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Abstract

The spotted snakehead Channa punctatus is a seasonally breeding teleost widely distrib-

uted in the Indian subcontinent and economically important due to high nutritional value.

The declining population of C. punctatus prompted us to focus on genetic regulation of its

reproduction. The present study carried out de novo testicular transcriptome sequencing

during the four reproductive phases and correlated differential expression of transcripts with

various testicular events in C. punctatus. The Illumina paired-end sequencing of testicular

transcriptome from resting, preparatory, spawning and postspawning phases generated

41.94, 47.51, 61.81 and 44.45 million reads, and 105526, 105169, 122964 and 106544 tran-

scripts, respectively. Transcripts annotated using Rattus norvegicus reference protein

sequences and classified under various subcategories of biological process, molecular

function and cellular component showed that the majority of the subcategories had highest

number of transcripts during spawning phase. In addition, analysis of transcripts exhibiting

differential expression during the four phases revealed an appreciable increase in upregu-

lated transcripts of biological processes such as cell proliferation and differentiation, cyto-

skeleton organization, response to vitamin A, transcription and translation, regulation of

angiogenesis and response to hypoxia during spermatogenically active phases. The study

also identified significant differential expression of transcripts relevant to spermatogenesis

(mgat3, nqo1, hes2, rgs4, cxcl2, alcam, agmat), steroidogenesis (star, tkt, gipc3), cell prolif-

eration (eef1a2, btg3, pif1, myo16, grik3, trim39, plbd1), cytoskeletal organization (espn,

wipf3, cd276), sperm development (klhl10, mast1, hspa1a, slc6a1, ros1, foxj1, hipk1), and

sperm transport and motility (hint1, muc13). Analysis of functional annotation and differential

expression of testicular transcripts depending on reproductive phases of C. punctatus

helped in developing a comprehensive understanding on genetic regulation of spermato-

genic and steroidogenic events in seasonally breeding teleosts. Our findings provide the

basis for future investigation on the precise role of testicular genes in regulation of seasonal

reproduction in male teleosts.
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Introduction

Spermatogenesis is an exquisitely orchestrated developmental process during which temporal

expression of various testicular genes regulate proliferation and differentiation of diploid sper-

matogonia to give rise to haploid spermatozoa [1–4]. Nonetheless, reports on molecular con-

trol of testicular functions are largely confined to continuous breeders and little attention has

been paid to discontinuous breeders in which testis undergoes cyclical changes from inactive

to active state depending on season. Among seasonally breeding vertebrates, fishes comprise

the largest and most economically important group contributing fifteen percent of average ani-

mal protein intake per person for more than 4.3 billion people in the world [5]. In spite of that

most of the studies in fishes to comprehend genetic basis of spermatogenesis are restricted to

identifying testicular genes [6–18] and only a few reports are focused on differential expression

of genes along the testicular cycle [19,20]. The various techniques adopted in these studies

were cDNA microarray, EST sequencing, subtractive and suppressive hybridization (SSH),

and RNA sequencing (RNA-Seq). Among these, RNA-Seq is the most efficient and cost-effec-

tive technique enabling high-throughput sequencing of the entire transcriptome at single-base

resolution and accurate quantification of gene expression [21].

In the present study, RNA-Seq using Illumina platform was employed to obtain testicular

transcriptome of different reproductive phases from a seasonally breeding freshwater teleost

spotted snakehead Channa punctatus belonging to family Channidae and order Perciformes.

Fishes of this family constitute one of the major component of pond fishery in the Indian sub-

continent and are economically important due to their high nutritional and medicinal value

[22]. This species of Channa has been enlisted under the Lower Risk near threatened category

due to its declining population [23] and hence, it is important to gain an insight on the genetic

regulation of reproduction in this fish. Efforts have been made in the current study to obtain

de novo testicular transcriptome from different reproductive phases and develop a comprehen-

sive understanding of temporal expression of genes implicated in regulation of spermatogene-

sis in C. punctatus.

Methods

Ethics statement

As per guidelines of the Committee for the Purpose of Control and Supervision of Experi-

ments on Animals (CPCSEA), Government of India, the detailed protocol of this study was

approved by the Institutional Animal Ethics Committee, Department of Zoology (DUZOOL/

IAEC-R/2012/20), University of Delhi, India. To euthanize fishes, 2-phenoxyethanol was

added in the water (5 ml per litre).

Animals and tissue collection

The testicular cycle of C. punctatus obtained from Delhi and its vicinity has been delineated

into four phases: resting (December to March), preparatory (April to June), spawning (July

and August) and postspawning (September to November) [24]. During resting phase, fishes

are spermatogenically inactive and their seminiferous lobules consist largely of spermatogonia

and a few spermatogonial stem cells. Spermatogenesis commences during preparatory phase

which is characterized by the presence of different stages of germ cells from spermatogonia to

spermatozoa. Thereafter, during spawning phase, lumen of seminiferous lobules is packed

with spermatozoa. Due to release of spermatozoa into the external environment, a few lobules

with empty lumen are also seen in spawning phase. Subsequently, remnant germ cells undergo

cell death and proliferation of spermatogonia is resumed in order to repopulate the

Differential testicular transcriptome analysis in teleost Channa punctatus

PLOS ONE | DOI:10.1371/journal.pone.0173178 March 2, 2017 2 / 20

numbers GEKU00000000, GEMA00000000,

GEKY00000000 and GEKZ00000000, respectively.

Funding: UR received financial support from Delhi

University (DU)/Department of Science and

Technology (DST) PURSE Grant (Dean (R)/2012/

1477). AR is thankful to University Grants

Commission and University of Delhi (DU), India for

providing financial aid in form of Non-National

eligibility test (NET) fellowship (2079) and

University teaching assistantship (Sch./UTA/2010/

56769), respectively. RB is grateful to Department

of Science and Technology (DST), India and

University of Delhi (DU), India for providing Inspire

Fellowship (IF10530) and University teaching

assistantship (Sch./UTA/2010/56765),

respectively, as financial assistance. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.



seminiferous lobules during postspawning phase. In the present study, adult male spotted sna-

kehead (100–120 g) captured from freshwater bodies of Delhi (latitude 28.38’N, longitude

77.20’E) and its vicinity were supplied during the mid of January (resting phase), May (prepa-

ratory phase), August (spawning phase) and October (postspawning phase) by a local vendor

(Kalyanpuri, Delhi, India). Fishes were euthanized by overexposure to 2-phenoxyethanol

(Loba Chemie, Mumbai, India) added in water (5 ml per litre). Testes dissected out from ten

fishes were pooled to make one sample of 100 mg tissue weight and thus, two such samples

were prepared for each reproductive phase. The samples from resting (sample R), preparatory

(sample P), spawning (sample S) and postspawning (sample Ps) phases were frozen in liquid

nitrogen and stored at -80˚C prior to transcriptome sequencing carried out by Genotypic

Technology Pvt. Ltd., Bengaluru, India.

RNA extraction, cDNA library preparation and sequencing

One sample from each phase was processed for total RNA extraction with Trizol reagent

(Thermo Fisher Scientific, Waltham, Massachusetts, USA) and RNeasy Mini Kit (Qiagen,

Valencia, California, USA). RNA concentration and integrity were examined with Bioanalyzer.

Samples having A260/A280 absorption ratios within range of 1.8–2.1 and RNA integrity number

(RIN) 7 or above were selected for cDNA library preparation. The duplicate tissue sample was

processed for RNA extraction only when its corresponding replicate failed to qualify the qual-

ity criteria. The protocol outlined in TruSeq RNA sample preparation guide (Illumina, Inc.,

San Diego, California, USA) was followed for constructing the library. Briefly, mRNA purified

from 1 μg of total RNA using oligodT beads (TruSeq RNA Sample Preparation Kit, Illumina)

was fragmented at 94˚C for 4 min in the presence of divalent cations. Subsequently, mRNA

was primed with random hexamers and reverse transcribed using Superscript II reverse tran-

scriptase (Invitrogen, Waltham, Massachusetts, USA). The second cDNA strand was synthe-

sized with DNA Polymerase I and RnaseH and the double-stranded cDNA was purified using

solid phase reverse immobilization (SPRI) beads (AgencourtAMPure XP kit, Beckman Coul-

ter, Brea, California, USA). After end repair and addition of base A, Illumina adapters were

ligated to the cDNA followed by SPRI cleanup. Further, the adapter ligated fragments were

amplified by 11 PCR cycles. The prepared library was quantified using Nanodrop and vali-

dated for quality using High Sensitivity Bioanalyzer Kit (Agilent technologies, Santa Clara,

California, USA). Finally, Illumina paired-end transcriptome sequencing of the cDNA library

was performed on HiSeq 2000 platform to obtain reads of 100 bp length followed by genera-

tion of FASTQ files using Illumina pipeline software.

Data filtering and de novo assembly

Obtained FASTQ reads for each sample were subjected to quality check using Genotypic pro-

prietary tool SeqQC- V2.1. Low quality bases (quality score < 20) were trimmed and adapter

sequences were removed using custom perl codes. Thereafter, reads ranging between 50–100

bp were selected for de novo assembly into contigs (minimum length 100 bp) using Velvet

(version 1.2.07) followed by generation of transcripts (minimum length 200 bp) using Oases

(version 0.2.08) assembler. Also, transcripts generated from testicular samples of four repro-

ductive phases (R, P, S and Ps) were clustered using CD-Hit tool [25] to obtain the total testic-

ular transcriptome.

Functional annotation of transcripts

Transcripts obtained from testicular sample of each reproductive phase were annotated based

on the best hit of BLASTX results against reference protein sequences of Rattus norvegicus,
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Oreochromis niloticus and Takifugu rubripes available at Uniprot. Maximum number of tran-

scripts in each reproductive phase was annotated against Uniprot R. norvegicus reference pro-

tein sequences, and hence, the same protein database was used for Gene Ontology (GO)

annotation of total testicular transcriptome. Using NCBI-BLAST 2.2.28, the identified tran-

scripts were assigned GO subcategories under biological process (BP), molecular function

(MF) and cellular component (CC). Further, variation in transcript numbers of different sub-

categories depending on reproductive phases was analyzed.

Differential gene expression analysis

For comparative analysis of genes expressed along the testicular cycle, four sets of clustered

transcripts were generated from samples of different reproductive phases using CD-Hit at 95%

identity/coverage (set 1: samples R and P; set 2: samples P and S; set 3: samples S and Ps; set 4:

samples Ps and R). Further, differential gene expression (DGE) data was obtained for each set

of clustered transcripts using DESeq software [26] and expression fold change was calculated

considering the underlined sample in each set as reference. Transcripts having log2 (fold

change) value� 1 and� -1 were considered to be upregulated and downregulated, respec-

tively. Thereafter, up- and down-regulated transcripts along the different reproductive phases

were grouped as per their GO subcategories. In addition, transcripts showing significant varia-

tion in expression fold change (corrected P value� 0.05) in these sets were identified. Also,

the expression level of Sertoli cell (SC), Leydig cell (LC) and peritubular myoid cell (PMC) spe-

cific genes during different phases of the testicular cycle were analyzed.

Validation of differential gene expression

To validate the RNA-Seq data of differentially expressed testicular genes, expression of some

of these genes enlisted in Table 1 was estimated during different reproductive phases by quan-

titative polymerase chain reaction (qPCR).

In brief, both side testes of a fish were used to make a sample for total RNA extraction and

three such samples were made for each reproductive phase. Total RNA was extracted using

TRI reagent (Sigma-Aldrich, USA), RNA integrity was estimated by Bioanalyzer (Agilent

Technologies, USA) and concentration was measured using NanoDrop (ND-1000, NanoDrop

Technologies, USA). Samples with RIN 5 or above were considered for cDNA preparation.

Two microgram RNA of each sample was treated with DNase I (Thermo Scientific, USA) for

30 min to remove DNA contamination. DNase I was inactivated by heat denaturation at 70˚C

for 10 min in the presence of EDTA. Further, single-stranded cDNAs were synthesized using

Table 1. Enlisting the selected genes and their primers for quantitative PCR.

Gene name Gene accession number Primer sequences

transketolase (tkt) GEMA01054854.1 under TSA accession GEMA00000000 FP: 5’-GACCACTACCACGAAGG-3’

RP: 5’-AGGAACGTGGGACACAG-3’

Mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-

acetylglucosaminyltransferase (mgat3)

GEMA01063365.1 under TSA accession GEMA00000000 FP: 5’-CTGGTAAAGTGTGTGTGCCG-3’

RP: 5’-TTAGTGGGCAGGTTGGAGTGG-3’

Activated leukocyte cell adhesion molecule

(alcam)

GEKZ01011742.1 under TSA accession GEKZ00000000 FP: 5’-CATGAAGAAGTCCAAACAAGG-3’

RP: 5’-TTTTTGACTGTTCTCCTCCAC-3’

GIPC PDZ domain containing family member 3

(gipc3)

GEKY01111158.1 under TSA accession GEKY00000000 FP: 5’-TGACCAGAGCATTGTAGG-3’

RP: 5’-CTAGGCGAAGAGTGAAG-3’

syntaxin 1B (stx1b) GEKY01043631.1 under TSA accession GEKY00000000 FP: 5’-AATCGAACAGCGGCACAAGG-3’

RP: 5’-CTCCTTGTTCTTCGACCAGC-3’

doi:10.1371/journal.pone.0173178.t001
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Avian Myeloblastosis Virus Reverse Transcription kit (Cat# K1622, Thermo Scientific, USA)

following the manufacturer’s protocol. For qPCR, gene-specific primers were designed from

their respective nucleotide sequences using Primer3 Input and Gene runner (Table 1). The

efficiency of individual primer was checked using serial dilutions of testicular cDNA and

amplification of single specific product was confirmed based on melt curve analysis. The

qPCR reactions in samples run in triplicate were carried out in Real-time system CFX96 (Bio-

Rad laboratories, USA) using SYBR Green Master Mix (Cat# 4367659, Applied Biosystems,

USA). The reaction cycle consisted of the following steps: initial denaturation at 95˚C for 10

min, 40 cycles of denaturation at 95˚C for 30 s, annealing and extension at gene-specific tem-

perature for 1 min, and a final dissociation step for melt curve analysis. Considering resting

phase as reference, 2-ΔΔct method was used to calculate relative fold change in expression of

selected genes during preparatory, spawning and postspawning. Ribosomal 18s RNA was used

as house-keeping gene for normalizing the expression values of target genes in each testicular

sample.

Statistical analysis

One-way analysis of variance (ANOVA) was applied to analyze significant variation in relative

fold change of testicular mRNA expression for each gene during different reproductive phases.

Newman-Keuls multiple range test was used to compare the means. Data are expressed as

mean ± S.E.M (P< 0.05).

Results

Illumina paired-end sequencing and de novo assembly

RNA extracted from testicular samples of four reproductive phases R, P, S and Ps had

A260/A280 ratios ranging from 1.8–2.1 and RIN values of 7, 7.4, 8.5 and 8.2, respectively (S1

Table). RNA sequencing on Illumina Hiseq 2000 platform yielded 100 bp reads from both

ends of each cDNA fragment. The data generated 41.94 million reads (10.2 GB) for sample R,

47.51 million (11.55 GB) for sample P, 61.81 million (15.03 GB) for sample S and 44.45 million

(10.81 GB) for sample Ps (S1 Table). After trimming the adapters and removing low quality

bases, processed reads of 40.03 (9.61 GB), 45.01 (10.79 GB), 58.6 (14.05 GB) and 42.19 (10.12

GB) million were obtained for samples R, P, S and Ps, respectively (S2 Table). This reduced the

percentage of non-ATGC characters (0.03–0.3%) in the processed reads. Thereafter, transcrip-

tome assembly for samples R, P, S and Ps generated 154557, 158650, 204966 and 178121 con-

tigs and 105526, 105169, 122964 and 106544 transcripts, respectively (S3 Table). The

maximum contig length and transcript length for sample of each reproductive phase were

33888 and 43967 bp (sample R), 31822 and 66285 bp (sample P), 13462 and 36569 bp (sample

S), and 17866 and 40661 bp (sample Ps), respectively. Length distribution of the assembled

transcripts revealed that 789 transcripts for sample R, 1895 for sample P, 1928 for sample S

and 1729 for sample Ps were� 10 Kb in size. The total testicular transcriptome generated by

clustering of transcripts from the four reproductive phases provided 210833 transcripts.

Functional annotation of transcripts

GO classification based on R. norvegicus protein database assigned the transcripts of four testic-

ular samples to 5448, 1910 and 845 subcategories under BP, MF and CC, respectively. Majority

of the subcategories under BP had lowest transcript number during postspawning phase that

increased considerably in resting and reached the highest during spawning phase (Fig 1A).

However, transcript number for some of the BP subcategories such as “cell-cell junction

Differential testicular transcriptome analysis in teleost Channa punctatus
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Fig 1. Histogram representation of gene ontology classification of transcripts from different reproductive phases. GO

classification of testicular transcripts from different reproductive phases (resting: R, preparatory: P, spawning: S and postspawning: Ps)

into various subcategories under Biological process (A), Molecular function (B) and Cellular component (C).

doi:10.1371/journal.pone.0173178.g001
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maintenance”, “negative regulation of DNA binding”, “response to estradiol stimulus”, “stem

cell maintenance”, “Sertoli cell proliferation”, and “secretion” were appreciably high in post-

spawning as compared to other reproductive phases. Under MF, all the subcategories except

“RNA helicase activity” showed least number of transcripts during resting, subsequent rise in

preparatory and maximum during spawning phase (Fig 1C). A similar trend with highest tran-

script number in spawning and lowest in resting phase was found in most of the subcategories

under CC (Fig 1B). Interestingly, transcript number for the subcategory “fibril” was high in

postspawning and resting while extremely low in preparatory and spawning (Fig 1B).

GO classification of the total testicular transcriptome generated by clustering of transcripts

from testis of four reproductive phases showed 8838, 2968 and 1187 subcategories under BP,

MF and CC, respectively. Under BP category, “transcription”, “regulation of transcription,

DNA-dependent”, “intracellular signal transduction” and “intracellular protein transport”

were found to be the most represented subcategories (Fig 2A). In addition, significant number

of transcripts was assigned to “positive regulation of cell proliferation”, “spermatogenesis”,

“apoptotic process”, “cell differentiation” and “response to hypoxia”. In CC category, the sub-

categories “nucleus” and “cytoplasm” had the highest number of transcripts (Fig 2B). Under

category of MF, subcategories related to different types of “binding” were frequently found

along with “sequence-specific DNA binding transcription factor activity” and “protein serine/

threonine kinase activity” (Fig 2C).

Differential gene expression

Fig 3 presents a comparative picture of upregulated transcript numbers (sample R vs P, P vs S,

S vs Ps and Ps vs R, considering the underlined sample as reference; S4 Table) under various

functional subcategories of BP, CC and MF. A substantial increase in number of upregulated

transcripts was observed for majority of the subcategories under BP during transition from

resting to preparatory phase (Fig 3A) and thereafter transcripts displayed varying trends. The

number of upregulated transcripts was maintained for “response to hypoxia” while a decrease

was noted for “translation”, “response to testosterone stimulus”, “response to vitamin A”,

“apoptotic process”, “cell adhesion” and “DNA-dependent transcription” during spawning. In

contrast, an increase in number of upregulated transcripts was observed for “spermatogenesis”

and “regulation of angiogenesis” until spawning and postspawning, respectively. Interestingly,

upregulated transcript number for “immune response” decreased from resting to preparatory

followed by a gradual increase during spawning and postspawning phases. Like BP, majority

of the subcategories under CC showed maximum increase in number of upregulated tran-

scripts during preparatory phase which subsequently decreased in spawning and postspawning

(Fig 3B). Regarding MF, all the subcategories displayed a similar pattern for upregulated tran-

scripts with highest number in preparatory followed by a decrease in spawning and post-

spawning (Fig 3C). It was interesting to note that upregulated transcripts for “structural

constituent of ribosome” under MF and “ribosome” under CC were essentially present during

preparatory phase.

In addition, among transcripts showing significant (corrected P value < 0.05) differential

expression, fifty transcripts were differentially expressed in more than two reproductive phases

of which thirty were common to preparatory, spawning and postspawning (Fig 4). Throughout

the reproductive cycle, the overlapping transcripts showed varying patterns of expression (Fig

5). A significant (corrected P value < 0.05) increase in expression of transcripts for klhl10,

rt1-db1, mgat3 and nqo1 was observed in preparatory (R vs P, corrected P value < 0.05) that

remained upregulated during spawning and postspawning. Similar upregulation in expression

of transcripts for mast1, hspa1a, eef1a2, hes2, btg3, pif1, myo16, espn, and tkt was seen during

Differential testicular transcriptome analysis in teleost Channa punctatus
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Fig 2. Pie diagram showing gene ontology classification of total testicular transcriptome. GO classification of

total testicular transcriptome into various subcategories under: (A) Biological process (B) Cellular component (C)

Molecular function.

doi:10.1371/journal.pone.0173178.g002
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Fig 3. Histogram representation of gene ontology classification of upregulated testicular transcripts from different

reproductive phases. Classification of upregulated testicular transcripts from different reproductive phases (resting: R, preparatory: P,

spawning: S and postspawning: Ps) associated with testicular functions under GO subcategories of Biological process (A), Cellular

component (B) and Molecular function (C). Upregulated transcripts were obtained from each set of clustered transcripts (set 1: samples

R and P; set 2: samples P and S; set 3: samples S and Ps; set 4: samples Ps and R) based on expression fold change that was

calculated considering the underlined sample in each set as reference.

doi:10.1371/journal.pone.0173178.g003
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preparatory phase, though their expression except for hspa1a significantly (P vs S, corrected P
value < 0.05) decreased in spawning. Further, a set of transcripts (wipf3, rgs4, star, gipc3, grik3,

cd276, cxcl2, alcam, hint1, ros1, slc6a1, stx1b and agmat) were profoundly expressed in spawn-

ing (P vs S, corrected P value < 0.05) and thereafter their expression declined during post-

spawning. On the other hand, upregulated expression of transcripts for muc13, hipk1, foxj1,

trim39 and plbd1 during spawning remained high even in postspawning. Further, the analysis

of expression levels for SC, LC and PMC specific genes during different phases of the testicular

cycle revealed that only amh, a SC specific gene, showed significant upregulation in expression

during postspawning phase (S vs Ps, corrected P value < 0.05, S5 Table). The other SC, LC and

Fig 4. Venn diagram of testicular transcripts showing significant differential expression depending on

reproductive phases (corrected P value < 0.05).

doi:10.1371/journal.pone.0173178.g004
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Fig 5. Heat map representation of significantly differentially expressed testicular transcripts. Shows testicular transcripts

showing significant (corrected P value < 0.05) differential expression based on comparison between different reproductive phases

(resting: R, preparatory: P, spawning: S and postspawning: Ps): (A) R and P, (B) P and S, (C) S and Ps and (D) R and Ps.

Transcripts differentially expressed in more than two reproductive phases are labelled.

doi:10.1371/journal.pone.0173178.g005
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PMC specific genes, though detected in the testis, did not show any change in their expression

along the testicular cycle (S5 Table).

Validation of differential expression of genes

The expression fold change of the selected testicular genes (tkt, mgat3, alcam, gipc3 and stx1b)

along the reproductive cycle showed significant (ANOVA, P< 0.05) variation depending on

reproductive phases. The level of tkt and mgat3 considerably (P< 0.05) increased during pre-

paratory phase as compared to that of resting phase (Fig 6A and 6B). Thereafter, tkt expression

in spawning phase declined (P< 0.05) to the level of resting and remained low until post-

spawning. Unlike tkt, a steady high expression of mgat3 was recorded from preparatory to

postspawning. In case of alcam, gipc3 and stx1b, expression level though did not show any

change until preparatory phase, a significant increase was observed during spawning phase

(resting/preparatory phase vs spawning phase, P< 0.05; Fig 6C–6E). However, in postspawn-

ing, their expression declined to the level of resting/preparatory phase. These qPCR results

showed a similar temporal expression pattern as observed following RNA-Seq analysis during

different reproductive phases.

Discussion

In the present study, comparative analysis of testicular transcriptome from different reproduc-

tive phases of spotted snakehead C. punctatus highlights the activation/repression patterns of

several genes and their correlation with various structural and functional aspects of testis

depending on its spermatogenic state. This study also provides the complete testicular tran-

scriptome which is of particular importance as genomic resource for any species of Channa is

not available.

Comparative analysis of transcripts based on functional annotation

Total transcripts. Functional categorization of testicular transcripts from different repro-

ductive phases showed high number of transcripts for majority of subcategories under BP, CC

and MF during preparatory and spawning phases. The augmented spermatogenic activity dur-

ing these phases might be correlated with marked increase in transcripts for major biological

processes such as cell proliferation and differentiation, DNA repair, response to hypoxia, tran-

scription, mRNA transport and processing, spermatogenesis, signal transduction, positive reg-

ulation of gene expression and protein transport. Similar correlation has been drawn in

Oncorhynchus mykiss and Mus musculus wherein some of these biological processes were

prominent during proliferation and differentiation of spermatogonia [19,27]. During post-

spawning, spermatogenic quiescence might be associated with decrease in transcripts for sev-

eral biological processes and increase in transcripts for “negative regulation of DNA binding”.

Further, enhanced transcript number for biological processes such as cell-cell junction mainte-

nance, stem cell maintenance and SC proliferation could be implicated in restructuring of tes-

tis required for initiation of next testicular cycle. The restructuring of testis during

postspawning is evident by an increase in transcripts for an extra-cellular matrix (ECM) com-

ponent “fibril” as ECM components have been suggested to be involved in reorganization of

seminiferous tubules [28]. Number of transcripts for “fibril” remained high during resting

phase probably due to marked decrease of germ cells as compared to somatic cells (PMC and

SC) that are reported to secrete ECM components [28]. In our earlier study in C. punctatus,
estradiol-17β has been suggested to be involved in regression of testis, stem cell renewal and

spermatogonial proliferation during postspawning phase [24]. Also, estradiol-17β is implicated

in initiation and maintenance of spermatogonial stem cell proliferation in Anguilla japonica

Differential testicular transcriptome analysis in teleost Channa punctatus
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Fig 6. Showing expression fold change of some differentially expressed testicular genes tkt (A), mgat3 (B), alcam

(C), gipc3 (D) and stx1b (E) along the reproductive cycle. The expression fold change of genes during preparatory,

spawning and postspawning phases were calculated using expression values obtained during resting phase as reference.

Ribosomal 18s RNA was used as the house-keeping gene for normalization of expression values. Three testicular samples

were used for each reproductive phase (N = 3). Data represented as mean ± SEM were analyzed by one way analysis of

variance (ANOVA) and compared by Newman-Keuls multiple range test. Groups with different alphabets (a-b) as superscripts

show significant difference (P < 0.05).

doi:10.1371/journal.pone.0173178.g006
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[29]. These reports substantiate our observation in the present study where number of tran-

scripts for “response to estradiol stimulus” was highest during postspawning. Among molecu-

lar functions, high level of RNA helicase activity during preparatory phase in C. punctatus
suggests an increase in translational activity as RNA helicases have been reported to play

important role in ribosome biogenesis, pre-mRNA splicing and translation [30]. However, the

reason for its increase in resting phase is not clear.

Differentially expressed transcripts. An upsurge in differentially expressed testicular

genes has been reported in parallel to advancement of spermatogenesis in mammals [2,27]. A

similar increase in upregulated transcripts concomitant to heightened spermatogenic activity

was observed during preparatory phase in C. punctatus. Among these, an increase in tran-

scripts specific to “proteolysis”, “signal transduction” and “intracellular protein transport”

under BP is in accordance to a report in mice in which these transcripts are seen to be prefer-

entially expressed in spermatids [31]. Moreover, an increase in number of upregulated tran-

scripts for “translation”, “ribosome” and “structural constituent of ribosome” under BP, CC

and MF, respectively, in preparatory phase suggests the amplification of protein synthesis dur-

ing this period in C. punctatus. The rise in upregulated transcripts for “response to vitamin A”

evidenced during preparatory phase in spotted snakehead indicates the involvement of vita-

min A in proliferation and differentiation of spermatogonia. This is in agreement to a report

in mammals where positive role of vitamin A in synchronization of spermatogonial differenti-

ation and meiotic entry is documented [32]. An upregulation of transcripts for “response to

hypoxia” during preparatory, spawning and postspawning might be the consequence of

increased hypoxia due to escalation in cell proliferation. Our assumption relies on the report

of Marti and colleagues [33] where direct relationship has been demonstrated between hypoxia

and cell proliferation in mice testis. Further, hypoxia has been reported to induce angiogenesis

[34], thus supporting our current observation of gradual increase in upregulated transcripts

for “regulation of angiogenesis” from preparatory to postspawning phase. The present study

also noted an increase in number of upregulated transcripts for “spermatogenesis” during pre-

paratory and spawning phases probably owing to abundance of spermatocytes, spermatids and

spermatozoa. A similar observation is reported in O. mykiss where genes grouped under bio-

logical process “spermatogenesis” are suggested to be expressed by meiotic/post meiotic germ

cells [19].

Upregulated transcripts and spermatogenic events

Preparatory phase. The present endeavor identified several transcripts significantly upre-

gulated during preparatory phase suggesting their involvement in initiation and maintenance

of spermatogenesisin C. punctatus. The cell-specific localization of some of these transcripts

and their role in testicular development and spermatogenesis has been studied in mammals.

klhl10 and mast1 are reported to be expressed in spermatids and associated with spermiogene-

sis [35,36]. A SC-specific gene espn has been implicated in the formation of blood-testis barrier

[37]. nqo1 is shown to be expressed in LCs [38] and its increased level from infancy to adult-

hood has been associated with testicular development [39]. Expression of heat shock protein

hspa1a in PMC, SC as well as spermatogonia [40] and its downregulation in case of azoosper-

mia [41] indicate the involvement of hspa1a in sperm development.

In addition to these transcripts, expression of hes2, eef1a2, rt1-db1, mgat3, and tkt have

been detected in mammalian testis [42–46] though their cell-specific localization and definite

testicular function is still unexplored. The upregulation of Notch effector gene hes2 during pre-

paratory phase in spotted snakehead C. punctatus indicates the role of Notch signaling in fish

spermatogenesis as reported in mammals [47–49]. Further, current observation of increased

Differential testicular transcriptome analysis in teleost Channa punctatus
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eef1a2 expression is substantiated by a report where eEF1A has been shown to be indirectly

associated with protein synthesis and cell proliferation throughY-encoded testis-specific pro-

tein [43]. In addition, we observed upregulated expression of tkt and mgat3 that encode

enzymes involved in pentose phosphate pathway (PPP) and biosynthesis of glycoproteins,

respectively, during preparatory phase when steroidogenic and spermatogenic activity

markedly increases. In mammals, PPP has been found to be active in germ cells [50]. Further,

PPP is known to facilitate steroidogenesis and nucleic acid biosynthesis through production of

steroidogenic cofactor nicotinamide adenine dinucleotide phosphate and ribose 5-phosphate,

respectively [51]. In fishes, the importance of glycoprotein conjugates in testicular cells has

been documented where they have been associated with cell cycle, cell adhesion, proliferation,

apoptosis and sperm maturation [52]. These facts provide the basis to assume the involvement

of tkt and mgat3 in upregulation of spermatogenic and steroidogenic activity during prepara-

tory phase in C. punctatus. In our study, increased expression of rt1-db1 during preparatory

phase points towards its involvement in regulation of testicular functions though correlation

between this immune response gene [53] and testicular functions is lacking in vertebrates. It is

noteworthy that the current study demonstrates the expression of pif1, btg3 and myo16 for the

first time in testis of a vertebrate. pif1 and myo16 are reported to be involved in cell cycle pro-

gression [54,55] whereas btg3 has anti-proliferative action [56] and their upregulation during

preparatory phase in C. punctatus suggests their role in maintaining cell homeostasis.

Spawning and postspawning phase. The identification of several testicular transcripts

upregulated during spawning and postspawning phases in spotted snakehead C. punctatus
are of vital importance to enrich our understanding of genes regulating spermatogenic and

steroidogenic processes occurring during these phases of the testicular cycle. Transcripts

known to be associated with sperm maturation (ros1 [57], foxj1 [58]), sperm transport and

motility (muc13 [59], hint1 [60]), and acrosome reaction (stx1b [61]) increased significantly

during spawning indicating their role in maturation, spawning of spermatozoa and fusion of

gametes in C. punctatus. In addition, in the current study, an increase in expression of (a)

gipc3 known to promote luteinizing hormone action [62] and consequently production of

maturation inducing steroid [63], (b) grik3 reported to be associated with LC proliferation

[64] and (c) star essential for steroid biosynthesis in LC and SC [65] suggest the importance

of these genes in sex steroid biosynthesis and somatic cell proliferation in testis of C. puncta-
tus during spawning. Among other upregulated genes of spawning phase, rgs4, alcam and

cxcl2 have been associated with gonadal stem cells [66–68] while slc6a1 and hipk1 have been

reported in spermatids and spermatozoa [69,70]. Nonetheless, it is difficult to decipher the

precise role of these genes in regulation of testicular events attributed to spawning phase in

C. punctatus. To our knowledge, expression of agmat in testis is not reported in literature

though its upregulation was observed during spawning in the present study. agmat encodes

enzyme agmatinase that converts agmatine to putrescine [71]. Further, level of putrescine

has been shown to increase in elongated spermatids of rooster [72], indirectly indicating the

role of agmat in spermatogenesis. During postspawning, restructuring of seminiferous lob-

ules includes apoptosis of remnant germ cells and proliferation of spermatogonial stem cells

to repopulate the testis. In the present study, upregulation of (a) cd276 localized in SCs and

involved in tissue remodeling [73], (b) wipf3 expressed immensely at Sertoli-spermatogenic

cell junctions [74], (c) trim39 identified in testis [75] and shown to promote apoptotic signal-

ing [76], and (d) plbd1 identified as a marker of testicular germ cell tumor precursor [77]

provide the basis to assume pivotal role of these genes in remodeling of testis during post-

spawning in C. punctatus. In addition, amh which is a SC specific gene and reported to be

involved in maintaining immature state of testis in mammals [78], was upregulated during

postspawning phase in C. punctatus.
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Conclusion

The present study for the first time reports de novo testicular transcriptome sequencing in C.

punctatus, thus contributing to the genomic information of this fish which is economically

important and widely cultured in the Indian subcontinent. The functional annotation of testic-

ular transcripts in C. punctatus highlighted the various biological processes, molecular functions

and cellular components that are important for regulation of steroidogenic activity and sper-

matogenic events ranging from proliferation and differentiation of spermatogonia to release of

spermatozoa. In addition, expression profile of testicular transcripts depending on reproductive

phases enabled the identification of numerous upregulated transcripts associated with various

testicular activities from preparatory to postspawning. The dataset of annotated transcripts and

detailed overview of differential testicular transcriptional activity in the current study will pro-

vide basis for further investigation on functional genomic research and molecular regulation of

testicular cycle in teleosts. Also, findings of this study may help in increasing fish production by

manipulating testicular genes found to be important in regulation of spermatogenesis.
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