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Background: Based on promising results from radiomic approaches to predict O6-
methylguanine DNA methyltransferase promoter methylation status (MGMT status) and
clinical outcome in patients with newly diagnosed glioblastoma, the current study aimed to
evaluate radiomics in recurrent glioblastoma patients.

Methods: Pre-treatment MR-imaging data of 69 patients enrolled into the DIRECTOR trial
in recurrent glioblastoma served as a training cohort, and 49 independent patients formed
an external validation cohort. Contrast-enhancing tumor and peritumoral volumes were
segmented on MR images. 180 radiomic features were extracted after application of two
MR intensity normalization techniques: fixed number of bins and linear rescaling. Radiomic
feature selection was performed via principal component analysis, and multivariable
models were trained to predict MGMT status, progression-free survival from first
salvage therapy, referred to herein as PFS2, and overall survival (OS). The prognostic
power of models was quantified with concordance index (CI) for survival data and area
under receiver operating characteristic curve (AUC) for the MGMT status.

Results: We established and validated a radiomic model to predict MGMT status using
linear intensity interpolation and considering features extracted from gadolinium-
enhanced T1-weighted MRI (training AUC = 0.670, validation AUC = 0.673).
Additionally, models predicting PFS2 and OS were found for the training cohort but
were not confirmed in our validation cohort.

Conclusions: A radiomic model for prediction of MGMT promoter methylation status
from tumor texture features in patients with recurrent glioblastoma was successfully
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established, providing a non-invasive approach to anticipate patient’s response to
chemotherapy if biopsy cannot be performed. The radiomic approach to predict PFS2

and OS failed.
Keywords: radiomics, recurrent glioblastoma, MGMT status, DIRECTOR trial, linear intensity interpolation
INTRODUCTION

Glioblastoma is the most commonly occurring and aggressive
malignant brain tumor in adults (1) and is classified by the
World Health Organization as astrocytoma grade 4 (2). Patients
enrolled in clinical trials show a dismal outcome with a median
overall survival (OS) of 14.6 to 16.8 months and a 2 year survival
rate of 27.2 to 33.9% (3–5). For newly diagnosed glioblastoma,
the standard of care consists of gross total tumor resection when
feasible followed by involved field radiotherapy as well as
concomitant and sequential chemotherapy with the alkylating
agent temozolomide. In contrast, for recurrent disease, optimal
salvage therapy has not been defined with data lacking on
predictive factors and superiority of the various treatment
options (6). Glioblastoma is a heterogeneous tumor entity with
various prognostic and predictive factors, including clinical
(patient age, Karnofsky performance status) and molecular
characteristics (O6-methylguanine DNA methyltransferase
promoter methylation status, MGMT status) (7, 8) affecting
survival and treatment response. MGMT status is a well-
established biomarker for newly diagnosed and recurrent
glioblastoma and is predictive for both overall survival and
treatment response to temozolomide (9). In a systematic
review, temozolomide was found effective in recurrent
glioblastoma (10) and possibly superior to nitriosurea-based
chemotherapy (11, 12). The hypothesis of dose-dense or
metronomic application being superior to the conventional
schedule could not be confirmed in later randomized trials (9,
11). Yet, the DIRECTOR trial could establish the predictive role
ofMGMT status for response to temozolomide (9). Furthermore,
the field of radiomics has introduced a large number of non-
invasive medical imaging characteristics to describe specific
phenotypic differences of tumors. Accordingly, several
quantitative radiomic approaches have shown their potential to
predict MGMT status and clinical outcome in patients with
newly diagnosed glioblastoma (13–16). However, there are no
reliable data on the value of quantitative radiomics for recurrent
glioblastoma. This study was designed to evaluate the association
of clinical outcome (progression-free survival, PFS2, and OS) and
molecular characteristics (MGMT status) with radiomic features
from tumoral and peritumoral tissue on gadolinium-enhanced
T1-weighted MR images in glioblastoma patients at
first progression.
r operating characteristic curve; CI,
ethylguanine DNA methyltransferase
rvival; PFS2, progression free survival;
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MATERIALS AND METHODS

Patient Population
MR imaging data of the DIRECTOR trial (9), a prospective
randomized multicenter trial that compared two dose-intensified
temozolomide regimens in recurrent glioblastoma either with or
without repeat surgery, were retrospectively analyzed and
represented the training cohort (N = 105). The DIRECTOR
trial showed a similar outcome in both study arms. Furthermore,
imaging data were examined from an independent validation
cohort (N = 49) at the University Hospital of Zurich enrolled by
the same inclusion criteria as in the DIRECTOR trial (Table S1).
All patients underwent prior treatment with standard of care for
newly diagnosed glioblastoma (gross total resection if feasible
followed by involved field radiotherapy and concomitant and
sequential temozolomide chemotherapy) and were monitored
for disease status by MRI in 8-week-cycles. DIRECTOR patients
were excluded by the following criteria: unavailable pre- and
post-contrast T1-weighted MR imaging data at recurrence prior
to second surgery (N = 30), slice thickness of imaging data larger
than 6.6 mm (N = 1), tumor volume at recurrence smaller than
0.2 ml (N = 4), newly diagnosed tumor located in the spinal cord
(N = 1). Finally, 69 patients remained in the training cohort.
Patient and imaging characteristics are summarized in Table 1
and inclusion and exclusion criteria in Table S1. PFS2 (in
contrast to the time of diagnosis to first progression, PFS1) and
OS as clinical and MGMT status as epigenetic characteristic(s)
were available. PFS2 was defined as the duration from the date of
first progression until further progression. OS was defined as the
duration from the date of the first progression to the date of
tumor-related death. According to available literature, MGMT
status rarely changes in the course of disease (17); therefore,
MGMT status was determined by tissue analysis either from
newly diagnosed or recurrent tumor. In the training cohort at the
time of data analysis (April 17, 2015), tumor progression was
documented in 65 patients and tumor related death in 61
patients out of all 69 patients. All patients gave written
informed consent, and the study was approved by the local
ethics committees and designated authorities (KEK-ZH-Nr.
20140540, KEK-ZH-Nr. 2009-0135/1, KEK-ZH-Nr. 2015-0437).

Image Acquisition and Segmentation
MRI data, acquired by either 1, 1.5, or 3 T systems, according to
the protocols at each institution, were available. Technical data
are shown in Table 1. The segmentation of the tumor volume
was performed manually by medical doctors (AV, JK) on
gadolinium contrast-enhanced T1-weighted MRIs using MIM
VISTA (Version 6.7.9., MIM software Inc., Cleaveland, USA)
and audited by a senior radiation oncologist with 10 years of
April 2021 | Volume 11 | Article 636672
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experience after board certification (NA). Tumor volume of
interest (VOI) included contrast-enhancing and cystic or
necrotic areas. The resection cavity from first surgery was
excluded if no sign of contrast enhancement was present. If
blood residuals were seen along the border of the resection
cavity, we subtracted hyperintense pre-contrast T1 volume
from the post-contrast T1 volume. Segmentation of the
peritumoral VOI was performed semi-automatically using an
in-house developed MIM workflow. An isotropic 15-mm rim
Frontiers in Oncology | www.frontiersin.org 3
around the tumor volume was then generated. Non-brain tissue
such as resection cavities, ventricle, subarachnoid space, and
cranial bone were excluded manually by authors AV and JK and
checked by author NA. Both tumor and peritumoral volumes of
post-contrast T1-weighted images were considered for radiomic
feature extraction (Figure 1).

Image Postprocessing and Radiomic
Feature Extraction
Prior to radiomic feature extraction, images were resized to cubic
voxel size of 1 mm for shape analysis and to cubic voxel size of
3 mm for intensity and texture analysis using trilinear
interpolation. The training cohort consisted of multicenter data
with variable imaging protocols, thus prior to radiomic feature
extraction, intensity normalization was performed. Currently,
there are no consensus guidelines regarding a standard MRI
intensity normalization technique for radiomic feature
calculation. Therefore, we investigated two methods and
compared prognostic power of MRI-based radiomics after use
of these two normalized techniques (Figure 1). In the first
normalization approach, the entire range of intensities was
divided into a series of 32 bins (fixed bin number
normalization). In the second approach, a linear intensity
interpolation was used with two fixed tissues of reference: white
matter of the contralateral brain tissue and vitreous body of one
eye (Function showing the relation of the original to the
transformed intensities, Figure S1). Additionally, texture
features were extracted using fixed bin size of 50. Bin size was
adjusted in the second method, so that the number of bins was
similar to the number analyzed with the first method. Large
variations in the number of bins between the methods would
result in differential sensitivity to noise and the values of both
normalization techniques would then not be comparable. Feature
extraction and statistical analysis were done for both techniques.

Radiomic feature extraction was performed with the in-house
developed software Z-Rad (18) written in Python programming
language (v 2.7, Python Software Foundation, Delaware, USA).
This software was benchmarked in the Image Biomarker
Standardization Initiative (19) and allocates three-dimensional
image analysis including all four feature extraction methods:
shape, intensity, texture, and wavelet transformation. For our
analysis, a total number of 180 features (shape N = 24, intensity
N = 19, and texture N = 137, full list represented in the Table S2)
per tumoral and peritumoral volume per patient were calculated.
Intensity and texture analyses were performed, as mentioned,
using 32 bins or linear rescaling with bin size of 50. All wavelet
features were excluded due to the small volumes of the analyzed
regions (Figure 1).

Statistical Analysis
The methods applied were developed by our group and recently
published (20). Briefly, this statistical method reduces feature
space and correlates independent radiomic features with clinical
endpoints to find prognostic or predictive biomarkers. The
statistical analysis was performed in R (Version 3.5.3, The
R Foundation, Vienna, Austria) (21). For both intensity
TABLE 1 | Clinical characteristics of studied patient cohorts (training and
validation) and imaging protocol details.

Characteristic Training
cohort

Validation
cohort

N = 69 N = 49

Age at diagnosis Median (y) 58 53
Range (y) 37–77 38–77

Sex Female 26 (38%) 12 (24%)
Male 43 (62%) 37 (76%)

MGMT status Methylated 28 (41%) 17 (52%)
Unmethylated 41 (59%) 16 (48%)
No data 0 16

Median survival PFS2 (mo, range) 2.7 (0–63) 3.7 (1–31)
OS (mo, range) 11.3 (2–63) 13.4 (2–84)

KPS at first
progression

90-100 37 (54%) 29 (59.2%)
70-80 23 (33%) 17 (34.7%)
<70 9 (13%) 3 (6.1%)

Steroids at first
progression

Yes 20 (35%) 12 (24.5%)
No 38 (65%) 37 (75.5%)
No data 11 0

Second surgery Yes 42 (61%) 20 (41%)
No 27 (39%) 29 (59%)

Median VOI Tumoral (ml, range) 11.7 (0.23–
121.3)

5.0 (0.39–
48.9)

Peritumoral (ml, range) 75.2 (7.35–
204.5)

53.0 (22.2–
203.8)

MR Scanner GE Medical Systems N = 6 N = 17
Discovery MR750 0 2 (4.1%)
Signa Excite 0 5 (10.2%)
Signa HDxt 6 (8.7%) 10 (20.4%)
Philips Healthcare N = 24 N = 22
Ingenia 0 12 (24.5%)
Achieva 3 (4.4%) 4 (8.2%)
Intera 21 (30.4%) 6 (12.2%)
Siemens N = 39 N = 10
Aera 1 (1.4%) 0
Avanto 6 (8.7%) 0
Numaris 3D 1 (1.4%) 0
Skyra 4 (5.8%) 8 (16.4%)
Sonata 9 (13%) 1 (2%)
Symphony 5 (7.3%) 0
TrioTim 5 (7.3%) 0
Verio 6 (8.7%) 1 (2%)
No data 2 (2.9%) 0

Magnetic field
strength

1.0 T 1 (1.4%) 0
1.5 T 39 (63.8%) 25 (51%)
3.0 T 24 (34.8%) 24 (49%)

Image parameters Slice thickness (mm,
range)

0.44–6.6 0.7–5.3

In-plane resolution (mm,
range)

0.36–1.20 0.38–0.99
MGMT status, O6-methylguanine-DNA methyltransferase promoter methylation status;
PFS2, progression-free survival; OS, overall survival; KPS, Karnofsky performance status;
VOI, volume of interest.
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normalization techniques and both volumes, tumoral and
peritumoral, the statistical analysis was done separately. In
total, per endpoint four models were trained using two
intensity normalization techniques and two volumes of
interest. To account for inter-features, correlation radiomic
features were scaled and subsequently grouped according to
the principal component analysis. The optimal number of
retained principal components was determined using the Horn
method (22). Each feature was assigned to the retained principal
component to which the contribution was the greatest. Each of
these principal components represented one group of correlated
features (Figure 1).

Prediction of MGMT Promoter Methylation Status
Univariate logistic regression analysis was used to identify
correlated radiomic features (p < 0.05) for MGMT status for
both tumoral and peritumoral volumes. Only the most
prognostic and significant (p < 0.05) feature per principal
component feature group was included in further analysis.
Feature prognostic value was quantified by area under receiver
operating characteristic curve (AUC). The preselected features
were enrolled in the multivariable logistic regression analysis,
and the Akaike information criterion in the backward selection
of variables was used to build the multivariable model. All results
were verified in the independent external validation cohort.
Additionally, an internal 5-fold-cross validation was performed
(Figure 1).

Radiomics Prognostic Value of PFS2 and OS
Similar statistical methods were used to predict PFS2 and OS.
Again, we analyzed tumoral and peritumoral volumes.
Frontiers in Oncology | www.frontiersin.org 4
Univariable Cox regression analysis was used to select the most
prognostic feature (concordance index, CI) representing each
principal component feature group. Only one feature per group
was included in the multivariable analysis. Again, we used the
Akaike information criterion in the backward selection of
variables to build the final model, and all results were verified
in an external validation cohort. Further, an internal 5-fold-cross
validation was performed. Both training and validation cohorts
were split into two prognostic groups based on the optimal
threshold to generate survival curves and compared using log-
rank test (p < 0.05). The threshold was defined as the median
prediction value in the training cohort calculated from the final
model using the prediction function in R (Figure 1).
Image Quality
Variations in image quality between different cohorts may also
be critical for radiomic features and modeling. These variations
may be identified by visual inspection of individual MRI datasets.
However, such an approach is laborious, not sensitive to subtle
variations between MR images (23) and subjective due to high
inter-rater variability (24). In this work, the image quality of two
cohorts was investigated by the semi-automatic approach using
open-source tool MRQy. This tool is based on the HistoQC
Python framework (25) and allows for automatic foreground
detection for any MR image and extraction of imaging-specific
metadata and quality measures. The major components of the
MRQy tool and all the measures extracted by MRQy were
described by Sadri et al. (26). We divided all investigated
metrics in four groups: a) resolution-related features, extracted
from the image metadata; b) acquisition-related features
FIGURE 1 | Image postprocessing and radiomics workflow. VOI Segmentation: Tumor contour (violet) and peritumoral area (light green) are shown on MRI imaging
data. Intensity normalization: Either with fixed numbers of bins or linear interpolation. Radiomics: Features of three groups’ shape, intensity and texture were
extracted with in-house developed software. Analysis: The statistical process of radiomic feature selection and risk stratification is shown up to validation on an
external cohort. VOI, volume of interest; PCA, principal component analysis; MGMT status, O6-Methylguanin-DNA-Methyltransferase promoter methylation status;
PFS2, progression free survival; OS, overall survival.
April 2021 | Volume 11 | Article 636672
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including repetition time and echo time; c) foreground-related
measures including mean values, range and signal-to-noise ratio;
d) artifacts-related metrics. The difference in the variance of the
extracted measures between training and validation cohorts was
tested for significance using Kruskal–Wallis test; p-values below
0.05 were considered statistically significant.
RESULTS

Analyzed Volumes
In the MRI data of the training cohort, median volume of the
tumoral VOI was 11.7 ml (range: 0.23–121.32 ml) and median
volume of the peritumoral VOI was 75.2 ml (range: 7.35–204.53
ml, Table 1). In the validation cohort, median volume of the
Frontiers in Oncology | www.frontiersin.org 5
tumoral and peritumoral VOI was 5.0 ml (range: 0.39–48.89 ml)
and 53.0 ml (range: 22.19–203.8 ml, Table 1), respectively.

Feature Selection
In the training cohort, the principal component analysis resulted
in seven groups of correlated radiomic features for the tumoral
VOI (range group size: 15 to 47) and six groups for the
peritumoral VOI (range group size: 11 to 62), considering only
the images normalized with fixed number of 32 bins. In the linear
interpolated images with 50 bin size, six groups for the tumoral
VOI (range group size: 23 to 51) and six groups for the
peritumoral VOI (range group size: 18 to 49) were built using
the principal component analysis.

Prediction of MGMT Promoter
Methylation Status
In the images normalized with fixed number of bins, there was
no correlation between radiomic features extracted from the
tumoral VOI andMGMT status. However, one independent and
significant radiomic feature was identified in the peritumoral
VOI. The final model (feature: Neighborhood Gray Tone
Difference Matrix busyness; AUC 0.660, 95% confidence
interval 0.528–0.793, Figure 2A) was not validated in the
validation cohort (5-fold-cross validation in Table S3).

In the images normalized with linear interpolation, three
uncorrelated radiomic features from the tumoral VOI and
three uncorrelated radiomic features from the peritumoral VOI
correlated with MGMT status. Upon backward selection of
variables, one feature (Neighborhood Gray Level Dependence
Matrix low dependence emphasis) in the tumoral VOI and one
feature (coefficient of variation) in the peritumoral VOI
remained significant. The final model of the tumoral VOI
predicting MGMT status achieved an AUC of 0.670 (95% CI:
0.5341–0.8056, Figure 2A and Table 2) and was successfully
validated in an independent cohort (AUC 0.673, 95% confidence
interval 0.4837–0.8618, Figure 2A, 5-fold-cross validation in
Table S3). In contrast, the peritumoral VOI model showing an
AUC of 0.663 (95% CI: 0.5225–0.8024, Figure 2A, 5-fold-cross
validation in Table S3) was not validated.

Prediction of PFS2 and OS
For analysis of radiomics to predict PFS2 and OS, MRI data of
tumoral and peritumoral VOI were analyzed after intensity
normalization using either fixed number of bins or
linear interpolation.

PFS2 Prediction
Multivariable Cox regression in images normalized with fixed
number of bins and considering backward selection of variables
April 2021 | Volume 11 | Article 636672
A

B

C

FIGURE 2 | Bar plots. (A) Shows area under receiver operating
characteristic curve (AUC) of the three final models for MGMT status. No
significant features were found for prediction of MGMT status using tumoral
VOI and fixed number of bins. (B) Four final models for PFS2 showing
concordance index (CI). (C) CI of the four final OS models. Training cohort in
light gray and validation cohort in dark gray. Error bars representing 95%
confidence interval.
TABLE 2 | Details of the final model for MGMT status prediction.

VOI feature coefficient p-value

tumoral intercept −2.46 0.018
tumoral Neighborhood Gray Level Dependence

Matrix low dependence emphasis
5.77 0.036
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resulted in two significant radiomic features (Gray Level Size
Zone Matrix zone size entropy, Gray Level Size Zone Matrix
large zone low gray level emphasis) in the tumoral VOI and two
(kurtosis, enhancing tumor volume 70%) in the peritumoral
VOI. These analyses resulted in two radiomic models with a CI
of 0.585 in the tumoral and a CI of 0.61 in the peritumoral VOI.
The multivariable Cox model for both tumoral and peritumoral
VOI was not validated (Figure 2B, 5-fold-cross validation in
Table S3). In the training cohort, stratification into two risk
groups was significant in the peritumoral VOI (p = 0.02) but not
in the tumoral VOI for PFS2.

After analyzing data normalized with linear interpolation
with multivariable Cox regression based on backward selection
of variables, two uncorrelated radiomic features (Gray Level Run
Length Matrix long runs emphasis; Gray Level Run Length
Matrix run length variance) in the tumoral VOI and two
(kurtosis; Grey Level Size Zone Matrix large zone low gray
level emphasis) in the peritumoral VOI predicting PFS2
remained. These analyses predicting PFS2 resulted in two
models with a CI of 0.532 in the tumoral VOI and CI of 0.633
in the peritumoral VOI. However, both final models could not be
validated in the external validation cohort (Figure 2B, 5-fold-
cross validation in Table S3). In contrast to the images with fixed
numbers of bins, the stratification in the training cohort into two
risk groups was not significant for tumoral and peritumoral VOI.

OS Prediction
In the normalized imaging data with fixed number of bins, two
radiomic features (enhancing tumor volume 30%, enhancing
tumor volume 40%) for the tumoral VOI and one (enhancing
tumor volume 30%) for the peritumoral VOI were entered into
the multivariable Cox regression for OS prediction. These
analyses resulted in two models with a CI of 0.621 in the
tumoral VOI and a CI of 0.609 in the peritumoral VOI. The
multivariable Cox model for both, tumoral and peritumoral VOI
could not be validated in the external validation cohort
(Figure 2C, 5-fold-cross validation in Table S3). Stratification
into two risk groups was not significant.

Multivariable Cox regression of images normalized with
linear interpolation led to one radiomic feature (histogram
energy) in the tumoral VOI and one (minor axis) in the
peritumoral VOI. These analyses resulted in two models with a
CI of 0.629 in the tumoral VOI and a CI of 0.592 in the
peritumoral VOI, respectively. Both final models could not be
validated in the external validation cohort (Figure 2C, 5-fold-
cross validation in Table S3), and stratification into two risk
groups was not significant.

Image Quality
The results of the Kruskal–Wallis test are depicted in Figure S2;
the investigated metrics and respective p-values are shown in
Table S4. The test demonstrated a significant difference in
variance between cohorts in terms of acquisition protocols:
both variances in repetition time and echo time in the training
cohort are significantly larger from those in the validation one, p-
values of 0.027 and 0.005 for repetition time and echo time,
respectively. In the MRI data of our training cohort, slice
Frontiers in Oncology | www.frontiersin.org 6
thickness varied from 0.44 to 6.6 mm (median, 1 mm) and in-
plane resolution varied from 0.36 to 1.2 mm, whereas in the
validation cohort slice thickness varied from 0.7 to 5.3 mm
(median, 1.5 mm) and in-plane resolution from 0.38 to 0.99 mm.
Only the variance of y voxel dimension was significantly larger in
the training cohort. Additionally, variance of the entropy focus
criterion, which describes motion artifacts, was significantly
larger (p = 0.013) in the training cohort. Unexpectedly, despite
the fact that about 71% of the validation cohort was collected in a
single institution, substantial variation in the image quality was
observed, which corresponds to the variation observed
(Figure S2) in the multicenter data collection (training cohort).
DISCUSSION

In this study, we performed a radiomic analysis on gadolinium
contrast enhanced T1-weighted MR images from patients with
recurrent glioblastoma after alkylating chemotherapy. In terms of
analyzed volume of interest, two volumes, tumoral and peritumoral,
were included. Data for the training cohort are based on the
prospective randomized DIRECTOR trial, which showed similar
outcome in both arms (9). Validation data were obtained from a
matched in-house recurrent glioblastoma patient cohort (27, 28).

The proposed radiomic model reliably predicted MGMT
status from MRI contrast enhancing tumor regions after
intensity normalization with linear interpolation in an
independent cohort. This result has been reported previously
in a radiomic analysis only from patients with newly diagnosed
gliomas prior to standardized treatment (16, 29–33). In contrast,
our models for MGMT prediction failed for intensity
normalization with fixed bins or radiomic data from the
peritumoral region. This finding highlights the importance of
intensity normalization in quantitative MR analysis. Two models
predicting PFS2 and OS, respectively, were trained. However,
neither of these models could be validated in the independent
external patient cohort, and differences in models’ performances
were not statistically significant. Despite the ability to build
prognostic models for outcome in the DIRECTOR cohort, the
model ultimately failed in an external cohort, emphasizing the
need for independent validation of model results for generalized
applicability as mandated by the TRIPOD statement (34).

The key strengths of our study are the heterogeneity of the
imaging data with regard to scanner models and image acquisition
protocols in our training cohort collected during a prospective
multicenter study (9) as well as the normalization methods. We
hypothesized that finding a model in such a heterogeneous data
pool would improve validation success in an independent cohort.
However, variation is not only restricted to patients treated in
different centers but also extends to different MRI acquisition
protocols within one center, see Figure S2 (e.g. different scanners,
magnetic field strength, MRI slice thickness, or in plane
resolution). Therefore, we performed voxel size resampling to a
common resolution of 3 mm. The advantage of this method is the
comparability of images, which is commonly used in radiomic
research (19). On the other hand, much information from the
April 2021 | Volume 11 | Article 636672
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images with originally small cubic voxel sizes is lost. In addition,
artificial data is introduced for images with originally large vox
sizes. Whereas voxel size interpolation is standard in radiomic
analysis, intensity normalization is often omitted (35, 36). We
tested two different intensity normalization techniques to
standardize grayscale MRI data to reduce interpatient and
interstudy variability of the images. The simpler methods, fixed
number of bins normalization, causes loss of information about
absolute range of observed intensities. Using this method, none of
the models could be validated. The second linear intensity
interpolation is more labor intensive, as it requires segmentation
of two additional structures. However, this method has the
advantage of preserving information about absolute intensity
range within the tumor. Importantly, this method allowed for
successful validation of the MGMT status model, improving
comparability between cohorts, while preserving information
about tumor biology. The PFS2 and OS models, however, could
not be validated. This might be explained by much higher
complexity of the endpoint and non-standardized treatment. On
the technical side, the results might be further improved with
application of bias field correction (37). Although the method
applied for feature selection results in a restrictive and small
number of features, as it has been shown to be superior to
alternative approaches: recent findings show the method used
here delivers the best models in comparison to maximum
relevance minimum redundancy, mutual information and least
absolute shrinkage and selection operator (LASSO) methods (38).

Model building, validation and reporting should be performed
according to the TRIPOD statement which distinguishes different
levels corresponding to the model validation process (34). Most
studies using radiomic approaches in glioblastoma correspond to
type 1b, 2a, or 2b analyses, where the model is trained and only
validated on the data from the same or similar origin (see reviews
by Park and colleagues) (39). When relying only on internal
validation data, such models risk of overfitting and may provide
an optimistic estimate of prediction performance. In addition, for
a model to be used as a broadly applicable decision-making tool,
external validation is mandatory. Park and colleagues reported
that 63 out of 77 radiomic studies lack external validation (81.8%)
(39). To overcome this limitation, we aimed to perform a TRIPOD
statement type 3 model development using an independent
curated patient cohort for validation. So far, only few studies
have reported their model results based on this validation type (30,
40, 41). In the final model evaluation on an external dataset, we
were not able to validate our models for PFS2 and OS, but for
MGMT prediction. Therefore, we consider our results as reliable
and robust and conclude that the use of TRIPOD level 3 should be
a prerequisite for a model’s applicability in routine clinical use.

A possible explanation for the failure to validate the models for
outcome prediction may be due to biological aspects of
glioblastoma progression and alterations due to treatment.
Draaisma and colleagues (42) showed that tumor biology differs
at the genetic level from first presentation to recurrence, suggesting
alterations in tumor biology over the course of disease. The primary
treatment (e.g. different amounts of scaring tissue, resection cavities
due to surgery) may also influence the presentation of recurrent
tumor on MR images. Additionally, tumor volume at recurrence is
Frontiers in Oncology | www.frontiersin.org 7
often very small, thus yielding less tumor information for
calculations (e.g. wavelet transformation features) compared to
MRIs obtained at initial diagnosis. Furthermore, reproducibility
of the contours is limited due to an unclear distinction between
cystic or necrotic areas and resection cavities. Contouring could be
improved, however, by comparison to MRI after first resection.
Another limitation of our model is the small sample size available
for this analysis, thus indicating the need of further investigations in
a larger cohort. Finally, incorporating additional sequences such as
T2-weighted and FLAIR gaining complementary radiomic
information may improve prediction.

Even though the current results are promising, the vast
majority of the studies in the growing field of quantitative
radiomics have analyzed newly diagnosed glioblastomas. Only
a few radiomic approaches have been published on glioblastomas
at recurrence (15, 43, 44). Since our study focuses on recurrent
glioblastoma, we provide additional models for predictive and
diagnostic criteria for patients with a poor prognosis. This
finding may represent a small but significant step towards
highlighting the clinical relevance of radiomic approaches for
newly diagnosed glioblastoma.

In conclusion, our model predicts MGMT promoter
methylation status based on tumor texture features on
gadolinium-enhanced T1-weighted MRI in patients with
recurrent glioblastoma treated with alkylating chemotherapy.
Therefore, our model provides a non-invasive approach to
predict patient response to chemotherapy. However, the
radiomic approach to predict PSF2 and OS remained
unsuccessful for patients with recurrent glioblastoma.
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36. Carré A, Klausner G, Edjlali M, Lerousseau M, Briend-Diop J, Sun R, et al.
Standardization of brain MR images across machines and protocols: bridging
the gap for MRI-based radiomics. Sci Rep (2020) 10(1):12340. doi: 10.1038/
s41598-020-69298-z

37. Moradmand H, Aghamiri SMR, Ghaderi R. Impact of image preprocessing
methods on reproducibility of radiomic features in multimodal magnetic
resonance imaging in glioblastoma. J Appl Clin Med Phys (2020) 21(1):179–
90. doi: 10.1002/acm2.12795

38. Bogowicz M, Riesterer O, Stark LS, Studer G, Unkelbach J, Guckenberger M,
et al. Comparison of PET and CT radiomics for prediction of local tumor
Frontiers in Oncology | www.frontiersin.org 9
control in head and neck squamous cell carcinoma. Acta Oncol (Stockholm
Sweden) (2017) 56(11):1531–6. doi: 10.1080/0284186x.2017.1346382

39. Park JE, Kim D, KimHS, Park SY, Kim JY, Cho SJ, et al. Quality of science and
reporting of radiomics in oncologic studies: room for improvement according
to radiomics quality score and TRIPOD statement. Eur Radiol (2020) 30
(1):523–36. doi: 10.1007/s00330-019-06360-z

40. Cui Y, Tha KK, Terasaka S, Yamaguchi S, Wang J, Kudo K, et al. Prognostic
imaging biomarkers in glioblastoma: development and independent
validation on the basis of multiregion and quantitative analysis of MR
images. Radiology (2016) 278(2):546–53. doi: 10.1148/radiol.2015150358

41. Lao J, Chen Y, Li Z-C, Li Q, Zhang J, Liu J, et al. A Deep Learning-Based
Radiomics Model for Prediction of Survival in Glioblastoma Multiforme. Sci
Rep (2017) 7(1):10353. doi: 10.1038/s41598-017-10649-8

42. Draaisma K, Chatzipli A, Taphoorn M, Kerkhof M, Weyerbrock A, Sanson M,
et al. Molecular Evolution of IDH Wild-Type Glioblastomas Treated With
Standard of Care Affects Survival and Design of Precision Medicine Trials: A
Report From the EORTC 1542 Study. J Clin Oncol (2020) 38(1):81–99.
doi: 10.1200/JCO.19.00367

43. Akbari H, Rathore S, Bakas S, Nasrallah MP, Shukla G, Mamourian E, et al.
Histopathology-validated machine learning radiographic biomarker for
noninvasive discrimination between true progression and pseudo-progression
in glioblastoma. Cancer (2020) 126(11):2625–36. doi: 10.1002/cncr.32790

44. Grossmann P, Narayan V, Chang K, Rahman R, Abrey L, Reardon DA, et al.
Quantitative imaging biomarkers for risk stratification of patients with
recurrent glioblastoma treated with bevacizumab. Neuro-Oncol (2017) 19
(12):1688–97. doi: 10.1093/neuonc/nox092

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Vils, Bogowicz, Tanadini-Lang, Vuong, Saltybaeva, Kraft,
Wirsching, Gramatzki, Wick, Rushing, Reifenberger, Guckenberger, Weller and
Andratschke. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
April 2021 | Volume 11 | Article 636672

https://doi.org/10.1093/annonc/mdy106
https://doi.org/10.1007/s00330-018-5575-z
https://doi.org/10.1007/s00330-017-5302-1
https://doi.org/10.1158/1078-0432.CCR-19-2556
https://doi.org/10.1016/j.ijrobp.2020.06.073
https://doi.org/10.1016/S1470-2045(19)30098-1
https://doi.org/10.1038/bjc.2014.639
https://doi.org/10.1186/s42492-019-0025-6
https://doi.org/10.1038/s41598-020-69298-z
https://doi.org/10.1038/s41598-020-69298-z
https://doi.org/10.1002/acm2.12795
https://doi.org/10.1080/0284186x.2017.1346382
https://doi.org/10.1007/s00330-019-06360-z
https://doi.org/10.1148/radiol.2015150358
https://doi.org/10.1038/s41598-017-10649-8
https://doi.org/10.1200/JCO.19.00367
https://doi.org/10.1002/cncr.32790
https://doi.org/10.1093/neuonc/nox092
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Radiomic Analysis to Predict Outcome in Recurrent Glioblastoma Based on Multi-Center MR Imaging From the Prospective DIRECTOR Trial
	Introduction
	Materials and Methods
	Patient Population
	Image Acquisition and Segmentation
	Image Postprocessing and Radiomic Feature Extraction
	Statistical Analysis
	Prediction of MGMT Promoter Methylation Status
	Radiomics Prognostic Value of PFS2 and OS
	Image Quality


	Results
	Analyzed Volumes
	Feature Selection
	Prediction of MGMT Promoter Methylation Status
	Prediction of PFS2 and OS
	PFS2 Prediction
	OS Prediction

	Image Quality

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


