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Tug of war in the haematopoietic stem cell niche: do myeloma
plasma cells compete for the HSC niche?
JE Noll1, SA Williams1, LE Purton2,3 and ACW Zannettino1,4

In the adult mammal, normal haematopoiesis occurs predominantly in the bone marrow, where primitive haematopoietic stem
cells (HSC) and their progeny reside in specialised microenvironments. The bone marrow microenvironment contains specific
anatomical areas (termed niches) that are highly specialised for the development of certain blood cell types, for example HSCs.
The HSC niche provides important cell–cell interactions and signalling molecules that regulate HSC self-renewal and differentiation
processes. These same signals and interactions are also important in the progression of haematological malignancies, such as
multiple myeloma (MM). This review provides an overview of the bone marrow microenvironment and its involvement in normal,
physiological HSC maintenance and plasma cell growth throughout MM disease progression.
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THE HAEMATOPOIETIC STEM CELL NICHE
The bone marrow stroma consists of non-haematopoietic cells
such as fibroblasts, osteoblasts and their mesenchymal precursors
including mesenchymal stem cells (MSC), pericytes, endothelial
cells, adipocytes, nerves and the bone marrow vascular system.1–3

Furthermore, haematopoietic cell types, including macrophages,
osteoclasts and T-lymphocytes, also produce cytokines and other
factors that contribute to the function of the bone marrow
microenvironment. These cells, and others, represent a
microenvironment that is conducive to the growth and
development of HSCs. The cellular composition of the HSC
‘niche’ and signals that contribute to HSC cellular quiescence,
maintenance, mobilisation, homing and differentiation have been
areas of intense investigation in recent years.4

The original concept of a haematopoietic niche (as described
above) was proposed by Schofield et al.,5 who observed that HSC
growth was not supported in the spleen in the same manner as in
the bone marrow. Indeed, it is now evident that in adult humans,
normal haematopoiesis is restricted to the bone marrow. This
concept has since been further developed, and it is now widely
accepted that specific anatomical regions within the bone marrow
comprise specialised niches for HSC development and normal
blood cell production.

The HSC niche has diverse functionality, with significant
interplay between signalling pathways allowing for the main-
tenance of a quiescent population of primitive HSC within the
bone marrow, as well as subsequent HSC development and
differentiation. Anatomically, there are two key HSC niches within
the bone marrow; the endosteal niche, located adjacent to the
bone surface,6,7 and the perivascular niche, located centrally
within the bone marrow proximal to blood vessels.8 The endosteal
niche is reported to be the primary location of quiescent HSCs,
while the perivascular niche supports HSC mobilisation and

differentiation.9,10 HSCs isolated from the endosteal region of
the bone marrow exhibit a higher self-renewal capacity than those
from centralised (that is, perivascular) regions,11 indicating that
endosteal HSCs are primarily involved in the self-renewal axis of
HSC maintenance.

During HSC development, primitive HSCs are mobilised into the
circulation and later re-enter the bone marrow space—a process
commonly called homing.12,13 The endosteal surface of the bone
is frequently identified as the region to which HSC homing and
engraftment is directed. However, recent studies have identified
stromal cells located within the perivascular niche as important for
HSC homing and maintenance in the adult mouse.14–17 The
discrepancies in these findings suggest that the precise location of
HSCs during various stages of their developmental cycle is still an
area of some controversy.

The cellular composition of the HSC niche, specifically cells of
the mesenchymal lineage, and the roles they have in modulating
HSC development has been an area of intense research in recent
years. Greater understanding of the signalling processes and
interactions that occur within and between these cell populations
will enable us to better define changes and adaptations within the
microenvironment that allow for neoplastic cell growth (discussed
below).

HSC NICHES AND DISEASE
It has been suggested that specialised HSC niches are also
involved in the development and progression of haematological
malignancies. The extent of the reliance of these tumours on the
microenvironment appears to be dependent upon the type and
stage of malignancy. At one extreme is a neoplastic growth that is
dependent on dysregulated cell–cell interactions and signalling
pathways within the microenvironment. At the other end of the
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spectrum are malignancies that exhibit an absolute dependence
on normal microenvironmental cues for disease progression, such
as the expression of specific cytokines and growth factors.18 Of the
latter type of malignancy, multiple myeloma (MM) provides an
ideal model to investigate the HSC bone marrow niche and to
further define the mechanisms whereby B-cell neoplasms are able
to utilise and potentially alter the normal HSC niche to provide a
microenvironment conducive to neoplastic cell growth.

MM is a haematological malignancy that is characterised by the
clonal proliferation of plasma cells within the bone marrow.
Clinical manifestations of the disease include osteolytic bone
lesions, hypercalcaemia, suppressed haematopoietic function and
increased angiogenesis within the bone marrow. It is now widely
accepted that most, if not all, MM is preceded by a premalignant
disease known as monoclonal gammopathy of uncertain sig-
nificance (MGUS).19 MGUS is characterised by the abnormal
proliferation of plasma cells in the bone marrow, while the
patients remain asymptomatic.20 The signals that lead to the
initiation of excessive plasma cell proliferation are, therefore,
present within the bone marrow microenvironment before the
onset of overt MM. The transition of MGUS to MM requires further
changes to the stromal compartment, which enhances myeloma
cell growth and survival.

A number of pathways and cell types have been shown to affect
the behaviour of both HSCs in normal haematopoiesis and the
malignant myeloma plasma cells. It is through these regulated
interactions with cell populations and signalling pathways within the
bone marrow microenvironment that myeloma cells are believed to
‘hijack’ the normal hematopoietic niche to aid the extensive growth
and proliferation of tumour cells18,21 (see Figure 1).

B-CELL DEVELOPMENT AND PLASMA CELLS
HSCs develop into a range of haematopoietic cell lineages,
dependent on combinations of signals from the bone marrow
stromal environment. B cells develop within a niche rich in cells of
the osteoblastic and mesenchymal lineage. These cells express a
range of factors required for the stimulation of B-cell survival and
proliferation, including CXCL12, Flt-3 ligand, interleukin (IL)-7,
integrins, vascular cell adhesion molecule 1 (VCAM-1) and
N-cadherin.22 Immature B cells migrate to secondary lymphoid
organs where they are activated by exposure to antigen and
subsequently differentiate into plasma cells and memory B
cells.23–25 These end-stage plasma cells have been shown to
return to and colonise the bone marrow in specific niches
adjacent to cells highly expressing CXCL12.26

CXCL12 was initially characterised as a pre-B-cell growth factor
and its interaction with its receptor (CXCR4) has been shown to be
absolutely required for B-cell development.27–30 Interestingly, the
differentiation of B cells towards the terminally differentiated
plasma cell stage enhances the cells’ sensitivity to CXCL12, which
is most likely due to the high expression of CXCR4 on plasma
cells.23,31,32 This increased sensitivity supports observations that
mature plasma cells home to the bone marrow where stromal
cells express high levels of CXCL12.

In addition, IL-6 expression by bone marrow stromal cells
(BMSC) has been widely demonstrated to be required for
haematopoiesis33–35 and more specifically to stimulate the
differentiation of B cells into plasma cells, support plasma cell
growth and protect plasma cells from apoptosis.36–39

BMSC AND MM—A DEPENDENT RELATIONSHIP
Normal plasma cells are dependent on specific signals from
BMSCs to regulate their differentiation, growth and localisation.
These same signals are required for myeloma cell growth and
survival, supporting the notion that the bone marrow provides a
permissive environment for disease development (see Figure 1).

A number of studies confirm the reliance of myeloma cells on
interaction with the bone marrow stroma. The successful in vitro
growth of murine-derived primary plasmacytomas demonstrated
a reliance on stromal cell adhesion.40 Similarly, direct contact
between BMSCs and myeloma cells is required to protect
myeloma cells from drug-induced apoptosis,41–43 while a more
recent study has identified an absolute reliance on the presence of
BMSCs for the implantation and development of myeloma disease
in mice.44 These cell–cell interactions have been demonstrated to
induce the secretion of soluble factors by stromal cells, including
IL-6 and vascular endothelial growth factor (VEGF), which mediate
survival and proliferative pathways.41,45,46 These studies establish
the importance of interactions between myeloma cells and BMSCs
for growth and survival of the malignant plasma cells. In addition,
a recent report has suggested that the cellular source of a cytokine
may result in a differential response to that cytokine.14 Therefore,
the identification of which stromal cells that is (endothelial
cells, osteoblasts or MSCs), secrete these factors may also be
advantageous in determining the role these stromal cell–myeloma
cell interactions and soluble factors have in mediating MM
initiation and progression. It is evident that the presence of
myeloma cells in the bone marrow modulates the expression of
cytokines from stromal cells, which enhances their ability to
modify the microenvironment to support malignant growth.

HYPOXIA—AN IDEAL CONDITION FOR MM PLASMA CELL
GROWTH
The bone marrow is defined as a hypoxic space with low oxygen
tension. Distinct niches within the bone marrow have also been
demonstrated to display varying oxygen tension, with a greater
degree of hypoxia evident at the endosteal niche, accompanied
by increased expression of hypoxia-inducible factor-1a.47 These
hypoxic conditions are ideal for the maintenance of HSC at the
endosteal niche in a quiescent state and are required for
controlled HSC development.48,49

The development and progression of MM is similar to solid
tumours, and is accompanied by increased vascularisation and
angiogenesis. The vascularisation observed in MM is largely due to
the formation of microvessels within the hypoxic bone marrow
environment, which is sufficient to increase the oxygen tension in
the bone marrow and stimulate continued MM tumour growth
(reviewed by Martin et al50). Using the 5TMM mouse model of
myeloma disease, Asosingh et al.,51 showed that myeloma plasma
cell infiltration into the bone marrow was associated with a
decrease in hypoxia, relative to the control. In addition, we have
previously shown that the hypoxia-inducible factor, hypoxia-
inducible factor-2a, is aberrantly expressed by CD138þ MM
plasma cells, resulting in enhanced angiogenesis.52 Together,
these data infer that although MM initiation occurs in the hypoxic
bone marrow environment, angiogenesis is subsequently
stimulated and is required for continued MM tumour growth.

CXCL12—A ROLE IN HSC DEVELOPMENT AND MM
In addition to being required for B-cell differentiation in the bone
marrow, the CXCL12/CXCR4 axis is an important mechanism for
the control of HSC homing and maintenance within the bone
marrow, with high expression of CXCL12 acting as a chemoat-
tractant for both primitive hematopoietic cells and mature,
differentiated plasma cells.26,53 HSCs are commonly located in
close proximity to high expressers of CXCL1216,17 and CXCL12
expression is required for colonisation of the bone marrow by
hematopoietic progenitors during mouse embryogenesis.54 In
addition, treatment with the potent CXCR4 receptor antagonist
AMD3100 or suppression of CXCL12 expression results in
mobilisation of HSCs from the bone marrow.55–57 Furthermore,
forced mobilisation of HSC through treatment with granulocyte
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colony-stimulating factor results in decreased levels of CXCL12
specifically within the bone marrow and inactivation of surface
CXCR4.58,59

The role of CXCL12 in HSC maintenance also goes beyond its
role as a chemoattractant for specific homing to the bone marrow
niche, with addition of CXCL12 into culture inhibiting cell cycle
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Figure 1. Schematic of BMSC interactions and signalling with HSC and plasma cells. Representative signalling/adhesion molecules and their
role in bone marrow stromal cell interactions with (a) HSC, (b) normal plasma cells or (c) myeloma plasma cells.
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entry of primitive HSCs. Conversely, inhibition of CXCR4 results in
excessive proliferation of HSCs,60 suggesting that CXCL12
signalling is also involved in maintaining the HSC quiescent state.

Similar to HSC, the homing of myeloma cells is responsive to
signalling through the CXCL12/CXCR4 axis. Increased CXCL12
expression resulted in enhanced motility, while inhibition of
CXCR4 blocked the directional homing of myeloma cells in vitro
and in vivo and was concurrently found to be associated with
decreased tumour burden.61,62 The role for CXCL12 in myeloma
cell homing is supported by the observation that mobilisation of
myeloma cells resulted in decreased surface expression and
circulating levels of CXCR4 and CXCL12, respectively.63 Bone
marrow endothelial cells isolated from MM patients also express
higher levels of CXCL12, at both the mRNA and protein level,
compared with those derived from healthy donors and this was
shown to stimulate myeloma cell proliferation, which is in direct
contrast to the effect of CXCL12 on inhibiting cell cycle entry of
HSCs.60,64 In addition, we have previously shown that myeloma
cells also express CXCL12, resulting in high circulating levels in the
peripheral blood of MM patients.65,66 As CXCL12 acts as a
chemoattractant and CXCR4 is known to be highly expressed on
plasma cells, it is plausible that a CXCL12 paracrine signalling
system between adjacent plasma cells may be involved in the
development of plasmacytomas.

IL-6—A B-CELL GROWTH FACTOR DURING HAEMATOPOIESIS
AND MM DEVELOPMENT
IL-6 is required for the differentiation and maintenance of plasma
cells in the bone marrow (discussed above) and is also required for
the growth and survival of myeloma cells. Initially, myeloma cells
were shown to secrete IL-6, with their in vitro growth dependent
on an intact IL-6 signalling pathway.67 Increased levels of IL-6 were
also identified in the bone marrow of patients with MM,68

suggesting that myeloma cell growth is supported by cells within
the bone marrow microenvironment through the production of
IL-6. Indeed, more recently, myeloma cells were shown to
stimulate increased expression of IL-6 by MSCs within the bone
microenvironment, while adhesion of myeloma cell lines to BMSC
also stimulates expression of IL-6 from the stromal cells.46,69,70

The question remains whether an increase in IL-6 expression is
sufficient to mediate a neoplastic change in plasma cell growth or
whether it functions in concert with other signals to further
compound malignant growth. IL-6 levels are tightly regulated and
are generally maintained at low levels, although IL-6 is upregu-
lated during inflammatory responses. Serum levels of IL-6 have
been demonstrated to be increased in mice and humans with
advanced age, which is associated with chronic inflammatory
disorders.71,72 Oestrogen deficiency, such as that observed in post
menopausal women, is linked with an increase in IL-6 production
associated with increased osteoclast activity and bone
resorption.73,74 Similar effects have also been noted in androgen
deficiency, however the inhibitory effect of androgens on IL-6
expression is less than that observed with oestrogen.75 This would
explain the changes in IL-6 secretion with advancing age and pose
a potential mechanism through which increased IL-6 signalling
may mediate MM growth and development. However, there
remains a chicken and the egg scenario, in which it is unclear
whether increased IL-6 signalling with age is sufficient to allow
progression of MM disease, or whether the onset of MM is an
independent event resulting in an increase in IL-6 signalling within
the bone marrow.

ADHESION—VERY LATE ANTIGEN-4 AND VCAM-1
The expression of a number of adhesion molecules by HSC is
required for their specific homing and maintenance within the
bone marrow. VLA-4 (also known as a4b1 integrin) has been

shown to retain HSC within the bone marrow,63,76 through
binding to VCAM-1, which is expressed within the bone marrow
by both endothelial cells and osteoblasts.77,78 Mobilisation of HSC
with granulocyte colony-stimulating factor results in decreased
VLA-4 expression and cleavage of VCAM-1, while direct
antagonism of VLA-4 though the small molecule inhibitor
BIO5192 is sufficient to mediate mobilisation.79–81 These findings
highlight the importance of this mechanism of adhesion in HSC
maintenance within the bone marrow.

VLA-4 is also a major contributor to plasma cell interactions with
the extracellular matrix and BMSC due to its predominant
expression on the plasma cell surface.31,82 BMSC derived from
patients with MM have been shown to exhibit higher expression
of VCAM-1 compared with those from healthy donors which, in
combination with the high levels of VLA-4 expressed by myeloma
cells, mediates a preferential interaction between myeloma cells
and stromal cells.41,83 These myeloma cell–stromal cell interac-
tions allow the malignant cells to inhabit the same environment
within the bone marrow normally utilised by HSC for their
maintenance and development. The adhesion between myeloma
cells and the bone marrow stroma is critical for myeloma
development, as targeting of VLA-4 with a monoclonal antibody
after the establishment of disease in a myeloma mouse model
results in decreased tumour cell burden.84 The expression of VLA-4
on primitive haematopoietic cells, mature plasma cells and
myeloma cells highlights a potentially important similarity
between HSC and malignant plasma cells, which may lead to
the presence of excessive myeloma cells within the bone marrow
at the expense of normal HSC development.

THE PERIVASCULAR HSC NICHE AND ANGIOGENIC FACTORS—
FROM MAINTAINING HSC TO ENHANCING MM GROWTH
Myeloma cell growth and the subsequent development of MM
through enhanced angiogenesis is likely to occur through the
hypoxia-inducible factor/VEGF/VEGF-R pathway. Indeed, this path-
way was seen to be upregulated in 40% of MM cases and
associated with increased angiogenesis and poor prognosis.85

Furthermore, studies from our laboratory have shown levels of
CXCL12 in peripheral blood of MM and MGUS patients to
positively correlate with the degree of bone marrow
angiogenesis, which was associated with increased hypoxia-
inducible factor-2a expression by MM plasma cells.52,65

VEGF has been shown to have an integral role in normal
haematopoiesis with autocrine signalling required for both survival
and growth of HSCs.86 VEGF is also expressed by myeloma cell lines
and myeloma cells derived from MM patients87,88 and functions in
both an autocrine and paracrine fashion to enhance cell growth
and angiogenesis, with VEGF-R (VEGF receptor) expression detected
on myeloma cells, as well as on BMSC from MM patients.89,90 This is
further enhanced by the induced secretion of IL-6 from stromal
cells in response to VEGF, which in turn leads to greater plasma cell
activation and growth.90,91

Osteopontin (OPN) and angiopoietin-1 (Ang-1) are factors expressed
by osteoblasts at the bone surface that are required for osteoblast-
mediated HSC maintenance.92–94 Ang-1 binds its specific receptor,
Tie-2, which is expressed on quiescent HSCs, resulting in maintenance
of HSCs within the bone marrow. OPN was demonstrated to bind b1
integrin, expressed on the HSC cell surface, and subsequently suppress
HSC proliferation in vitro. OPN expression was also shown to be
essential for directional homing of HSCs to the endosteal surface, as
HSCs transplanted into Opn null mice were seen to be aberrantly
scattered throughout the bone marrow.95,96

Ang-1 signalling is historically known for its role in vascularisa-
tion and angiogenesis, both in development and disease.97–101

Ang-1 is expressed by myeloma cells and is associated with
upregulated expression of Tie-2 on bone marrow endothelial cells
and increased vascularisation in vivo.102 Similarly, OPN has been
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described as a pro-angiogenic factor expressed by osteoclasts,
which together with VEGF expressed by myeloma cells, functions
to enhance osteoclast function and angiogenesis.103 In
combination with IL-6, OPN has also been shown to enhance
myeloma cell growth.104 The importance of OPN in mediating
osteoclast function is evident as Opn knockout mice display
minimal bone resorption compared with wild-type, an observation
accompanied by decreased osteoclast association at the bone
surface.105 Although OPN and Ang-1 both have roles in HSC
maintenance, it is increasingly evident that both these factors also
have a role in the development of MM disease, including
enhancing osteoclast activity and angiogenesis. Of particular
interest is the observation that factors that are normally expressed
within the bone marrow to specifically regulate and maintain the
HSC niche are also involved in enhancing myeloma cell growth,
supporting the notion that normal haematopoiesis, specifically
maintenance of HSC within the bone marrow, is compromised
throughout MM development and progression.

MESENCHYMAL STEM CELLS
MSC give rise to numerous cell types that are present within the
bone marrow, including osteoblasts, adipocytes and chondro-
cytes, while also having an important role within the HSC niche. It
is not yet clear if MSCs contribute to the endosteal HSC niche, the
perivascular HSC niche or both. MSCs express high levels of
cytokine-related genes, with evidence to suggest that the
expression of CXCL12, SCF, IL-7 and VCAM-1 is greater from MSCs
than from osteoblasts.15,106 The importance of MSC within the
bone marrow niche in supporting HSC maintenance is evident as
depletion of a specific population of nestin positive MSC resulted
in a significant reduction in HSC homing and a concurrent
increase in mobilisation.15 It remains unclear, however, whether
these effects were due to depletion of MSC or the function of the
sympathetic nervous system, which includes nestin positive cells.
The signals generated by MSC that are involved in the
maintenance of HSC in the bone marrow niche are also integral
for the establishment and progression of MM disease.

Numerous studies have attempted to investigate the gene
expression profiles of BMSC in MM patients. A recent study
investigated gene expression profiles from MSCs and osteoblasts
enriched from MM patients with or without lytic bone disease and
found that there were no significant changes in gene expression
from osteoblasts; however, a number of changes were identified
in the primitive MSCs.107 The pathways modulated by MSCs in the
presence of MM cells may therefore represent important
mechanisms through which the bone marrow microenvironment
contributes to MM disease development.

Gene expression relating to pathways specific to angiogenesis,
inhibition of osteogenesis and tumour growth, and cell prolifera-
tion are enhanced in MSCs derived from MM patients, while genes
involved in osteogenic differentiation pathways exhibit decreased
expression.69,70,108,109 Functionally, MSC derived from MM patients
exhibit a decreased capacity for osteogenic differentiation in vitro
compared with those from healthy donors.108,110 In combination,
these data suggest that myeloma cells alter the function of MSC
through changes in gene expression profiles, while concurrently
providing a mechanism whereby MSC may mediate MM disease
progression.

In recent years, it has become increasingly evident that factors
expressed by MSCs, particularly in the presence of MM disease, aid
myeloma cell proliferation and survival, as well as providing pro-
angiogenic stimulatory factors, which together create an environ-
ment conducive to the enhanced growth of malignant plasma
cells. Therefore, it is plausible that an increase in the number of
MSC would support the development of MM. Indeed the
transplantation of murine MSCs following ex vivo expansion into
a mouse model of myeloma resulted in decreased survival of

mice,70 providing experimental evidence that an increase in the
number of MSC may be directly involved in stimulating myeloma
cell growth and the subsequent progression of MM disease. These
data suggest that MSC may be a potential target for novel
myeloma treatments, as decreasing the number of MSC and/or
the signals produced by MSC in the course of MM disease
progression may slow or halt disease development.

However, the effect of MM on MSC number in the bone marrow
microenvironment is a current area of controversy. Historically,
MSC have been isolated from BMSC using a method of plastic
adherence. Using this method to isolate MSCs from bone marrow
aspirates of healthy donors or patients with MM or MGUS, two
independent studies have determined that there is no change108

or a decrease111 in MSC number with progression of MM.
However, in a study which used a flow-cytometric approach to
isolate MSC, a twofold increase in MSC number was seen in
patients with MM compared with MGUS, although this finding was
not significant.112 This suggests that the methods used to isolate
MSC from bone marrow may bias results. Evidence to support this
comes from two recent studies that investigated the tumour-
promoting effects and phenotypes of MSCs isolated by plastic
adherence. Studies from our laboratory investigated the
properties of MSC following two independent methods of
isolation. It was found that MSCs isolated by specific immuno-
selection were shown to have greater proliferative capacity, multi-
lineage differentiation potential and clonogenicty than cells
isolated by plastic adherence.113 In addition, plastic-adherent
BMSC, which would typically contain the MSC population, were
found to be contaminated with a population of myeloid precursor
cells that exhibited independent gene expression patterns,
phenotype and functional capabilities.114 As such the majority of
studies that have investigated properties and gene expression
profiles of MSC in MM are unreliable, owing to the presence of
contaminating cells.

IMPORTANT CELL TYPES IN THE ENDOSTEAL HSC NICHE—
OSTEOBLASTS
The differentiation of osteoblasts from MSCs occurs specifically
within the bone marrow and is regulated by the RUNX2/CBFA1
transcription factor pathway, which is activated by collagen I
binding to a2b1 integrin.115–117 Wnt/b-catenin signalling has also
been demonstrated as critical for osteoblast differentiation118 with
Wnt antagonists including Dickkopf-1 (DKK1) and secreted
frizzled-related protein 2 specifically inhibiting the osteogenic
differentiation of MSCs.119–122 In addition, both Hedgehog and
Notch signalling pathways function to inhibit MSC differentiation
towards the osteoblastic lineage.123–126

It has been suggested that cells of the osteoblastic lineage are
critically involved in HSC maintenance at the endosteal niche.127

There are multiple lines of evidence to support this, including the
expression of numerous factors by osteoblasts that are involved in
HSC quiescence, homing and retention within the bone
marrow.10,92,128–131 Furthermore, genetically altered mice that
exhibit an increased number of osteoblasts are also observed to
have a concurrent increase in HSC cell number, while the
depletion of osteoblasts in this system results in HSC
mobilisation.6,7,132 Conversely, mobilisation of HSCs through
treatment with granulocyte colony-stimulating factor results in a
decrease in the number of osteoblasts present at the endosteal
bone surface, which subsequently results in decreased expression
of factors required for HSC retention.130 These observations all
support a role for osteoblasts in maintaining the HSC niche.
However, there is some debate surrounding the absolute
requirement of osteoblasts in the HSC niche, as a recent study
demonstrated that specific deletion of dicer in osteoprogenitor
cells, but not in mature osteoblasts, disrupts normal
haematopoiesis.133
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DYSREGULATION OF BONE REMODELLING IN
MM—CONSEQUENCES ON HAEMATOPOIESIS
Bone remodelling is constantly occurring at the endosteum,
involving the cycling action of osteoclasts and osteoblasts. A
major contributor to the osteolytic bone disease that frequently
accompanies MM is deregulation of these bone remodelling
pathways, with decreased formation and activity of osteoblasts
accompanied by an increased number of active osteoclasts.

Human myeloma cells have been shown to inhibit MSC
differentiation to the osteoblast lineage in bone marrow
cultures,120,134 as well as enhance osteoblast apoptosis
in vitro.135,136 Osteoblasts derived from MM patients also exhibit
an altered phenotype compared with those from healthy
patients.110 Together, these studies indicate that there is
significant impairment in the development of osteoblasts in
patients with MM. In contrast, myeloma cells express a number of
factors that contribute to the enhanced recruitment and activation
of osteoclasts, including RANKL, macrophage inflammatory
protein-1a, CXCL12 and IL-6.21,66,104,137–139

RANKL is expressed on the surface of BMSCs and osteoblasts
and interacts with RANK (on the surface of osteoclasts precursors)
to stimulate osteoclast formation and activity.140 In MM, the
expression of RANKL and its decoy receptor OPG is dysregulated,
with increased RANKL and decreased OPG expression.141–143 The
enhanced bone resorption observed in MM may also be attributed
to an increase in IL-6 and CXCL12 production by myeloma cells.
Multiple studies have shown addition of IL-6 to long-term bone
marrow stromal cultures to be sufficient for the formation of multi-
nucleated cells phenotypically resembling osteoclasts and a
subsequent increase in the rate of bone resorption,144,145 while
increased CXCL12 enhances osteoclast motility and bone
resorption.66,146 Increased osteoclast activity has also been
demonstrated to function in a feed-forward loop to promote
myeloma cell growth and survival.104,138

DEREGULATED SIGNALLING PATHWAYS IN MM
The Wnt signalling pathway functions through the inhibition of
GSK3b, which in turn leads to stabilisation of nuclear b-catenin
and subsequent transcriptional activation of genes involved in
osteoblastic differentiation. Utilising transgenic mouse models,
two recent studies have identified the Wnt signalling pathway as
integral in maintaining the quiescent HSC niche. The osteoblast
specific expression of Wnt inhibitors Wif1 or Dkk1 in vivo resulted
in increased proliferation of HSC in a microenvironment-depen-
dent manner at the expense of self-renewal potential.147,148

There is, however, some controversy regarding the importance
of Wnt signalling in myeloma disease pathogenesis. A number of
studies show an increase in the expression of Wnt antagonists in
MM, which have a significant role in the inhibition of bone
formation, leading to myeloma-associated bone loss.44,120,122,149 In
addition, studies from others have shown that myeloma cells
display an active Wnt signalling pathway, which when further
stimulated increases myeloma cell proliferation.150,151 A study by
Edwards et al.152 has shown that while activation of the Wnt
pathway enhances the growth of subcutaneously injected MM
plasma cells in a mouse model of myeloma, this same activation
within the bone microenvironment can prevent the development
of myeloma bone disease and inhibit the growth of malignant
plasma cells within the bone. This study emphasises the
importance of acknowledging the role of the microenvironment
in regulating MM disease when investigating new means of
therapeutically targeting MM.

Active Notch signalling in HSC inhibits their differentiation,
thereby maintaining HSC in an immature state.153,154 Notch
signalling also maintains a population of progenitor MSC, while
simultaneously inhibiting osteoblastic differentiation.124,125,155 In

addition, excessive activation of Notch has been described in MM,
resulting in increased secretion of MM plasma cell survival factors
IL-6 and VEGF.156 Similarly, hedgehog signalling has been
implicated in the initiation and clonal proliferation of progenitor
cells, specifically cancer stem cells;157,158 however, its function in
maintaining HSC is believed to be dispensable.159 Cancer stem
cells are a rare subset of tumour cells capable of self-renewal,
which have the ability to generate the highly heterogenous cells
that comprise the tumour when transplanted into animal models.
Cancer stem cells have been described in MM160–163 and it has
been found that hedgehog activity is present specifically within
the myeloma stem cell population, resulting in enhanced
proliferation of these cells while having no effect on the
differentiated plasma cells.164 In summary, the Wnt, Notch and
Hedgehog signalling pathways represent possible targets for the
development of future therapeutics, which may function to
enhance the osteogenic differentiation of MSC. The validity of
targeting the Wnt pathway is discussed below.

WNT SIGNALLING IN MM—WNT ANTAGONISTS
Wnt antagonists have been demonstrated to have a key role in
MM disease pathogenesis. MM patients with lytic bone lesions
were found to express secreted frizzled-related protein 2,
identifying a possible mechanism through which Wnt signalling,
and therefore osteoblast differentiation, may be inhibited.120 Gene
expression analyses of plasma cells from MM patients with and
without lytic bone disease also showed a significant increase in
Dkk1 expression, accompanied by high DKK1 protein levels in MM
patients,122,149 while DKK1 expression by BMSCs, including MSCs
specifically, was also found to be increased in the presence of
myeloma cells.44,70 DKK1 may be an integral factor for inhibiting
osteoblastic differentiation of MSC in myeloma, as treatment of
mice with an anti-Dkk1 antibody resulted in increased bone
density accompanied by increased numbers of osteoblasts and
decreased myeloma tumour burden.149 This function of DKK1 is
further supported by studies which show that knockdown of Dkk1
expression in BMSCs reduced the ability of stromal cells to support
myeloma disease in mice.44

Despite the expression of Wnt inhibitors in myeloma, direct
inhibition of GSK3b by a small molecule inhibitor (6-bromoindir-
ubin-30-oxime) has been shown to improve bone quality and
decrease tumour burden in an intratibial mouse model of
myeloma.165 This study provides proof-of-principle that
biological activation of the Wnt pathway in myeloma may
provide a novel mechanism of disease treatment. However,
it remains to be seen if the observed global effects of
6-bromoindirubin-30-oxime treatment are due to a direct effect
on the myeloma cells or whether it may also enhance osteoblastic
differentiation in the surrounding bone marrow environment.

CONCLUDING REMARKS
In summary, the HSC niche is an ideal location for the initiation
and development of MM. Common signalling pathways are
utilised by both HSC and myeloma cells to mediate their
localisation and proliferation. Paracrine and autocrine signalling
through the CXCL12/CXCR4 and IL-6 axes is sufficient to mediate
plasma cell proliferation, the development of plasmacytomas and
the initiation of premalignant disease. It is also apparent that
plasma cell–stromal cell interactions within the bone marrow
microenvironment can elicit further changes in the stromal
environment, altering the BMSC composition and subsequently
the expression of signalling molecules which further support the
growth and survival of myeloma cells. The characteristics of MM
disease, including reduced immunoglobulin production, dysregu-
lation of bone remodelling, hypercalcaemia and increased
angiogenesis can all be attributed to stromal changes within the
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HSC niche that occur throughout the MGUS to MM disease
transition. Although these stromal changes provide a means
through which differences between MGUS and MM can be
defined, the impact of these changes and their ability to mediate
the transition of MGUS to MM is still unknown and warrants
further investigation. Therapeutic targeting of these stromal cells
within the bone marrow microenvironment, specifically MSCs and
osteoblasts, may provide a novel mechanism of inhibiting MM
disease progression.
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