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Previous studies have shown that the neural mechanisms underlying visual spatial attention rely on top-down control information
from the frontal and parietal cortexes, which ultimately amplifies sensory processing of stimulus occurred at the attended location
relative to those at unattended location. However, the modulations of effective brain networks in response to stimulus at attended
and unattended location are not yet clear. In present study, we collected event-related potentials (ERPs) from 15 subjects during a
visual spatial attention task, and a partial directed coherence (PDC) method was used to construct alpha-band effective brain
networks of two conditions (targets at attended and nontargets at unattended location). Flow gain mapping, effective
connectivity pattern, and graph measures including clustering coefficient (C), characteristic path length (L), global efficiency
(Eglobal), and local efficiency (Elocal) were compared between two conditions. Flow gain mapping showed that the frontal region
seemed to serve as the main source of information transmission in response to targets at attended location while the parietal
region served as the main source in nontarget condition. Effective connectivity pattern indicated that in response to targets,
there existed obvious top-down connections from the frontal, temporal, and parietal cortexes to the visual cortex compared with
in response to nontargets. Graph theory analysis was used to quantify the topographical properties of the brain networks, and
results revealed that in response to targets, the brain networks were characterized by significantly smaller characteristic path
length and larger global efficiency than in response to nontargets. Our findings suggested that smaller characteristic path length
and larger global efficiency could facilitate global integration of information and provide a substrate for more efficient
perceptual processing of targets at attended location compared with processing of nontargets at ignored location, which revealed
the neural mechanisms underlying visual spatial attention from the perspective of effective brain networks and graph theory for
the first time and opened new vistas to interpret a cognitive process.

1. Introduction

We can voluntarily limit our visual attention to a specific
location in the visual field without changing the direction of
eye gaze, and this visual spatial attention can improve per-
ceptual processing of stimulus at attended location compared
with processing of stimulus at ignored location [1–3].
Although visual spatial attention has been studied by differ-
ent technologies and methodologies for many years, its neu-
ral mechanisms are still not well understood. Studies utilizing
functional magnetic resonance imaging (fMRI) have consis-

tently shown that two attention networks including the dor-
sal attention network (DAN) and the ventral attention
network (VAN) are involved in visuospatial attention [1, 4,
5]. The DAN is mainly composed of intraparietal sulcus
(IPS), superior parietal lobule, and frontal eye field (FEF)
and shows increased blood-oxygenation-level-dependent
(BOLD) signal when subjects voluntarily deploy their visual
attention towards a target [4, 6–8]. The VAN, mainly consist-
ing of the temporoparietal junction (TPJ) and the ventral
frontal cortex, is thought to facilitate stimulus detection,
particularly when unexpected stimuli are present [4–7, 9].
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However, these two attention networks are not absolutely
independent, and normal attentional function requires col-
laboration between the DAN and the VAN [10, 11].

At present, it is widely believed that visuospatial atten-
tional processing relies on top-down control information
from selective attentional control regions including the fron-
tal and parietal cortexes to the visual cortex [7, 12–20]. The
initial evidence comes from clinical observation where
patients with parietal cortex lesions lost the ability to direct
attention to one side of visual space [21], and subsequent
studies from magnetoencephalographic (MEG) imaging
[14], fMRI [22], and EEG [23] confirmed the top-down con-
trol effects from regions including FEF and IPS to the visual
occipital cortex during visual spatial attention tasks. Due to
the advantages of high temporal resolution, event-related
potential (ERP) technique was used to investigate the tran-
sient changes of cognition process during visual spatial atten-
tion tasks, and results demonstrated that stimuli occurred at
the attended location can elicit larger ERP components such
as P1/N1 compared with stimuli at ignored location [24–26],
showing that top-down control effects could ultimately
amplify the sensory processing of stimulus occurred at the
attended location relative to those at unattended location.
Although there have existed a lot of studies on neural mech-
anisms of visual spatial attention, the changes in the brain
networks during a visual spatial attention task are still far
from being understood.

Based on the above findings, we propose that the process
of visual attentional selection involves a distributed network
including the occipital, parietal, temporal, and frontal cor-
texes and is a result of global integration of information
among different brain areas. Therefore, it is necessary to
study the effective brain networks and their topologic proper-
ties in response to targets at attended location and nontargets
at unattended location. At present, many neuroimaging tech-
niques such as fMRI, MEG, and EEG can be used to study
brain networks [19, 27]. EEG still remains the most wide-
spread technique so far due to its high time resolution and
cheapness. The traditional methods for constructing brain
networks such as correlation, synchronization, and coher-
ence can only detect directionless functional connectivity
among different brain regions. In the past few decades, sev-
eral complicated EEG analysis methods have been proposed
to measure the directional flows of information or effective
connectivity among different brain areas [28–32]. Partial
directed coherence (PDC) [29], one of the most commonly
used methods to construct effective connectivity, is a full
multivariate spectral measure used to determine the directed
influences of Granger causality [33] between any given sig-
nals in a multivariate set, and it has been successfully applied
in measuring the multichannel directed cortical interactions
[27, 32, 34–36]. In addition, through the use of graph theory
analysis, the topological characteristics of brain networks can
be well revealed [37–40].

The aim of the present study was to investigate the brain
networks and their topologic properties during visual spatial
attention and further reveal the neural mechanisms underly-
ing visual spatial attention from the perspective of effective
brain networks and graph theory. In particular, we would like

to reveal two main questions from the study: (1) What is
the difference in effective brain connectivity pattern
between target and nontarget condition? (2) What is the
difference in topologic properties of brain networks between
two conditions?

We hypothesized that the brain exhibited higher global
efficiency of information integration across different brain
areas in response to targets at attended location than in
response to nontargets, which ultimately leads to improved
perceptual processing of stimulus at attended location
compared with processing of stimulus at ignored location.
In order to test this hypothesis and answer above ques-
tions, we collected ERP data from 15 healthy subjects dur-
ing a visual spatial attention task. Then, a partial directed
coherence (PDC) method was used to construct alpha-
band effective brain networks of two conditions (targets
at attended and nontargets at unattended location). Based
on the constructed effective networks, flow gain mappings
were proposed to assess the role of the specific brain
region involved in the visuospatial attention processing,
and effective connectivity pattern was used to show the
information flows among different brain regions. Finally,
the topological parameters of the constructed brain net-
works were characterized with graph measures, and we
mainly studied the difference in topologic properties of
the effective brain networks between two conditions. To
the best of our knowledge, this is the first study that
revealed the neural mechanisms underlying visual spatial
attention from the perspective of effective brain networks
and graph theory.

2. Methods and Materials

2.1. Subjects and Experiment Design. 15 young subjects (8
males, 7 females; mean age: 21 2 ± 1 6; all right handed) with
normal vision participated in the experiment, and an
informed consent form was signed by all participants before
the experiment. The experiment is a classical visual spatial
attention task that is modified according to reference [41]
(Figure 1): EEG data were collected from subjects who
attended to randomized sequences of filled round disks
appearing briefly inside one of the three empty squares that
were constantly displayed 1.0 cm above a central fixation
cross. The three empty 2.0 cm squares were constantly dis-
played on a black background at horizontal visual angles of
0°, +4°, and -4°from fixation cross, respectively. During each
block of trials, one of the three empty squares was colored
red and the other two were colored green. The red square
indicated the location to be attended. The location was coun-
terbalanced across blocks. One filled round disk was dis-
played for 120ms within one of the three squares in a
pseudorandom sequence with interstimulus intervals (ISI)
of 250-1000ms in four equiprobable 250ms steps. Subjects
were asked to maintain visual fixation on the central cross
and respond only to stimuli (filled round disks) occurred in
the attended square (the red square). Subjects pressed a but-
ton as soon as possible once the stimuli occurred in the
attended square. For each block of trials, a total of 15 target
and 60 nontarget trials were collected, and there were a total
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of 20 blocks for each subject. Subjects were given 1min
breaks between blocks.

2.2. EEG Recording and Preprocessing. The EEG data were
recorded at a sampling rate of 1000Hz from 16 Ag/Agcl elec-
trodes (F3, Fz, F4, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1,
Oz, and O2) that were mounted on the scalp with a 32-
channel EEG cap (NeuroScan QuikCap) according to the
10-20 standard system. All channels were referenced to the
right mastoid with input impedance below 5KΩ.

Offline EEG preprocessing was carried out by using
MATLAB 7.7.0 R2010a software (MathWorks Inc., USA)
equipped with the EEGLAB toolbox [42]. Firstly, a 0.5-
40Hz zero-phase band-pass filter was applied. Then, ocular
and prominent muscle artifacts were removed by means of
independent component analysis (ICA). Specifically, the
ICA was applied to the continuous EEG signals of each sub-
ject before extracting epochs of target and nontarget and
was conducted by using the “binica” algorithm embedded
in the EEGLAB toolbox with default parameters. We visu-
ally checked each component’s scalp map and power spec-
trum to determine whether it was an artifact component,
and the average number of artifact components was 1 8 ±
0 6 (mean ± std) for 15 subjects. Subsequently, the continu-
ous EEG signal was downsampled to 250Hz and divided
into epochs time locked to the stimuli (−1.0 s to 1.2 s) which
were baseline (−0.1 s to 0 s) corrected. Then, an extreme
value of ±80 μV was applied to further remove epochs
which may contain artifacts. In addition, for target trials,
a response time longer than 700ms and shorter than
100ms was considered as a lapse and coincidence, respec-
tively, and the corresponding epochs were removed. Non-
target trials followed by a response were also discarded.
Finally, we collected an average of 206 artifact-free target
epochs and an average of 1048 artifact-free nontarget
epochs for each subject. In order to exclude any bias from
the unequal number of trials in both experimental condi-
tions, we randomly selected 190 trials from the collected
artifact-free target trials and artifact-free nontarget trials,
respectively. Finally, 190 trials per subject/condition were
remained for further analysis.

2.3. Event-Related Spectral Perturbation (ERSP) Calculation.
ERSP is defined as the logarithm of the ratio of spectral
power at a specific time point to that of the average spectral
power over a reference period. Here, we estimated the spec-
tral power change of whole epoch (−1.0 s to 1.2 s) relative to
the baseline (−0.1 s to 0 s). ERSP of a single trial was carried
out with the Morlet wavelet (EEGlab newtimef function),
spanning 40 linearly spaced frequencies from 3.9Hz to
30Hz (from 3 cycles at 3.9Hz to 11.4 cycles at 30Hz) over
a time course of 200 linearly spaced time points. Finally, for
every epoch or trial, we obtained ERSP with a 2D matrix of
40 frequency points × 200 time points .

2.4. Effective Connectivity Construction. Partial directed
coherence (PDC) is a full multivariate spectral measure used
to determine the directed influences of Granger causality
between any given signals in a multivariate set [29, 43]. Let
X n = x1 n , x2 n , x3 n ,⋯, xN n T represent an N-
channel EEG signal (N = 16 in this study), then a MVAR
model with order p for X n could be expressed as

X n = 〠
p

r=1
ArX n − r +W n , 1

where W n is a multivariate uncorrelated noise vector, Ar is
the coefficient matrix, and p is the order of the MVARmodel,
which can be determined by using the Akaike information
criterion (AIC)

AIC p = 2 log det Σ + 2N2p
N total

, 2

where det Σ denotes the covariance matrix of the noise
vector W n and N total is the total number of EEG samples
in all trials. In the present study, p ranges from 10 to 15
for all subjects. Specifically, the model order (mean/std)
was 11 ± 2 2 and 13 ± 3 1 for nontarget condition and target
condition, respectively. To estimate Ar , equation (1) can be
multiplied by XT n − k , where k = 1, 2,⋯, p, to obtain the
Yule-Walker equations

100 ms BP

S
250-1000ms

Figure 1: Schematic view of the experiment design (BP: button press; ISI: interstimulus interval; filled circle stands for stimuli; lightly shaded
box stands for the attended location).
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〠
p

r=1
ArR −k + r = 0, 3

where R m = <X n XT n +m > are the covariance matri-
ces of all X n of lag m. A solution for Ar can be obtained
using the Levinson-Wiggins-Robinson (LWR) algorithm
[44]. Once the MVAR model has been estimated, a represen-
tation of Granger causality in the frequency domain can be
obtained from the difference between the N-dimensional
identity matrix I and the Fourier transform of the coefficient
series Ar r = 1, 2,⋯, p

A f = I − 〠
p

r=1
Are

−2jf rπ 4

Then, the directional flow of information at frequency f
from channel j to channel i can be defined as

PDC i, j, f =
Aij f

∑kA
∗
kj f Akj f

, 5

where asterisk denotes matrix transposition and complex
conjugation, and Aij f are the elements of the matrix A(f).

In this study, we used epochs of [0 0.6 s] after stimulus
onset to compute PDC values. For ERP data, many realiza-
tions of the same process are available; a modified adaptive
procedure for estimating the MVAR model can be employed
to increase the reliability of the model parameters [45].
Briefly, the steps to create an adaptive MVAR model of the
X process are as follows:

(1) Compute the covariance matrices Rn m
n = 1, 2,⋯, T for T trials of the X process in the
target and nontarget condition for each subject

(2) Obtain the average covariance matrix from the T tri-
als: R m =∑T

n=1Rn m /T
(3) Replace the R m in the Yule–Walker equation (3)

with R m and calculate the Ar

(4) Calculate PDC using Ar and equation (5)

In order to test the significance of PDC values, a nonpara-
metric statistical test using surrogate data was implemented
in the present study [46]. Briefly, the original time series from
each epoch were transformed to the Fourier space, in which
the phases are randomly shuffled without changing the mag-
nitude. The surrogate data in the Fourier space are then
transformed back to the time domain. This process of phase
shuffling preserves the spectral structure of the time series
and is suited for PDC analysis which is a measure of
frequency-specific causal interactions. The PDC values were
recalculated using the obtained surrogate data. An empirical
distribution of PDC values under the null hypothesis of no
causal relationships was obtained by repeating the shuffling
and PDC estimation procedures 1000 times. Based on this
empirical distribution, the PDC values were considered to

be a real connection when they were above the threshold
(p = 0 05).

In addition, because lots of studies have confirmed the
important role of alpha band (7-14Hz) in visuospatial atten-
tion processing [19, 24, 47–51], so we restricted our analysis
in the alpha band in this study, and the PDC values were
averaged over the alpha frequency band.

2.5. Graph Theoretical Analysis. The alpha-band PDC
matrixes were converted into a directed binary graph by
applying a sparsity of T , and the graphs can be characterized
in terms of some basic graph measures including clustering
coefficient (C), characteristic path length (L), global effi-
ciency (Eglobal), and local efficiency (Elocal). The clustering
coefficient is a measure of the “cluster together degree” of
nodes and is considered as a metric of the network segrega-
tion whereas the characteristic path length is defined as the
average shortest paths for all possible pairs of nodes and is
an indicator of global integration of information transmis-
sion. The global efficiency is a measure of the speed and effi-
ciency of information transfer over a whole network whereas
the local efficiency can be considered as the average efficiency
of the local subgraphs, and it tells us how efficient is the com-
munication between the first neighbors of node i when i is
removed. Detailed descriptions and calculation methods for
L, C, Eglobal, and Elocal could be found in some previously pub-
lished literatures [52–56]. The small-world network is char-
acterized by a similar path length and higher clustering
coefficient compared to a random network, that is, γ = Creal
/Crandom > 1, λ = Lreal/Lrandom ≈ 1, where Crandom and Lrandom
denote the average C and L of an ensemble of 1000 surrogate
random networks which were derived from the experimental
network by using the Markov-chain algorithm [57]. And the
small-world index could be defined as σ = γ/λ, which is
greater than 1 for a small-world network.

The sparsity T can be viewed as the ratio of the number of
real effective connections to the number of all possible con-
nections in this network. In this study, a wide sparsity range
of 0.1-0.7 with a step of 0.01 was used to explore the features
of the effective networks at different connection densities. We
found that there existed significant differences between graph
measures of brain networks under two experiment condi-
tions in a T range of 0.31-0.55. Therefore, a sparsity of 0.38
was adopted in the study to reveal the topological features
of the effective brain networks under two different experi-
ment conditions.

Because sparsity is a biased and arbitrary network filtering
scheme, therefore, we also tried using a data-driven network
filtering scheme based on Orthogonal Minimal Spanning
Tree (OMST), which filters brain connectivity networks
based on the optimization between the global efficiency of
the network and the cost preserving its wiring [58, 59]. By
applying the OMST method, graph theoretical measures
including clustering coefficient (C), characteristic path length
(L), global efficiency (Eglobal), local efficiency (Elocal), and
small-world index (σ) were recomputed. In addition, in the
present study, all graph theoretical measures were computed
by using the Brain Connectivity Toolbox (BCT) toolbox [54].
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2.6. Statistical Analysis. All statistical analysis was carried out
using SPSS version 21.0 software (SPSS Inc., Chicago, IL).
The data were expressed as mean ± standard error of mean
(SEM). The Shapiro-Wilk test was used to test for normality
of distribution. The comparison of ERSP between two con-
ditions (target vs. nontarget) involving multiple time points
was carried out using the paired sample t test with false dis-
covery rate (FDR) correction for multiple comparisons [60,
61]. In order to determine the between-condition differ-
ences in the graph measures, we conducted a repeated-
measures multivariate analysis of variance (MANOVA)
with the following dependent variables: clustering coefficient,
C; characteristic path length, L; global efficiency, Eglobal; local
efficiency, Elocal; and small-world index, σ. p < 0 05 showed
that there existed a significant difference.

3. Results

3.1. Behavioral Results and ERSP Analysis. Themean reaction
time of target condition was 389 ± 34ms, and themean detec-
tion rate was 95 7 ± 0 004%. Figures 2(a) and 2(b) showed
the ERSP of target and nontarget condition, respectively.

Results showed that both targets and nontargets led to an
increase of theta power over baseline and alpha/beta band
desynchronization. Figure 2(c) showed the comparison of
ERSP between two conditions, which indicated that in
response to targets, theta synchronization and alpha/beta
desynchronization were stronger than in response to nontar-
gets (p < 0 0021, FDR corrected).

3.2. Flow Gain Mapping and Effective Connectivity Pattern.
The information flows among different brain regions can be
computed based on the obtained alpha-band PDC matrixes.
If γij represent an element of PDCmatrix, the inflow and out-

flow of channel i can be determined as ∑N
j=1γij and ∑N

j=1γji,
respectively, where N is the number of EEG channel. The
inflow of channel i stands for the magnitude of all the incom-
ing links from the other channels to channel i whereas the
outflow indicates the magnitude of all the outgoing links
from channel i to the others. We can define flow gain of
channel i as the ratio of outflow to inflow. The flow gain of
channel i can clearly show the role of channel i during infor-
mation transmission process: a lower value of flow gain
means that channel i serves as sink during information trans-
mission to a greater extent whereas the channel is more
apparent as a source as the value of flow gain increases.

Figures 3(a) and 3(b) showed the group average flow
gain mapping in response to targets and nontargets, respec-
tively. Results indicated that flow gain mapping of target
condition was obviously different from that of nontarget
condition. In particular, in response to targets, the most
active regions that act as a hub and source of information
communication are mainly located in the frontal cortex.
However, the most active regions that serve as a source of
information communication are mainly located in the pari-
etal cortex for nontarget condition.

Figures 3(c) and 3(d) indicated the group average effec-
tive connectivity pattern in response to targets and nontar-

gets, respectively, and the main difference between two
conditions is as follows: (1) In response to targets, there
existed obvious long-range connections from the frontal cor-
tex to the visual cortex (occipital regions) whereas there
almost no such long-range links for nontarget condition.
(2) In addition to the frontal cortex, there also existed top-
down links from the temporal and parietal cortexes to the
visual cortex for target condition compared with nontarget
condition. (3) For target condition, T8, T7, and O2 regions
mainly serve as sinks of information communication whereas
T7, P7, and Cz areas mainly act as sinks for nontarget condi-
tion. Figure 4 showed the flow gain mappings and effective
connection patterns of one typical subject in response to tar-
get (Figures 4(a) and 4(c)) and nontarget (Figures 4(b) and
4(d)). The above findings are mainly based on qualitative
observations, and graph theoretical analysis was applied to
quantitatively study the topological properties of the brain
networks under two experiment conditions.

3.3. Topological Properties of the Brain Networks. In order to
determine the between-condition differences in the graph
measures, a repeated-measures MANOVA was carried out
with the following dependent variables: clustering coefficient,
C; characteristic path length, L; global efficiency, Eglobal; local
efficiency, Elocal; and small-world index, σ. The comparison
results are summarized in Table 1. The main effect of condi-
tion (target vs. nontarget) showed a significant difference
(F5,24 = 3 315, p = 0 020, partial η2 = 0 409). The mean C
for target and nontarget condition was 0 419 ± 0 009 and
0 463 ± 0 012, respectively, and univariate tests revealed
there existed a significant difference between two conditions
(F1,28 = 8 400, p = 0 007, partial η2 = 0 231). In response to
targets, the L (2 822 ± 0 108) of brain networks was signifi-
cantly smaller than that (3 437 ± 0 128) of nontarget condi-
tion (F1,28 = 13 396, p = 0 001, partial η2 = 0 324). The
Eglobal for target condition and nontarget condition was
0 562 ± 0 010 and 0 504 ± 0 012, respectively, and Eglobal for
target condition was significantly longer than that of nontar-
get condition (F1,28 = 13 176, p = 0 001, partial η2 = 0 324).
However, there was no significant difference between two
conditions for Elocal (F1,28 = 0 594, p = 0 447, partial η2 =
0 021) and σ (F1,28 = 1 156, p = 0 292, partial η2 = 0 040). In
both conditions, the small-world index was larger than 1
(σ = 1 530 ± 0 134 for target condition, σ = 1 356 ± 0 091
for nontarget condition), which suggested that the brain net-
works in response to both targets and nontargets owned
small-world properties.

The sparsity is a biased and arbitrary network filtering
scheme that might add bias for condition comparisons
and reduce the possibility of the reproducibility of the find-
ings across studies from different research groups. Here,
the graph theoretical measures were recomputed by apply-
ing a data-driven network filtering scheme based on
OMST, and the results are summarized in Table 2. The
main effect of condition (target vs. nontarget) showed a sig-
nificant difference (F5,24 = 5 487, p = 0 002, partial η2 =
0 533). In response to targets, the L (2 689 ± 0 168) of brain
networks was significantly smaller than that (3 510 ± 0 129)
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of nontarget condition (F1,28 = 15 602, p < 0 001, partial
η2 = 0 358). The Eglobal for target condition and nontarget
condition was 0 573 ± 0 012 and 0 497 ± 0 010, respectively,
and Eglobal for target condition was significantly longer than
that of nontarget condition (F1,28 = 23 998, p < 0 001, par-
tial η2 = 0 462). However, there was no significant differ-
ence between two conditions for C, Elocal, and σ. We
found that by using the OMST method, the graph measure
C no longer shows a significant difference between target
and nontarget condition.

4. Discussion

Here, we combined graph theoretical analysis and PDC
method to study the brain effective connectivity and its topo-
logic properties underlying visual spatial attention in healthy
subjects for the first time. We observed that in response to
targets, there existed obvious top-down connections from a
distributed network of brain areas involved in attention con-

trol including the frontal, temporal, and parietal cortexes to
the visual cortex compared with in response to nontargets.
More importantly, we found that for target condition, the
brain networks were characterized by significantly larger
characteristic path length and global efficiency than nontar-
get condition, suggesting that larger characteristic path
length and global efficiency could facilitate global integration
of information and provide a substrate for more efficient per-
ceptual processing of targets at attended location compared
with processing of nontargets at ignored location. These
results provided a new perspective for us to understand the
neural mechanisms underlying visual spatial attention.

Oscillations in the brain play critical roles in visual spatial
attention. Our ERSP results indicated that in response to tar-
gets theta synchronization and alpha/beta desynchronization
were stronger than in response to nontargets (Figure 2). For
alpha/beta (usually alpha and beta bands) band oscillation,
lots of studies have proved that there existed an inverse rela-
tionship between alpha/beta power and behavioral selective
attention through time and hypothesized that alpha/beta
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Figure 2: Spectral power changes averaged over 8 channels (P7, P3, Pz, P4, P8, O1, Oz, and O2) and plotted as 10log10 change over a baseline
for target condition (a) and nontarget condition (b). (c) The comparison of ERSP between two conditions: red color indicates time-frequency
regions significantly different between two conditions (p < 0 0021, FDR corrected) and blue color indicates no significant difference.
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waves acted as an attention suppression mechanism in which
brain regions processing irrelevant information utilize
increased alpha/beta power [19, 24, 48, 62], which is consis-
tent with our findings. In addition to alpha/beta band, com-
parison between two conditions indicated that theta
synchronization was stronger during target processing,
although processing of both nontargets and targets led to
an increase of theta power over baseline, which was consis-
tent with the results of other literatures [5, 62]. The above
results showed that theta band and alpha/beta band might
play different roles in modulating visual spatial attention.

It is widely believed that visuospatial attention relies on
top-down control information from selective attentional
control regions including the frontal and parietal cortexes
to the visual cortex. Here, we tried to use flow gain mapping
and effective brain connectivity pattern to qualitatively inves-
tigate the information communication among different brain
areas during visual spatial attention. Our results showed that
in response to targets, the most active regions that act as a

hub and source of information communication are mainly
located in the frontal cortex (Figure 3(a)), suggesting the
important role of the frontal cortex in fast response to stim-
ulus at attended location. Some researchers reported that
prefrontal lesions reduced visually evoked EEG activity dur-
ing a visual detection task for humans [63]. Subthreshold
electrical stimulation of the frontal cortex while the animal
performs an attention-demanding change detection task
improved the animal’s ability to detect small changes in lumi-
nance [64]. Moreover, Ruff et al. [65] found that in humans,
transcranial magnetic stimulation of the frontal region
altered BOLD responses in early visual areas, leading to
enhanced responses to peripheral visual stimuli. In addition,
lots of electrophysiological and neuroimaging studies have
also confirmed the causal influences of frontal regions on
visual areas in visual spatial attention [1, 16, 66, 67]. Here,
we introduced the flow gain mapping for the first time to
assess the role of the specific brain region involved in
response to targets and found that the frontal cortex seemed
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Figure 3: Flow gain mappings averaged over all subjects in response to target (a) and nontarget (b). Group average effective connection
patterns of target (c) and nontarget (d) condition. The arrows stand for information flow direction. For better illustration purpose, only
the top 15% of the maximum edges are shown.
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to serve as the main sources of information transmission,
which was consistent with the above-mentioned studies.
However, in response to nontargets, the most active regions
that serve as a source of information communication are

mainly located in the parietal cortex (Figure 3(b)). Suzuki
and Gottlieb [68] performed an experiment which compared
prefrontal and parietal activity during a memory-guided sac-
cade task with distractors and found that the neuron activity
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Figure 4: Flow gain mappings of one typical subject in response to target (a) and nontarget (b). One subject’s effective connection patterns of
target (c) and nontarget (d) condition. The arrows stand for information flow direction. For better illustration purpose, only the top 15% of
the maximum edges are shown.

Table 1: Comparisons of the graph measures between target and nontarget condition based on a sparsity method.

Graph measures Target (mean ± SEM) Nontarget (mean ± SEM) Statistical analysis
F1,28 p Partial η2

C 0 419 ± 0 009 0 463 ± 0 012 8.400 0.007 0.231

L 2 822 ± 0 108 3 437 ± 0 128 13.396 0.001 0.324

Eglobal 0 562 ± 0 010 0 504 ± 0 012 13.176 0.001 0.320

Elocal 0 560 ± 0 009 0 574 ± 0 015 0.594 0.447 0.021

σ 1 530 ± 0 134 1 356 ± 0 091 1.156 0.292 0.040

Notes: values are expressed as mean ± SEM; C stands for clustering coefficient; L stands for characteristic path length; Eglobal represents global efficiency; Elocal
represents local efficiency; σ stands for small-world index; significant differences (p < 0 05) between two conditions are highlighted in bold.
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in the frontal cortex was strongly suppressed in response to
distractors while the neuron activity in the parietal cortex
was transiently greater in response to distractors than the
sustained target response, which might explain our finding
that the parietal cortex seemed to serve as the main sources
of information transmission in response to nontargets. We
inferred that the frontal and partial cortexes are specialized
for different aspects of attention control, but further studies
need to be carried out.

Although flow gain mapping was helpful for studying the
overall information flow during a cognitive process, it did not
show the detailed direction information. Here, effective con-
nectivity pattern was applied. Our results indicated that in
response to targets, there existed obvious connections from
attention-related regions including the frontal, temporal,
and parietal cortexes to the visual cortex (Figure 3(c))
whereas there almost no such links for nontarget condition
(Figure 3(d)), showing that the top-down control was neces-
sary for more efficient perceptual processing of targets at
attended location compared with processing of nontargets
at ignored location. Converging evidence has proved that
the control of visual attention involved a distributed network
encompassing the regions of occipital, parietal, temporal, and
frontal cortexes [1, 7, 17, 66, 69, 70]. For example, studies
from MEG imaging [14, 19] showed that in response to tar-
gets at attended location, various brain areas including the
anterior cingulate cortex, left middle and inferior frontal gyri,
left superior temporal gyrus, and inferior parietal lobule send
top-down control information to early visual areas. In addi-
tion, study from fMRI [22] revealed that there were more
top-down control information sending from FEF and IPS
to the visual occipital cortex than bottom-up information
from the visual cortex to FEF and IPS during a visual spatial
attention task. In a word, our findings of effective connectiv-
ity pattern were consistent with these previous studies.

In recent years, graph theory analysis has been widely
applied to study the topologic characteristics of brain net-
works. Previous studies have implied that the small-world
network is considered to be one of the most appropriate
models to balance local segregation and global integration
in human brain [71]. The small-world network is character-
ized by a higher clustering coefficient compared to a random
network and a shorter path length compared to a regular net-
work, which allows for more efficient information transfer

among distant brain regions. It was well-known that the
characteristic path length L is defined as the average shortest
paths for all possible pairs of nodes and stands for global effi-
ciency of information integration across different brain areas.
Our results showed that in response to targets, the L of brain
networks was significantly smaller than that of nontarget
condition, suggesting a more efficient information integra-
tion and communication across different brain regions for
target condition compared with nontarget condition. A
MEG study in healthy subjects showed that the cognitive
effort drove normal brain networks to a less clustered config-
uration and more long-range synchronization [72]. Effective
connectivity pattern analysis (Figure 2(c)) showed that in
response to targets, there existed many long-range connec-
tions from the frontal cortex to the visual cortex whereas
there almost no such long-range links for nontarget condi-
tion, which might explain the smaller L for target condition
in our study. In addition, lots of previous studies have con-
firmed the important role of this long-range connections in
visual spatial attention [1, 63, 65, 66]. The global efficiency
Eglobal is also ameasure of the speed and efficiency of informa-
tion transfer over a whole network, and our results indicated
that in response to targets, the Eglobal of brain networks was
significantly larger than that of nontarget condition. In a
word, we believed that smaller characteristic path length
and larger global efficiency could facilitate global integration
of information and provide a substrate for more efficient per-
ceptual processing of targets at attended location compared
with processing of nontargets at ignored location.

In addition, the small-world index of target condition
was larger than that of nontarget condition, but there existed
no significant difference. In both conditions, the small-world
indexes were larger than 1, suggesting that the brain net-
works in response to both targets and nontargets owned
small-world properties.

The present study has certain limitations. On the one
hand, our study was based on low-density EEG recordings.
Although some previous studies investigated topological
properties of brain networks by using low-density EEG [40,
73], the node of the networks based on low-density EEG is
relatively small. On the other hand, from a methodological
point of view, our study converted effective connectivity
based on PDC into binary graph, which would result in the
loss of part of the information compared to weighted graph.

Table 2: Comparisons of the graph measures between target and nontarget condition based on the OMST method.

Graph measures Target (mean ± SEM) Nontarget (mean ± SEM) Statistical analysis
F1,28 p Partial η2

C 0 475 ± 0 021 0 516 ± 0 022 2.034 0.165 0.068

L 2 689 ± 0 168 3 510 ± 0 129 15.602 <0.001 0.358

Eglobal 0 573 ± 0 012 0 497 ± 0 010 23.998 <0.001 0.462

Elocal 0 550 ± 0 008 0 498 ± 0 011 0.329 0.571 0.012

σ 1 460 ± 0 092 1 346 ± 0 083 0.812 0.375 0.028

Notes: values are expressed as mean ± SEM; C stands for clustering coefficient; L stands for characteristic path length; Eglobal represents global efficiency; Elocal
represents local efficiency; σ stands for small-world index; significant differences (p < 0 05) between two conditions are highlighted in bold.
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5. Conclusion

In summary, our results showed that the frontal region
seemed to serve as the main source of information transmis-
sion in response to targets while the parietal region served as
the main source in nontarget condition, and in response to
targets, there existed obvious top-down connections from
the frontal, temporal, and parietal cortexes to the visual cor-
tex compared with in response to nontargets. More impor-
tantly, our results revealed that in response to targets, the
brain networks were characterized by significantly smaller
characteristic path length and larger global efficiency than
in response to nontargets, which suggested a more efficient
information integration and communication across different
brain regions for target condition compared with nontarget
condition. The present study combining effective connectiv-
ity and graph theory analysis provided helpful findings to
reveal the neural mechanisms underlying visual spatial atten-
tion and also opened new vistas to interpret a cognitive
process.
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