mineral dissolution abilities, production of bioactive molecules,
competitive and antagonistic behaviour, and involvement in nutrient cycling have shown
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that cave actinomycetes are a promising tool for biological stimulation of plants, providing
nutrition and the protection of crops.

3.3. Improvement of Soil Fertility and Consolidation

Soil fertility is threatened by diverse biotic and abiotic stresses. Salinisation and alkalin-
isation negatively affect agricultural productivity, microbial communities, and agricultural
production among abiotic stresses.

Soil salinisation, induced by the accumulation of water-soluble salts, is a problem
common to all zones of the Earth with different pedoclimatic conditions [63]. Halotoler-
ant/halophilic microflora can survive in salty soils due to several mechanisms [64]:

• Specific composition of cellular membranes or cell walls that obstruct the input of high
salt concentrations.

• Pumping ions out of the cell by a Na+/H+ anti-porter or use of K+/Na+ ion trans-
porters for regulation of intracellular ionic concentration and osmotic adaptation.

• Endogenous compatible solutes biosynthesis and accumulation (e.g., sucrose, glycine
betaine, and glycosyl glycerol).

• Adaptation of proteins and enzymes that produce high contents of solute ions.
• Enhancement of cell energy.
• Production of exopolysaccharides that helps the development of biofilms and blocks

the entry of high salt into the cell.

Halotolerant/halophilic actinomycetes are usually found in extreme environments
with high salt concentrations (e.g., seawater, saline soils, salt lakes) [65,66]. Anchialine caves
present steep salinity gradients and can be a good source of novel halophilic/halotolerant
actinomycetes. Hodges and collaborators isolated several actinomycetes from Bahamas
anchialine cave systems [50]. Among the eleven isolates, four strains were closely related
to the Solwaraspora species, while others were related to Nocardiopsis, Micromonospora, Strep-
tomyces, and Pseudonocardia. These halophilic/halotolerant microorganisms can counteract
the salinity’s adverse effects, restore saline degraded soils, and induce halotolerance in
plants [67]. One of our recent studies highlighted the use of saline soils, Streptomyces and
Nocardiopsis strains, as salt-tolerance inducers in Triticum durum under different salt concen-
trations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl) [68]. Microorganisms induce salinity
tolerance through stress-responsive genes stimulation, mineral solubilisation, volatile and
antioxidant compounds’ production, phytohormones’ regulation, and regulation of turgor
pressure, homeostasis of ions, and osmotic balance (e.g., proline) [69].

Soil alkalinisation is caused by high concentrations of carbonates (CO3
2−) and bicar-

bonates (HCO3−), leading to desertification in many soils [70]. Alkalitolerant/alkaliphilic
bacteria can survive in extracellular environments with a pH up to 11 and mitigate alka-
linity stresses in soil environments [71]. Fang and collaborators revealed that alkaline pH
promoted the isolation of Streptomyces spp. and rare actinomycetes’ strains from karstic
caves [31]. They found that Actinobacteria growth was implemented with the introduction of
different calcium salts as CaCO3, CaCl2, and (CH3COO)2Ca at 0.01%, 0.1%, and 1% (w/v).
Application effectiveness of alkalitolerant/alkaliphilic actinomycetes in soil environments
remains uninvestigated. However, it is well known that these microorganisms:

• Increase availability of assimilable iron [72];
• Release nutrients from minerals [73];
• Decompose recalcitrant biopolymers [74];
• Complete degradation of nitriles [75];
• Enhance rock weathering [76];
• Recycle humic acids [77];
• Degrade hydrocarbons [41].

Based on these abilities, alkalitolerant/alkaliphilic actinomycetes could play an es-
sential role in improving soil fertility, expanding productive landscape extension. Mineral
solubilisation covers a relevant role in salty and alkaline soils. As already described, this
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capability is essential in soil environments’ biogeochemical cycling and allows for the
conversion of nutrients blocked in mineral forms into available forms [7]. Cave solubil-
ising actinomycetes could be used as bioinoculants to improve soil nutrient availability
and convert inhospitable soils into agricultural soils. The in silico investigation on the
microbial communities of five Indian caves, mainly composed of proteobacteria and acti-
nobacteria, revealed genes involved in carbon, nitrogen, and methane metabolisms, and
complex metabolic pathways for the bacterial community survival in nutrient-limited cave
environments [34]. Actinomycetes also participate to organic materials’ cycling through
the production of hydrolytic compounds [78]. This activity is relevant for the breaking
down of chitin, cellulose, and lignin found in soil environments. The breakdown of these
compounds releases nutrients exploitable by other organisms. Other organisms also carry
out this activity. However, actinomycetes present some advantages over other microorgan-
isms. The metabolic versatility, cell structure, and sporulation ability allow actinomycetes
to survive under adverse conditions [79]. The use of thermotolerant actinomycetes-base
inoculants during different stages of composting has already been demonstrated to be effec-
tive in cellulose degradation and the increase in humic matter content [80]. These aspects
highlight the usefulness of cave actinomycetes in improving biogeochemical cycling.

Another potential effect on soil is linked to the biomineralisation ability of actino-
mycetes. Beyond the described production of natural carbon sinks that help CO2 seques-
tration [10], biomineralisation could help consolidate soil structure. The relatively stable
abiotic conditions defining caves allow a privileged investigation of the relationships be-
tween the geochemical processes and the microbial communities’ activity. By interacting
with the minerals in caves, specific microbial communities play an essential role in forming
caves, actively shaping the concretions, or participating passively, stratifying dead cells
within calcite layers. Microorganisms can trigger different reactions with the rock matrix,
determining minerals’ formation and/or dissolution through many biochemical reactions
and redox transformations [81]. Moonmilk is a typical white secondary deposit, generally
observed within caves in limestone. It is mainly composed of carbonate minerals, com-
prising different morphologies with crystals or filaments that could show lengths from
micrometres to nanometres. These peculiar formations can cover diverse substrates in
caves, such as walls and ceilings. Depending on their water content, they can also show
different textures, from muddy to drier consistencies [81]. Although the origin of moonmilk
has been considered for several years to be controversial, it is commonly accepted that the
active microbiological features contribute to the formation of these secondary depositions.
This theory was reinforced by several microbial investigations related to these secondary
deposits [48]. Different studies have shown that the moonmilk hosts a rich microbiota,
mainly composed of bacteria, fungi, and archaea. Borsato and collaborators also analysed
changes in the moonmilk textures. They observed a correspondence on the state of micro-
bial activity: wet traits are generally related to an active community, and the moonmilk
tend to become drier when microbial activity is less active [82]. Therefore, investigating
microbial communities in different moonmilk textures could provide further information
on the microorganisms involved in this specific biomineralisation process. Cañaveras
and collaborators argued the evidence of a crucial role of actinobacteria in the moonmilk
formation [83]. These bacteria play a significant role in biofilm formation and promote
calcium carbonate precipitation by creating locally favourable conditions and using their
cell walls as nucleation sites. This theory has been corroborated also by Bindschedler
and collaborators [84] as well as Li and collaborators [85]. Park and collaborators found
Streptomyces solely in dry moonmilk specimens within Baeg-nyong Cave (South Korea) [86].
The authors discussed that the secondary metabolites produced by Actinomycetes might
directly inhibit or promote the growth of other microorganisms [87].

Actinomycetes’ secondary metabolites may also act as cell-signalling molecules, with
an essential role in microbial community maintenance [88]. Through their powerful proper-
ties, calcifying bacteria have been used from the 1990s to develop different biotechnological
applications, especially in the bioconstruction and biorestoration fields. Specifically, bio-
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consolidation prevents and/or stabilises erosion and increases slope stability of different
soils. This method relies on biochemical processes naturally occurring in environments to
improve the engineering properties of soils [89]. However, various solutions to these prob-
lems in the geotechnical field do not consider biotechnological solutions. The conventional
methods mainly rely upon the application in the soil matrix of cement or chemicals. Even
if effective, these techniques can permanently pollute soils and water environments and be
more expensive than bioconsolidation solutions [90]. Even if the applicability of biological
treatments is still minimal, a possible answer to the whole criticalities is represented by
calcifying bacteria [91]. For instance, Whiffin and collaborators tested the capabilities in the
reinforcements of sands by the treatment with different calcifying bacteria and showed a
decreased porosity and improved soil strength in the biotreated soils [92]. Instead, Ivanov
and Chu compared the cost of conventional chemical groutings with microbial-related
techniques and found the latter to notably cheaper than the conventional ones [93].

These findings show that calcifying bacteria in the bioconsolidation of soil is a promis-
ing and fascinating eco-friendly alternative approach capable of solving environmental
problems in multidisciplinary fields. Specifically, actinomycetes isolated from cave envi-
ronments that show biomineralisation capabilities could represent a valuable resource for
several fields, enhancing the actual properties that industrialised stains detain. A captivat-
ing aspect is clearly linked, for instance, to the genus, Streptomyces, found in dry moonmilk
formations, which could represent a valuable role in the bioconsolidation of soils with low
water content.

4. Remediation of Contaminated Soils

Actinomycetes play relevant ecological roles in environments, including the recycling
of substances and degradation of pollutants. Actinobacteria can remove organic and in-
organic pollutants (i.e., pesticides and heavy metals) [94]. Beyond bioactive molecules,
actinomycetes produce enzyme inhibitors, immunosuppressors, phytotoxins, biopesti-
cides, biosurfactants, probiotics, and enzymes involved in the degradation of complex
polymers [95]. These capabilities are promoted by the oligotrophic properties of caves
that stimulate inimitable strategies of the indigenous microbiome to remove pollutant
compounds [24,96]. Augmentation, stimulation, cell immobilisation, and the production
of biosurfactants were exploited during the last decades to enhance the capabilities of
actinobacteria in bioremediation [97]. Figure 4 summarises the possible uses of actino-
mycetes from caves in the remediation of complex polymers, heavy metals, and organic
pollutant-contaminated soils, which are described in the following paragraphs.
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4.1. Heavy Metals

Within caves, heavy metal stress is a critical environmental factor determining the
structure and function of microbial communities [98]. Oliveira and Pampulha reported a
marked decrease of the different microbial groups for contaminated soil samples compared
to uncontaminated samples [99]. The heavy metal contamination also negatively affects
microbial metabolic abilities. Ellis and collaborators found that metal contamination did not



Microorganisms 2022, 10, 453 12 of 19

significantly affect the total genetic diversity present but affected physiological conditions
of culturable microflora. The number of bacteria capable of responding to laboratory culture
and their taxonomic distribution were significantly altered [100].

Actinomycetes, together with proteobacteria, are the representative constituents of
physiologically active fractions in sites contaminated with heavy metals [101]. Among cave
actinomycetes tolerant to heavy metal stress, Streptomyces shows a remarkable capacity to
tolerate a wide range and different concentrations of heavy metals. The recent work of
Hamedi and collaborators reported that about 26% of actinomycetes’ strains isolated in
soil and water of different sections of Hampoeil cave (Iran) could tolerate Pb (5 mM), Ni
(15 mM), Cd (2.5 mM), Cu (3 mM), and Zn (35 mM) [24]. In this study, the authors found
that Nocardia sp. UTMC 3191 and Streptomyces sp. UTMC 3261 strains were able to tolerate
all five different heavy metals, while Micromonospora soli UTMC 3168, Streptomyces sp.
UTMC 3178 and Streptomyces pratensis UTMC 3254 tolerated only three of them (Zn, Cu, Ni).
Among them, some Actinobacteria reached a maximum tolerance to the heavy metals tested
relative to other strains. For instance, Micromonospora aurantiaca UTMC 3161, Nocardia
sp. UTMC 3191 and Streptomyces pratensis UTMC 3254 showed the maximum resistance
to Zn (70 mM) in comparison to 35 mM for other isolates. Likewise, Micromonospora sp.
UTMC 3162, Streptomyces sp. UTMC 3164, Micromonospora soli UTMC 3168, Rhodococcus sp.
UTMC 3171, Streptomyces sp. UTMC 3178, and Nocardia sp. UTMC 3191 had the highest Ni
tolerance (30 mM) compared to 35 mM for other strains. Possible evidence that can help in
speculating the use of metal-tolerant actinomycetes as bioremediation agents exists in the
literature on mines. Even if species’ composition between cave and mine environments is
different, the heavy metal tolerance is similar.

Evidence recorded from mines has demonstrated that Streptomyces is the most effi-
cient genus of actinomycetes that can tolerate heavy metals. Hurtado and collaborators
investigated 24 strains of actinomycetes, isolated from arsenopyrite minerals from different
mining areas of Peru, to evaluate their potential in bioleaching processes of arsenopy-
rite [102]. Among the isolated strains, Streptomyces sp. E1 and Streptomyces variabilis AB5
were able to develop in arsenopyrite. In particular, the leached solutions of Streptomyces
sp. E1 and S. variabilis AB5 showed an arsenic (As) extraction present in arsenopyrite of
19.1% and 15.5%, respectively. The ability of Streptomyces to tolerate heavy metal stress was
also confirmed for thorium (Th) and uranium (U), two actinide elements that have become
the centre of broad interest in the recovery of nuclear fuel elements and the removal of
nuclear wastes. Nakajima and Tsuruta examined the competitive biosorption of thorium
and uranium by actinomycetes. They observed that Streptomyces levoris had the highest
ability to sorb the two metals in metal-single and metal-mixed solutions from aqueous
systems [103]. Undabarrena and collaborators analysed genetic determinants involved in
heavy metal tolerance in the Streptomyces sp. H-KF8 strain by genome mining and studying
49 predicted genes mainly related to arsenate, copper, and mercury tolerance. In this
study, the authors found that arsenic tolerance involved three arsC genes encoding arsenate
reductases, two arsA genes encoding arsenical pump driving ATPases, five arsR genes
encoding arsenical transcriptional regulators, and the arsenical resistance protein encoding
gene acr3. Among copper resistance genes, copA and mco genes encoding multicopper oxi-
dases, copD gene encoding a copper resistance protein, two ycnJ genes encoding for copper
transport proteins, and two csoR genes for the copper-sensing transcriptional regulator are
determinant factors [104]. These findings pave the way to using cave actinomycetes for
heavy metal-contaminated soil remediation.

4.2. Organic Pollutants

Intensive agriculture techniques and production, fertilisation, and industrial wastew-
aters (e.g., crude oil refineries, coal gasification plants) often produce components of
environmental pollution (e.g., carbamate, phenols, organochlorine, and organophospho-
rus) [105]. Despite the lack of records dealing with the organic pollutant-degradative strains
from caves, actinomycetes are considered the ideal bioremediation agents because of their
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metabolic diversity and peculiar growth and survival [106]. Among pesticide-degrading
actinobacteria, Arthrobacter, Rhodococcus, Streptomyces, Frankia, Janibacter, Kocuria, Mycobac-
terium, Nocardia, and Pseudonocardia are the most representative. In particular, the genus,
Arthrobacter, has been recognised as a degrader of different xenobiotics since members
of this group possess various catabolic pathways to detoxify these compounds [107–109].
For instance, an Arthrobacter strain (A. chlorophenolicus A6) is a good candidate for 4-
chlorophenol-degradation activity. Bjerketorp et al. investigated the viability of formulat-
ing and stabilising a product based on dried A. chlonophenolius A6 in soils contaminated
with 4-CP, that may be useful for the development of less cost and less technically challeng-
ing remediation techniques. This formulation, based on micronised vermiculite, showed
survival rates of about 60% and remained stable in storage for at least 3 months at 4 ◦C.
Furthermore, in controlled-environment soil microcosm, the stabilised cells degraded 4-CP
as efficiently as freshly grown cells. In fact, it reduced the initial concentration of 130 µg
4-CP g−1 dry soil to a final concentration of 20 µg 4-CP g−1 dry soil after 13 days [110].

Baoune et al. used Streptomyces sp. Hlh1 strain to test its capacity to remediate
petroleum-contaminated soil. They discovered that this strain could grow and remove total
petroleum hydrocarbons (TPH), including n-Alkanes (C6-C35) and 14 priority aromatic
hydrocarbons (PAHs). The experiments were carried out in both sterilised and non-sterile
soils. The strain removed up to 40% and 55% of TPH under sterile and non-sterile con-
ditions, respectively [111]. As previously reported, actinobacteria can recover different
environmental matrices contaminated by organophosphorus pesticides. Briceño et al. ex-
amined the Streptomyces spp. consortium ability to remove chlorpyrifos and diazinon from
liquid, soil, and biobed mixtures. From liquid, a removal rate of 0.036 h −1 and 0.015 h −1

and a half-life of 19 h and 46 h were recorded for chlorpyrifos and diazinon, respectively.
For soil and biobed mixtures, limited chlorpyrifos removal was achieved (6–14 %), whereas
diazinon showed a removal rate of 0.024 day −1 and 0.060 day −1 and a half-life of 29 and
11 days [112]. Among actinobacteria, rhodococci have practical industrial and ecological
applications due to their various metabolic activities. Members of the genus, Rhodococcus,
are ubiquitous in fertile soil and can also be present in polluted environments where they
play an essential role in degrading different pollutants [113]. Rhodococci are promising
candidates for bioremediation due to their resistance to starvation in soil, while carbon
sources that are more simply assimilable might not negatively affect the contaminants’
breakdown [114]. Different Streptomyces strains can grow on and degrade several classes of
pesticides [115].

5. Limitations and Advantages in the Use of Actinomycetes

The use of actinomycetes-based products and, more generally, bacterial-based products
for soil environments applications present both advantages and disadvantages. Compared
to agrochemicals and other physical and chemical treatments used for agriculture or reme-
diation/restoration, actinomycetes-based products are sustainable. Actinomycetes-based
products are entirely eco-friendly and not harmful for organisms [106]. Compared to
other bacterial-based products, actinomycetes have great versatility and particular cell
properties [2]. These characteristics pave the road to more possibilities to find the character-
istics of the ideal strain for industrialisation and the production of formulations. Even if
these advantages are essential, some limitations can occur in microbial formulations in soil
environments. Unlike synthetic chemicals, the optimisation, formulation, and preparation
of inoculants can be challenging and must follow several rigorous validation steps and
the industrial scaling-up of bioreactions [55]. The effectiveness of bacterial inoculants as
biostimulants and biocontrol agents in soil environments presents high variability as bacte-
ria are susceptible to abiotic and biotic factors. The rate of effectiveness is not comparable
to that of chemical fertilisers. However, these limitations are less heavy for actinomycete-
based products. Since actinomycetes are spore-forming bacteria, most actinomycetes can
survive, adapt, and be effective under diverse environmental conditions [57]. Because of
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their many functions, summarised in Table 3, actinomycetes are a significant source for
developing a wide range of technological applications.

Table 3. Summary of the functions of culturable genera actinomycetes isolated from caves.

Genera Functions References

Streptomyces spp.

Antibacterial, antioxidant, and anticancer
bioactive molecules.

Effective use of metabolites against
phytopathogens.

Biotic and abiotic stress tolerance.
Plant growth-promoting activities.

Soil bioconsolidation and bioremediation.

[18,24,45,53,55,57,68,97,103,116]

Micromonospora spp.

Pollutants’ degradation and soil
detoxification.

[24,96,105]
Nocardia spp. [24,105,116]
Nocardiopsis spp. [68]
Arthrobacter spp. [105]
Rhodococcus spp. [105,116]
Frankia spp. [105]
Kocuria spp. [105]
Janibacter spp. [105]
Pseudonocardia spp. [105]

However, there are some drawbacks. A good portion of actinomycetes from subter-
ranean environments is not cultivable, it includes still unknown species, and there are still
no reliable and efficient cultivation protocols [117]. Another crucial aspect of cave actino-
mycetes is connected to human health because of their potential pathogenicity. Several
actinobacterial species, mostly belonging to the genera Gordonia, Mycobacterium, Nocardia,
Rhodococcus, and Streptomyces, are known to cause skin, lung, and brain infections, and bron-
chopulmonary diseases to humans [118]. Actinomycetes may also represent a potential risk
for natural and cultural heritage beneath the surface. Several studies have demonstrated
that their metabolism’s organic and inorganic products negatively affect cave paintings and
secondary deposits, such as stalactites and stalagmites [116,119]. Pinzari and collaborators
also detected some actinobacteria species as the cause of the parchment discolouration [120];
this phenomenon consists of the occurrence of purple spots on the parchment, and the
proliferation of actinobacteria could also provide favourable conditions for the develop-
ment of proteolytic and mitosporic fungi that contribute to the deterioration process [121].
However, this limit can be overcome, as it is mainly understood that the study of cave
actinomycetes is exceptionally young and has been growing in recent years, at the same
rate with the new technologies. Therefore, if added to the great potential of actinomycetes,
these criticalities only intensify the motivation to deepen the study of this fascinating taxon,
and consequently, to invest resources in this promising and multifaceted field.

6. Conclusions and Future Perspectives

Over the past decades, subterranean ecosystems have raised interest because of the
dwelling microbiome that these environments conceal in the dark. In such unfavourable
environments, studies on autecological and synecological responses have revealed new
insights for developing advanced biotechnological applications. From the evidence sum-
marised in this review, it is evident that caves represent a crucial window to investigate
actinomycetes and their pharmacologically, clinically, and agriculturally relevant bioactive
compounds. Most of the published studies address antibiotic potentialities towards hu-
man pathogens and the production of bioactive compounds for human health. However,
these bacteria can be a source of compounds beneficial for soil environments applications,
including bioremediation and agriculture. Due to their metabolic versatility and resistance
under diverse stressful conditions, actinomycetes from caves have a significant potential
to be used as biostimulant, biocontrol, and bioremediation agents in soil environments.
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The survey on the literature also showed that the Streptomyces genus seems to be the most
promising target of study due to ubiquity, survival capabilities, and metabolic versatility.
Despite these potentialities, this review highlighted the continued need to retain poor
information concerning distribution, population dynamics, biogeochemical processes, and
metabolisms of cave actinomycetes. The limited information obtained on soil is not scientif-
ically sufficient enough to support cave actinomycetes in biotechnological applications. In
our opinion, research on cave actinomycetes needs to be encouraged, especially concerning
environmental soil applications to improve soil fertility and health, and to antagonise
phytopathogens.
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