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Primary lack of response and secondary loss of response (LOR) are major obstacles to

the use of anti–tumor necrosis factor (TNF)-based therapies in patients with rheumatoid

arthritis or inflammatory bowel disease. Here, we review the mechanisms and methods

for predicting LOR and the currently used methods for overcoming the ineffectiveness of

anti-TNFs. The complex functions of TNF and anti-TNF antibodies, which can promote

both pro- or anti-inflammatory actions, and the factors that affect the induction of

immune tolerance to their effects are presented. The lack of rules and the continuous

dynamics of the immune processes partly underlie the unpredictability of the response to

anti-TNFs. Variability is inherent to biological systems, including immune processes, and

intra/inter-patient variability has been described in the response to drugs. This variability

is viewed as a compensatory adaptation mechanism of the immune system in response

to drugs and may contribute to treatment LOR. Dose reductions and drug holidays have

been tested in patients treated with anti-TNFs. Regular dose-based regimens may be

incompatible with physiological variability, further contributing to treatment inefficacy.

We present the concept of overcoming immune system adaptation to anti-TNFs by

introducing patient-tailored patterns of variability to treatment regimens.

Keywords: anti-TNF, rheumatoid arthritis, inflammatory bowel disease, loss of response, variability

INTRODUCTION

Anti–tumor necrosis factor (TNF) monoclonal antibodies (mAbs) are the most common biological
drugs used for treating inflammatory disorders. Since the introduction of biological therapies
almost 2 decades ago, specifically, the anti-TNFα agents, major alterations of the natural history
of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) have been observed (1, 2).
Anti-TNFα agents both induce andmaintain clinical remission, improve quality of life, decrease the
need for surgery, and improve morbidity, coupled with decreasing the total RA- and IBD-related
costs (3).
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Despite major progress and the wide use of these drugs, only a
portion of treated patients achieve long-term clinical remission.
Some patients who receive anti-TNFs fail to respond (primary
failure), and others have loss of response (LOR) following
an initial response (secondary failure) (4). Both primary and
secondary failure are major obstacles to the long-term use of anti-
TNFs in RA and IBD. Better understanding of the mechanisms
for the development of drug resistance may enable improved
responses (5). In the present review, we discuss some of the
potential mechanisms for the compensatory adaptation of the
immune system toward anti-TNF–based drugs, focusing on
potential methods for overcoming it.

PRIMARY AND SECONDARY
NON-RESPONSIVENESS TO ANTI-TNF
AGENTS IN RA AND IBD

It is currently estimated that only up to 60% of patients
with RA achieve long-term response to anti-TNF drugs (6,
7). One-third of patients with RA show inadequate primary
response these medications (8). In a study of 157 patients
treated with various anti-TNF formulations, 21% of the patients
achieved 1-year clinical remission, and 58% of patients had >1.2
reduction of disease activity score (DAS28). There was moderate
response according to European League Against Rheumatism
(EULAR) criteria in 46% of patients, and 35% of patients had
a good response (9). Primary failure was attributed to disease
heterogeneity in terms of the types of inflammatory mechanisms
and subsets of cells involved (10, 11).

In RA, there is no consensus for the definition of secondary
failure, when efficacy is lost over time despite a good initial
response. Secondary failure is considered if there is an increase
in DAS28 of >0.6 during the previous 6 months or an increase
in EULAR response (5, 12, 13). The time to discontinuation of a
biological drug, or drug survival, is affected by loss of efficacy,
immunogenicity, adverse events, and/or poor adherence. Loss
of efficacy is the major cause of treatment discontinuation, and
occurs in 48% of patients; 34% of patients experience adverse
events (14, 15). Anti-TNF drug survival in patients with RA is
47 months (14). The overall 10-year retention rate of first-line
anti-TNF agents is 23% (5, 16).

Primary LOR in IBD is defined as failure to achieve clinical
remission as evaluated by clinical scores, including the Crohn’s
disease activity index (CDAI) andHarvey-Bradshaw index (HBI),
and laboratory remission as evaluated by serum inflammatory
markers. The timeframe within which primary response or
non-response is determined varies between trials (17, 18).
Nonetheless, expert consensus and clinical trials indicate that
primary non-response to anti-TNF drugs should not be assessed
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LOR, loss of response; ADAbs, anti-drug antibodies; SNPs, single-nucleotide

polymorphisms; GWAS, genome-wide association study; MTX, methotrexate; CD,

Crohn’s disease; ED, elemental diet; tmTNF, transmembrane tumor necrosis factor;

TNFR, TNF receptor; FcRn, neonatal Fc receptor; AS, ankylosing spondylitis.

prior to 14 weeks of infliximab (IFX) therapy or prior to 12
weeks of adalimumab (ADM) therapy (19). Moreover, in the
clinical practice of some experts, patients are considered to have
primary non-response after 6 months of anti-TNF treatment
without evidence of remission. Secondary LOR in IBD is defined
by lost or attenuated clinical and endoscopic response over
time to anti-TNFs after an initial response to anti-TNFs. To
confirm the diagnosis of secondary LOR, the patient must fulfill
two conditions: develop reappearance of the clinical symptoms
associated with disease exacerbation, and that the symptoms are
mediated by inflammatory disease exacerbation of the underlying
IBD (20). Primary failure of anti-TNF induction therapy occurs
in up to 40% of patients with IBD in clinical trials and in 10–20%
of patients in clinical series (21). Secondary LOR was reported
in 25–61% of patients on anti-TNF maintenance therapy (22–
24). A recent controlled study showed that>50% of patients with
CD treated with IFX and ADM developed LOR (24). Additional
trials have reported secondary LOR in 23–46% of patients 12
months after drug initiation. A review of 86 trials on patients
with CD reported LOR incidence of 8–71%. The incidence of
LOR with a median follow-up of 1-year was 33%. The rate of
LOR in patients treated with IFX, ADM, and certolizumab pegol
was 33, 30, and 41%, respectively. Overall, the mean percentage
of LOR to anti-TNFs was 38%, with an annual rate of 20% per
patient-year (25).

Taken together, both primary and secondary failure remain
major obstacles to achieving a prolonged, sustainable effect of
anti-TNFs in both RA and IBD.

DIFFICULTIES IN PREDICTING LOR TO
ANTI-TNFs IN RA AND IBD PREVENT
THERAPY GUIDANCE IN THE MAJORITY
OF PATIENTS

Identifying the causes and biomarkers for predicting efficacy and
for anticipating the development of primary or secondary LOR is
an unmet need. It may also provide a means for selecting newer
lines of therapy and minimizing adverse effects and cost. The
causes of secondary loss of efficacy are not fully understood.

In patients with IBD, the underlying mechanisms of loss
of effect include longer disease duration, smoking, and several
genetic mutations (21). The data are still limited, and data on
the role of these measurements in guiding therapy are conflicting
(21). Those mechanisms are classified into several domains:

(i) Drug factors: Immunogenicity is defined by the formation
of ADAbs in the setting of low biological drug levels.
Both primary and secondary LOR are attributed to
ADAbs. ADAbs neutralize the anti-TNF drug connecting
to the Fab segment of the protein, or may bind solely
to the anti-TNF molecule, promoting the formation of
immune complexes leading to increased drug clearance
through the reticuloendothelial system. ADAbs or sub-
therapeutic trough concentrations explain LOR in only
a proportion of patients with IBD, as many patients
experience disease exacerbation with LOR in the setting
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of therapeutic drug concentrations and the absence of
ADAbs (26). Combo-therapy with immunosuppressive
and immunomodulatory drugs aimed at suppressing the
reaction of antibody formation has not been consistently
shown to improve treatment durability or efficacy in all
studies. Additionally, less immunogenic humanized anti-
TNF therapies have similar rates of LOR as the chimeric
IFX (20, 27). The current evidence supporting the routine
estimation of ADAbs or serum trough levels during anti-
TNF therapy is limited; however, they are suggested as
guidance for changing between therapeutic biologics in
secondary failure (5).

(ii) Pharmacokinetic failure is defined by decreased levels of
the drug with typically absent or low anti-drug antibodies
(ADAbs). The pathogenesis is secondary to accelerated
non-immune drug degradation via tissue or systemic
circulation. The three main mechanisms underlying
pharmacokinetic failure are proteolytic catabolism within
the reticuloendothelial system, mAb binding to Fc gamma
receptors, and degradation in lysosomes by binding to
membrane-bound TNF (28–30).

(iii) Autoantibodies: The presence of autoantibodies, including
antinuclear antibodies (ANA) and antibodies against
double-stranded DNA (anti-dsDNA), may contribute to
LOR. Higher levels of these autoantibodies may interact
with the anti-TNFs, reducing their efficacy (31).

(iv) Genes and proteins expression: Alteration of the
expression of the apolipoprotein (APO) genes, mainly
APO4, which produces a protein with antioxidant ability,
has been associated with LOR (32, 33). In patients with
IBD, LOR cannot be attributed directly to pathways
that bypass the action or induce resistance to anti-TNF
therapy. An RNA microarray study showed that patients
with LOR had elevated colonic expression of the pro-
inflammatory chemokines CXCL20, CXCL9 (C-X-C
motif chemokine ligand 9), and CXCL10. Patients with
continued inflammation had elevated MMP3 (matrix
metalloproteinase 3), MMP1, and MMP12. Patients
with LOR had dysregulated cysteine and methionine
metabolism pathways, implying alterations in the
oxidative stress burden (32).

(v) Patients and disease phenotypes: Factors predictive of
longer time to failure include obesity, smoking, higher
baseline serum albumin, male sex, and thiopurine co-
therapy. Higher baseline fecal calprotectin is associated
with shorter time to failure (21, 34, 35). Elevated body
mass index (BMI) is associated with poorer response to
IFX and correlates with higher drug levels, but not a higher
response rate, suggesting that circulating drug levels do not
correlate with tissue levels (36).

(vi) Fibrostenotic disease behavior has been associated with
both primary and secondary LOR, and in those cases,
surgical resection is more appropriate than biological
therapy. Lower response rates have been described in
fibrostenotic disease (37). Severe inflammatory activity
has been associated with lower efficacy of anti-TNFs due
to non-immune clearance of the drug, accounting for

both primary and secondary LOR (38, 39). The proposed
underlying mechanism for this is fecal loss of anti-TNFs
through the ulcerated and sloughed colonic mucosa (40).

(vii) Treatment factors: The dosing regimen is important for
primary non-response. Remission at 4 weeks in patients
receiving ADM was associated with a higher drug dose
(41). A similar study on IFX (ACCENT 1) reported a
lower primary non-response rate in patients who received
a higher dose of the drug (17).

(viii) Combo-therapy: A previous study (SONIC) showed that
early co-treatment of IFX with immune modulators
(azathioprine) vs. monotherapy had a higher response rate,
accompanied by a significantly higher rate of mucosal
healing. However, no similar data have been reported for
ADM (42).

(ix) Oxidative stress can dysregulate the cysteine and
methionine pathways in patients with IBD with
LOR. Both pathways are important for producing
nicotinamide adenine dinucleotide phosphate (NADPH)
and S-adenosylmethionine (SAM), which regulate
oxidative stress by producing oxidative stress protein
scavengers (32).

In patients with RA, most biomarkers used have insufficiently
strong predictive value for predicting treatment response
in individual patients with RA (43). Many baseline disease
characteristics fail to predict the outcome, suggesting that
drug metabolism or receptor adaptation may be contributing
factors (44).

(i) Genotypes: Patients with RAwith a TNF-308 G/G genotype,
human immunoglobulin (Ig) allotypes in the IgG1 heavy
chain (G1m1 and G1m17), and HLA (human leukocyte
antigen)-DRB1 locus have better response (45–47). Five
tagging single-nucleotide polymorphisms (SNPs) in the
TNFRSF1B (TNF receptor superfamily member 1B) gene
were studied in 1412 patients with RA, and the authors
reported that carriers of the rs3397C/C, rs1061622G/G,
and rs1061631A/A genotypes have increased risk for
worse response to anti-TNFs. However, the association
with specific SNPs only reached marginal significance
and was not confirmed in a meta-analysis. Overall,
these data do not support a major effect of TNFRSF1B
variants in determining the response to anti-TNF drugs
(48). SNPs in the steroid hormone–related genes showed
significant correlation of CYP3A4 (cytochrome P450 family
3 subfamily A member 4) rs11773597 and CYP2C9
rs1799853, with changes in DAS28 after the administration
of anti-TNFs. A model comprising eight steroid hormone–
related variants predicted drug response (49). A review of
all studies reporting associations between genetic variants
in RA identified 25 SNPs as being associated with anti-
TNF response. These were mapped to genes involved in T
cell function, nuclear factor kappa B (NFκB), and the TNF
signaling pathways (50). A genome-wide association study
(GWAS) conducted in 372 patients with RA showed an
association between theMED15 (mediator complex subunit
15) gene and the response to ETA (51). The impact of dose
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titration based on pharmacoeconomics in clinical practice
remains questionable (52).

(ii) Anti-drug antibodies: Most anti-TNF agents induce a
certain degree of immunity, and ADAbs may limit drug
survival (5, 53). It is unclear whether these antibodies are
a major cause of the loss of anti-TNF clinical efficacy (5,
54). IFX is a chimeric mAb and is more immunogenic,
but ADAbs also bind to the idiotype of the fully human
mAb ADM. Etanercept (ETA) is associated with reduced
immunogenicity (55). ADAbs were detected in the sera
of 7–53 and 1–31% of IFX- and ADM-treated patients
with RA, respectively, and were suggested to correlate with
decreased response and increased adverse events (56, 57).
The detection of ADAbs is confounded by the detection
method used, high serum concentrations of rheumatoid
factor, and the presence of the drug itself (58). In some
studies, ADAbs were associated with reduced clinical
response in RA, suggesting that monitoring drug levels may
aid in optimizing the dosing regimen (59–61).

(iii) Patients and disease phenotypes: In a study where
42% of patients stopped therapy, increased likelihood of
discontinuation was associated with higher physician global
scores and RA Disease Activity Index scores 6 months prior
to stopping the TNF inhibitor, and a higher number of TNF
inhibitors used previously. There was a lower percentage of
ETA discontinuation than IFX and ADM (62). A study of
299 patients with RA reported that age, female sex, and high
values of both disease activity and disability were predictors
of non-response (63).

(iv) Immune background: The presence of rheumatoid factor
or anti-cyclic citrullinated peptide antibodies was associated
with reduced response (64). Baseline serum levels of
interleukin-6 (IL-6) predicted depletion of the drug and
were suggested as a biomarker of treatment failure (65).
Serum calprotectin had moderate predictive value for
clinical response to anti-TNFs (66).

Overall, the currently available tests do not provide a valid
tool for therapy guidance in terms of predicting primary and
secondary failure.

CURRENT METHODS FOR OVERCOMING
INEFFECTIVENESS OF ANTI-TNFs IN RA
AND IBD FAIL TO OVERCOME LOR IN THE
MAJORITY OF PATIENTS

In RA, concomitant administration of immunosuppressive
agents is commonly used for improving response rates to
anti-TNFs. Improved results were noted in patients treated
with methotrexate (MTX) in combination with anti-TNFs. The
synergy between anti-TNF and MTX is not fully understood
and can only be partially explained by suppression of ADAb
formation and increased trough concentrations (5, 67–69).

Switching between different anti-TNF formulations is another
commonly suggested method for improved response in RA
and has been successful in some studies (70, 71). The improved
response following switching is attributed to differences

in structure, immunological action, immunogenicity, and
pharmacokinetics (72). Switching was beneficial in secondary
lack of effectiveness [defined as loss of ACR50 (American College
of Rheumatology response criteria−50% improvement)] in
479 patients with RA. In these patients, the disease activity
parameters improved from baseline upon use of IFX or ADM,
but had increased prior to the switch. Switching from ETA to
ADM restored the response achieved with the first drug. Several
activity parameters that had improved from baseline upon use
of ETA were maintained but were not improved further after
switching to ADM. When switching due to adverse events, the
second agent achieved a similar degree of response to that of the
first agent (73). In a study of 356 patients with RA, 38 switched
from IFX/ADM to ETA, 26 from ETA to IFX/ADM, and eight
from one mAb (IFX/ADM) to another. Switches occurred due to
primary failure (36.1%), escape (33.3%), or intolerance (30.6%).
More switchers responded to the second anti-TNF regardless of
molecules switched. The second anti-TNF had longer survival
with the switch from a mAb to a soluble receptor than vice versa
(74). Taken together these data support the notion that LOR may
be improved by a switching strategy.

In a study of 99 patients with RA, switching took place if no
reduction >0.6 in the initial DAS28 occurred after 12–24 weeks
(inadequate response) or if a severe adverse event was reported.
Switching was performed in 39% of patients. The retention
of the first agent was 60%, and the mean time to switching
was 14 months. After switching, there was a tendency toward
decreased DAS28, and 43% of patients had good/moderate
EULAR response; however, there was a low likelihood of
remission and no significant improvement in functional capacity
(75). In a trial of 300 patients with RA with persistent disease
activity [DAS28–erythrocyte sedimentation rate (DAS28-ESR) ≥
3.2] and insufficient response to anti-TNF therapy, patients were
randomly assigned to receive a non-TNF targeted biologic agent
or to switch to another anti-TNF. Within 6 months, 69% of
patients in the non-TNF group and 52% in the second anti-TNF
group achieved good ormoderate EULAR response, and the non-
TNF group had lower DAS28-ESR than the second anti-TNF
group. At weeks 24 and 52, more patients in the non-TNF group
vs. the second anti-TNF group showed low disease activity. The
data suggest that a non-TNF biologic agent is more effective than
a second anti-TNF for achieving good or moderate response at
24 weeks (8).

Several of these methods are also being used for overcoming
LOR in patients with IBD. In CD, dose-optimization strategies
for IFX using induction doses at 0, 2, and 6 weeks, followed
by maintenance administration every 8 weeks, conferred better
protection against ADAb formation (76). A randomized,
controlled study of 69 patients with CD with secondary IFX
failure showed that using an algorithm based on combined IFX
and IFX antibody measurements reduced the average treatment
cost per patient without negative effects on efficacy (77).

Re-induction is an effective strategy in LOR (35). Dose
intensification was proposed as a means of overcoming LOR
in IBD. Dose intensification with a median follow-up of 1 year
was needed in 38% of patients for IFX, 36% for ADM, and
2% for certolizumab pegol. A mean 23% of patients needed
anti-TNF dose escalation, with an annual risk of 18% (25).
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Following dose escalation for ADM-treated patients with CD,
a clinical response was observed in 79 and 61% of patients at
3 months and 12 months, respectively (78). Compared with
empirical adjustment, an algorithm for dose intensification and
therapeutic drug monitoring of IFX trough levels and ADAb
assays resulted in fewer dose escalations, i.e., 45 vs. 71%, without
loss of efficacy (79).

Dose intensification of anti-TNFs is mainly used in the setting
of secondary LOR, where there is a sub-therapeutic level of the
drug and low/undetectable ADAb levels. It can be performed by
either shortening the interval frequency or increasing the dosage.
The efficacy of this strategy has been proven even without drug
monitoring (80, 81). However, further studies have shown that
drug level monitoring during dose intensification is more cost-
effective and may reflect the recapturing response for anti-TNFs
in patients who achieve an increment in drug level following
dose intensification (82, 83). Implementing dose intensification
in the presence of ADAbs has not been established. Dose
intensification of IFX in the presence of ADAbs was associated
with a paradoxical decreased response (84). Low ADA levels with
detectable ADAbs were associated with drug failure (26). Patients
with IFX ADAbs were more likely to fail dose intensification
(82). Higher ADAb levels identify patients who do not respond
to increased drug dosage (85). ADAbs are associated with lower
ADA serum levels and a lower likelihood of remission. However,
patients have experienced loss of ADAbs to ADA following dose
escalation (86). IFX intensification in secondary LOR improved
the clinical response while decreasing ADAbs irrespective of the
levels of serum IFX and ADAbs (87). Increased serum IFX levels
after dose intensification were associated with improved clinical
outcomes and undetectable IFX ADAbs (88). Recent treatment
algorithms suggest that dose intensification may overcome low
ADAb levels (30, 80, 82, 89, 90).

Several studies suggested that combining immunomodulatory
agents with anti-TNFs is can be used in IBD. The addition
of immune modulators has mainly been implicated in
immunogenicity-mediated primary LOR, which is defined
by the inability of anti-TNFs to bind to the TNF molecules,
resulting in increased immune-mediated drug clearance (80).
Concomitant combo-therapy with an immunomodulator is used
to prevent immunogenicity. Adding thiopurine or MTX as an
immune modulator starting together upon the initiation of anti-
TNF has been associated with decreased ADAbs formation (91)
and can improve the clinical and histological outcomes, coupled
with increased rates of steroid-free remission and decreased need
for switching (19, 42, 92, 93). Notably, no difference in adverse
effects, including infection and malignancy, were noted when
combo-therapy was used as compared to biological monotherapy
in one study (94).

Additional trials raised concern about the long term efficacy
and safety of a combination therapy. Up to 45% of IBD patients
who experienced LOR during a follow-up period of up to
8.5 years were followed using combination therapy with an
immunomodulatory drug (59%) or monotherapy (40%). The
median time to LOR was not different between groups. The
data suggest that patients treated with anti-TNF monotherapy
have similar LOR rates as patients on anti-TNF combination

therapy (95). Switching to another anti-TNF may aid 50% of
patients with IBD. Switching from ADM to IFX was beneficial
in patients with LOR and in patients with undetectable ADM
trough levels. The majority of patients required IFX therapy
intensification during their first year of treatment (96). Recent
trials have raised safety concerns, including comorbid malignant
diseases such as lymphoma, with the concomitant use of
other immunosuppressive drugs or increased dosages (97). A
concomitant elemental diet (ED) with ADM in patients with CD
showed that the ED group had a higher cumulative non-ADA
LOR rate. ED reduced ADA LOR in IFX-intolerant or -refractory
patients than in anti-TNFα-naïve patients. The ED group had
lower serum TNFα levels (98).

None of the measures used for overcoming LOR are
personalized, nor do they fit the dynamic type of the
compensatory adaptations to anti-TNF therapy, which may
change over time between patients and in the same patient.While
they provide a solution for some patients, none can provide a
prolonged response for the majority of patients.

THE PARADOXICAL FUNCTION AND
TOLERANCE TOWARD ANTI-TNF
ANTIBODIES ARE UNPREDICTABLE AND
DYNAMIC OVER TIME

The mechanisms of action of both TNF and anti-TNF mAbs
are not fully elucidated. The complex responses of the immune
system to anti-TNFs, impact both their short- and long-term
clinical effects. Many of these effects are dynamic and may occur
over time, and vary between patients and in the same patient,
making them irregular and difficult to predict.

Humans may develop tolerance of anti-TNFs, improving the
response by reducing ADAb levels. Alterations of treatment
regimens, where IFX is administered at week 0, 2, 6, and 14,
and every 8 weeks thereafter, was associated with higher trough
levels reducing ADAb development (99), supporting high-dose
tolerance, which is induced by the high antigenic load (5, 100).

Both linear and non-linear eliminations have been reported
for anti-TNF mAbs depending on the amount of the target
antigen, immune reactions to the antibody, and patient
demographics (28). Their clearance demonstrated non-linear
kinetics due to receptor loss following repeated doses, which was
proposed to be associated with disease severity (28, 29). Due to
their molecular size, mAb distribution to tissues is slow, and
their distribution volumes are low. Anti-TNFs are metabolized
by phagocytes or by their target cells to peptides and amino acids,
and are protected from degradation by binding to the neonatal Fc
receptor (FcRn), which explains their long elimination half-lives.

TNF exerts both pro-inflammatory and immune-suppressive
effects. Lower or higher TNF production characterizes many
autoimmune diseases. TNF blocking in autoimmune and
chronic inflammatory diseases is associated with unpredictable
outcomes (101). Treatment timing and duration can alter this
unpredictability. Both IFX, ETA, and ADM neutralize soluble
TNF and bind to transmembrane TNF (tmTNF). They are dual-
function and can act as antagonists by blocking TNF interactions
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with the TNF receptors TNFR1 and TNFR2, or initiate a reverse
signaling cascade leading to apoptosis, cell activation, or cytokine
suppression (55).

A paradoxical expansion of T helper 1 (TH1) and TH17
pro-inflammatory lymphocytes following IFX treatment may be
another mechanism of LOR in some patients (102). Anti-TNF
therapy is associated with drug-induced anti-dsDNA production
and with the development of the manifestations of lupus and
neuroinflammatory diseases (103). In patients with multiple
sclerosis, anti-TNF treatment was associated with immune
activation and disease exacerbation (104). The heterogeneity of
TNFR usage during immunosuppression vs. the inflammatory
tissue damage may underlie some of these findings. It implies
that the effect of anti-TNF at receptor level is of greater relevance
in human chronic inflammatory and autoimmune conditions
(101). These paradoxical effects are unpredictable and dynamic
over time.

Tolerance to TNF has been described at receptor level. Soluble
TNFR1 (sTNFRI) is an endogenous mechanism for reducing
serum TNF. Endotoxin tolerance via lipopolysaccharide (LPS)-
preconditioning downregulates pro-inflammatory cytokine
production. Tolerance mechanisms upregulates TNFRI, which
binds and clears TNF while reversing the TNF-to-sTNFRI ratio
(105, 106). tmTNF is transiently expressed on the surface of LPS-
stimulated monocytes, macrophages, and dendritic cells, and can
be enhanced following treatment with a TNF inhibitor (107).

Repetitive administration of low doses of human TNF to
mice induces tolerance to the effects of mouse TNF via post-
receptor mechanisms (108). No differences in pharmacokinetic
parameters were noted in tolerant vs. control mice. There was
an antibody response to human TNF, but the antibodies did not
neutralize the mouse TNF. The tolerance did not protect mice
against lethality induced by TNF.When tolerance was induced in
athymic nude mice, which lack an antibody response, there were
no effects on the levels of soluble receptors or receptor binding in
the tolerant vs. control groups (108).

Overall these complexities further contribute to long term loss
of effects of these drugs.

VARIABILITY IS INHERENT TO
BIOLOGICAL SYSTEMS AND COMPRISES
MARKED INTRA/INTER-PATIENT
VARIABILITY IN RESPONSE TO DRUGS

Both intra- and inter-subject biological variability (BV) in
biological and immune systems has been described at cellular
organelle level, as well as at whole-organ level (109–115).
This inherent variability is difficult to overcome. Lymphocyte
subpopulation phenotype variability has been described when
tested as biomarkers of immune-associated disorders. The
antibody response toward pathogens includes expansion of
antigen-specific B cells that is based on stochastic competition
between competing cell fates, or deterministic cell fate decisions
that execute a predictable program (116). Variability was noted
for both cell proliferation and death decisions and evolved from
heterogeneity in founder cells. The data imply that a small

number of genetically identical founders are associated with
the majority of the responses. A high rate of variability in
the generation of CD4+ T regulatory cells (Tregs) is a major
obstacle for cell therapy of immune-mediated disorders (117).
An ex vivo cytokine release test, measured after stimulation of
whole blood with various stimuli, showed high intra-group and
inter-individual variability. The median coefficient of variation
of the repeated tests was 29 and 52% for IL-1β and IL-8,
respectively. Upon stimulation with endotoxin, a confidence
interval of 60–140 and 70–271% was calculated for IL-1β and
IL-8, respectively (118).

The inter- and intra-individual variability described in
the response toward drugs has been attributed partly to
pharmacogenomics- and pharmacodynamics-based drug
metabolism, and drug responsiveness (119–122). However, there
is heterogeneity between individual cells in their response to
drugs (123). Complex physiochemical determinants of drug-
target interactions in a cell have been described and are not
defined by simple diffusion and intrinsic chemical reactions. The
non-specific interactions of drugs and macromolecules in cells
are beyond “simple” pharmacodynamics, affect drug function,
and are difficult to control for. Non-specific interactions greatly
slow the incorporation kinetics of DNA-binding drugs and
have been attributed to anomalous drug diffusion in cells
(123). Differential cell compartment effects affect intracellular
drug kinetics variability (123). There is marked intra-patient
variability in drug serum levels between days, suggesting
additional underlying mechanisms (122, 124).

The inherent variability in biological systems evolves along
a trajectory associated with the body’s response to multiple
internal and external triggers, and are aimed at reaching a
newer steady state. These systems function under unpredictable
conditions, are highly dynamic, and are therefore difficult to
alter. Each exogenous trigger, e.g., anti-TNF antibodies, induces
a compensatory adaptation mechanism that may lead to a
paradoxical response, tolerance, and a new steady state.

DOSE ALTERATIONS AND INTRODUCING
VARIABILITY INTO ANTI-TNF THERAPIES
IS ASSOCIATED WITH IMPROVED
RESPONSE

The high rate of LOR to anti-TNFs, along with their complicated
mechanism of action at receptor/post-receptor level, has led
to additional approaches for overcoming LOR. Both anti-TNF
dosage escalations and reductions are used in the real-world
setting. Intermittent dosing with drug holidays has clinical
benefits while minimizing drug exposure and potential adverse
effects (125).

Anti-TNF re-induction following a drug holiday has been
suggested as a means of overcoming LOR. The outcome of
this approach depends on the circumstances during which the
drug holiday is commenced (21). Dose modifications compared
to basal dose have been described in 7% of patients on ETA,
30% of patients receiving ADM, and 21% of patients on IFX.
ADM and IFX have been associated with higher risk of dose
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escalation relative to ETA, and dose reductions are similar among
all anti-TNFs (126).

Dose reduction schedules of anti-TNF asmaintenance therapy
in patients with spondylarthritis are used in clinical practice
(127). Dose reduction implemented empirically for several years
has improved treatment efficiency in RA (128). In a study
of 153 patients, 45% received a lower dose after achieving
remission or low activity at standard doses, and maintained
good disease control. Dose titration of anti-TNF in RA by
67% of patients was not associated with a change in DAS28,
and no patient dropped out because of disease worsening
(129). An anti-TNF dose-tapering strategy was evaluated in
patients with ankylosing spondylitis (AS). In the reduced dosing
group, the median dose of anti-TNF corresponded to 0.67
of the initiated dose, and was 0.5 at 12 months. Up to
79% of patients did not require return to standard dosing

regimen. Patients that had received reduced or standard dosing
had similar mean change per year in the Bath AS Activity
Index, C-reactive protein, Health Assessment Questionnaire
Disability Index, Bath AS Functional Index, and quality-adjusted
life-year (130).

In a prospective trial, 80 patients with CD and ulcerative
colitis (UC) in clinical remission receiving IFX maintenance
treatment were randomized to receive IFX dosing guided by a
pharmacokinetic model, aiming to maintain a drug level using a
(de-)escalation dashboard or to continue regular dosing. There
was loss of clinical response in 36% of controls vs. only 13% of
patients in the intervention group. In the intervention group,
50% had dose reduction while 35% had dose escalation. The
clinical and laboratory benefits were achieved irrespective of the
lack of change in drug level, and with narrowed dose range
variability (131). The results support the premise that even

FIGURE 1 | (A) The body’s trajectory of compensatory adaptation in response to multiple internal and external triggers uses variability to reach a new steady state. (B)

Fixed dosing may sometimes jeopardize the response to anti-TNF–based therapies, leading to lower steady states. Subject-tailored patterns of variability are

introduced into anti-TNF administration along the trajectory for achieving an improved steady state.
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simple dose alterations are associated with significant clinical
improvement compared with regular fixed dosing.

OVERCOMING IMMUNE SYSTEM
ADAPTATION TO ANTI-TNFs BY
INTRODUCING PATIENT-TAILORED
PATTERNS INTO TREATMENT REGIMENS

The unpredictability of the response to anti-TNF–based
therapies, high LOR rate, and paradoxical activation of the
immune system, along with empirical real-world data on the
beneficial effects of drug holidays and dose reductions, supports
evaluating BV as a method for overcoming LOR. Part of this
inter- and intra-patient irregular behavior is viewed as normal
adaptation attempts of the immune system in response to
triggers such as the administration of anti-TNF.

Many biological systems lack fixed rules that remain constant
over time. These systems are dynamic in both health and disease,
as they are required to continuously respond to ongoing internal
and external triggers in an attempt to reach a new steady
state (132–135). The lack of rules in biological systems (132,
133), and the continuous dynamics of the immune processes
(134, 135), along with the lack of understanding of some of
existing rules, while responding to trigger(s) may underlie part
of the unpredictability of the response to anti-TNFs. It has
been proposed that the optimal state in variability is a U shape
between a chaotic pattern of variability in a steady state and
full predictability in a normal biological system (109, 110, 136–
139). The body functions along a trajectory that implements
variability patterns in an attempt to identify the optimal response
to different triggers, including those by anti-TNF therapies. This
behavior has an inherent variability that may not necessarily
move toward a better point, makes mistakes, and can result in
LOR (Figure 1).

The adaptation of the immune system may occur within a
short time of drug administration, leading to primary failure,
or following longer treatment periods, resulting in partial or
complete loss of efficacy. The adaptation may manifest as
immune tolerance in terms of lack of response to changes
induced by themAb at TNFR or post-receptor level. The inherent
heterogeneity of the immune system response may result from
the gradual accumulation of small amounts of intrinsic noise,
which occur, for example, during cell differentiation (116).

Anti-TNF dosing using regular fixed regimens may not be
compatible with the physiological variability in the immune
system and may further contribute to LOR (140, 141). Fixed
regimens may be incompatible with the random nature of the
trajectories associated with the immune system, which both
underlie inflammation and the compensatory mechanism for

anti-TNFs. It has been proposed that, for various systems, the
dynamic properties of the system may be associated with its
evolution into a structure that optimizes their function (142).
Therefore, even if there are rules, they may change constantly
over time.

Interdependency between different network properties, which
is applicable to many immune processes, many of which
behave randomly, can be quantified. The dynamic systems
theory suggests that biological systems are self-organized
according to environmental, biochemical, and morphological
constraints to find the most balanced state (143). It has been
proposed that a patient-tailored variable regimen can overcome
this adaptation, thereby improving the short- and long-term
responses to anti-TNFs.

It has been proposed that the system’s degree of variability
requires augmentation to improve anti-TNF efficacy.
Introducing greater variability into the system follows the
same trajectory used by the body in its response to the triggers
induced by the drug itself. This is expected to improve the
response to anti-TNF mAbs under conditions of unpredictability
(Figure 1). The development of a new platform for anti-TNF
therapy is proposed in stages. In the first stage, patients with
LOR may benefit from introducing variability in dosages
and administration times, including variable drug holidays
within a pre-determined range with regulatory approval. In the
second stage, patient-tailored algorithms based on quantifying
variability signatures that are directly or indirectly related to
the underlying chronic inflammatory state and to the response
to the anti-TNFs, including patients’ variability patterns, will
be applied.

In summary, the complexity of the immune response to anti-
TNF mAbs induces compensatory adaptation at several cellular
levels that jeopardize the response, resulting in primary or
secondary failure. Introducing patient-tailored variability to drug
administration may provide a method for reducing the LOR in
such patients. The results of ongoing studies implementing these
concepts using patient-tailored–based algorithms will shed light
on some of the mechanisms involved in immune adaptation to
anti-TNFs and may provide a means of improving the response
to these drugs.
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