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Abstract While it is well established that protonation and

tautomeric states of ligands can significantly affect the

results of virtual screening, such effects of ionizable resi-

dues of protein receptors are less well understood. In this

study, we focus on histidine protonation and rotameric

states and their impact on virtual screening of Mycobac-

terium tuberculosis enzyme RmlC. Depending on the net

charge and the location of proton(s), a histidine can adopt

three states: HIP (?1 charged, both d- and e-nitrogens

protonated), HID (neutral, d-nitrogen protonated), and HIE

(neutral, e-nitrogen protonated). Due to common ambigu-

ities in X-ray crystal structures, a histidine may also be

resolved as three additional states with its imidazole ring

flipped. Here, we systematically investigate the predictive

power of 36 receptor models with different protonation and

rotameric states of two histidines in the RmlC active site by

using results from a previous high-throughput screening.

By measuring enrichment factors and area under the

receiver operating characteristic curves, we show that vir-

tual screening results vary depending on hydrogen bonding

networks provided by the histidines, even in the cases

where the ligand does not obviously interact with the side

chain. Our results also suggest that, even with the help of

widely used pKa prediction software, assigning histidine

protonation and rotameric states for virtual screening can

still be challenging and requires further examination and

systematic characterization of the receptor-ligand complex.

Keywords Docking � Drug design � Histidine �
Protonation state � Rotameric state � Virtual screening

Introduction

The effect of ligand protonation and tautomeric states on

virtual screening (VS) has been the subject of extensive

research [1–4]. It is well known that different protonated

forms or tautomers of a ligand may have significantly

different rankings in VS [1, 2]. Unlike ligand molecules,

for which multiple tautomers and protonated forms can be

included in a VS study, the ionizable residues of protein

receptors are assigned a single state prior to the screening.

For instance, in the standard protonation model, all Asp,

Glu, and His residues are deprotonated while all Arg and

Lys residues are protonated. Various algorithms, such as

PROPKA [5–8], H?? [9–11], and MCCE [12–14], have

been developed to improve the quality of the proton

assignment. However, few studies have investigated the
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effect of such assignment of the titratable residues of

protein receptors on VS results [15]. In this study, we focus

on the impact of histidine protonation and rotameric states

on VS by systematically analyzing a screen using results

from a previous high-throughput screening (HTS) of

the enzyme RmlC (dTDP-6-deoxy-D-xylo-4-hexulose

30,50-epimerase) of Mycobacterium tuberculosis (Mtb) [16].

Histidines participate in a large number of important

biochemical reactions. Their roles as catalytic residues in

the enzymatic active site [17], as proton shufflers in proton

transfer reactions [18–20], as coordinating ligands in

metalloproteins and hemoglobin [21, 22] render histidines

essential for proper function of a cell. The side chain of a

histidine has a pKa around 6.0, which is close to the

physiological pH [23]. Depending on the pH of its envi-

ronment, a histidine readily switches between the doubly

protonated cationic form and the neutral state (Fig. 1): At

low pH, both d-nitrogen and e-nitrogen of the imidazole

ring are protonated and the amino acid has a ?1 charge

(HIP). At high pH, the histidine is neutral with either

d-nitrogen (HID) or e-nitrogen (HIE) protonated. Apart

from the above three states, positions of carbon and

nitrogen atoms in the imidazole ring may be switched due

to common ambiguities in X-ray crystal structures [24]. As

a result, a histidine can adopt three additional rotameric

states, namely, flipped HIP, flipped HID, or flipped HIE

(see Fig. 1) [25]. In this work, we set out to evaluate the

impact of all six protonation and rotameric states of a

histidine on the virtual screening results.

Mycobacterium tuberculosis is the primary causative

pathogen of the lethal, contagious disease tuberculosis

(TB). It has a three-layered cell wall composed of pepti-

doglycan, arabionogalactan, and mycolic acids [26]. This

highly impermeable cellular envelope provides natural

resistance against a large variety of antibiotics, which

renders the inhibition of the cell wall biosynthesis a

promising target for anti-TB drug discovery [16, 26]. The

enzyme RmlC participates in the synthesis of an indis-

pensible linker molecule dTDP-L-rhamnose (TDP-Rha),

connecting the peptidoglycan and arabinogalactan layer in

the Mtb cell wall [6, 16]. Based on the crystal structure of

the Mtb RmlC in complex with TDP-Rha (Fig. 2a), it has

been suggested that the enzyme uses a histidine (His62) as

a key catalytic site that pairs with Tyr132 in an acid–base

couple for proton transfer [27]. Apart from His62, the

active site contains another histidine (His119) involved in

the interaction with TDP-Rha.

As a part of a drug discovery campaign against TB,

201,368 compounds were screened in a previous HTS

against RmlC, revealing a series of hits with the best half

inhibitory concentration (IC50) of 0.12 lM at pH 7.4 [16].

Based on these results, we constructed a library of 2,010

compounds, including 2,000 decoys and ten actives. The

library was screened against 36 receptor models with dif-

ferent protonation and rotameric states of His62 and

His119 of RmlC. Through enrichment factors (EF), recei-

ver operating characteristic (ROC) curves, and area under

the curve (AUC) metrics, we systematically evaluated the

relative VS performance of various protonated receptor

models. In the remainder of the text, we will discuss these

analyses in detail and examine pKa predictions for the two

histidines made by commonly used software packages.

Methods

Crystal structure and initial preparation

The crystal structure of RmlC in complex with the

product analog 20-deoxy-thymidine-b-L-rhamnose (TRH)

Fig. 1 Six possible protonation

and rotameric states of a

histidine. Formal charges on

nitrogen in HIP states are

marked
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was obtained from Protein Data Bank (PDB ID: 2IXC

[27]). One dimer containing chains A and B, each in

complex with a TRH molecule, was submitted to the

Protein Preparation Wizard of Schrodinger Suite 2011

[28]. Missing hydrogen in the crystal structure were

added while water and TRH molecules were removed,

followed by a brief optimization of hydrogen positions at

pH = 7.0. Receptor models with 36 different protonation

and rotameric states of His62 and His119 in chain A

were then generated and energy refined with the

OPLS2005 force field. Two other titratable residues in

the active site, Lys72 and Asp83, were kept charged.

Subsequent virtual screening was performed on the active

site of chain A. See Online Resource 1 for a schematic

description of the hydrogen and nitrogen of His62 and

His119 acting as a hydrogen bond donor or acceptor in

each receptor model.

Receptor grid generation

A set of 36 receptor models based on different protonation

states of His62 and His119 were generated using Glide

5.7.111 in Schrodinger Suite 2011 [29]. The grid center

was set to where the center-of-mass of the TRH molecule

in chain A had been before removal. The sizes of the inner

and outer grid boxes were set to 10 and 20 Å in each

direction, respectively. The models were assigned unique

numbers from 1 to 36 as listed in Table 1.

Ligand preparation

A library containing 2,000 inactive and ten active com-

pounds was generated from the previous HTS result of the

NIH Molecular Libraries Small Molecule Repository

(BioFocus DPI) [16]. First, the entire library of 201,386

compounds used in the HTS was obtained from PubChem,

with BioAssay IDs 1532, 1533, 1695, and 1696 (including

primary screening results and dose–response assays) [16].

Ten verified actives were selected from BioAssay 1696 and

2,000 inactive compounds were randomly selected from

the remaining compounds. The final library of 2,010

ligands was then subjected to LigPrep of Schrodinger Suite

2011 [30] with OPLS2005 force field. The ligands were

ionized at pH = 7.0 ± 2.0 using Epik [31, 32] and tau-

tomers and stereoisomers were generated for the inactives,

resulting in a library of total 3,934 compounds. The Canvas

tool of Schrodinger Suite 2012 [33–35] was used to com-

pare the similarity of the actives and decoys. Tanimoto

coefficients of the compounds in the library to each of the

actives were calculated based on the molecular binary

fingerprints, as described in Online Resource 2. The co-

crystal ligand TRH was also prepared in the same way and

docked to all models for initial assessment of pose

prediction.

Docking

After experimenting with both the Glide SP and XP

docking modes [29, 36–38] we found that XP outper-

formed SP in ranking the actives over decoys (data not

shown). The different performance of SP and XP mainly

stems from differences in their scoring functions. The

hydrophobic enclosure term in the XP algorithm may be

particularly suitable for our study, given the strong

hydrophobic interactions between many active compounds

and the binding site [38]. Hence, in the remainder of the

study, we used the Glide XP mode to perform docking on

36 receptor models described above.

a

b

Fig. 2 a RmlC homodimer in complex with co-crystalized 20-deoxy-

thymidine-b-L-rhamnose (TRH) (PDB ID: 2IXC). The two monomers

are colored in pink and beige, respectively. b Close view of the co-

crystal ligand TRH, with His62 and His119 highlighted. TRH is

colored with carbon in violet, nitrogen in blue, oxygen in red, and

phosphorus in orange. Protein residues are colored with carbon in

salmon, while other atoms are following the same coloring scheme as

TRH. The binding surface of receptor is represented as wire frame.

Hydrogen bonds are shown with dashed green lines
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Predictive performance analysis

We analyzed the predictive performance of VS using 36

receptor models described above by calculating enrichment

factors (EF), receiver operating characteristic (ROC)

curves, and areas under the curve (AUC). The statistical

significance of the AUC values of different receptor

models was evaluated with a p test with 95 % confidence

limit.

The EF is a widely used metric to evaluate the efficiency

of VS [39]. The value of EFx% indicates how much more

likely an active compound is ranked in the top x% of a VS

result compared with a random selection, i.e., how many

times the database is enriched. Specifically, EF is calcu-

lated as Eq. 1:

EFx% ¼
Nx%

experimental

Nactive � x%
ð1Þ

where Nexperimental
x% is the number of experimentally verified

actives in the top x% of the database and Nactive is total

number of actives in the database [39]. In this study, EF1%

and EF10% were calculated from the top 1 and 10 % of the

VS result, respectively.

To investigate the docking performance in a threshold-

independent manner, the AUC value was calculated from

the ROC curve. The ROC curve allows a straightforward

visualization of the performance of VS in ranking the

actives higher over decoys [40]. In our study, we have a list

of experimentally verified actives, or positives, and decoys,

or negatives. These positives and negatives are further

categorized into true or false according to their rank above

or below, respectively, a certain threshold of the VS result,

i.e., the actives ranked above a chosen threshold becomes

true positive (TP). To generate the ROC curve, the true

positive rate (TPR) and false positive rate (FPR) are cal-

culated as Eqs. 2 and 3:

TPR ¼ TP=ðTPþ FNÞ ð2Þ
FPR ¼ FP=ðTNþ FPÞ ð3Þ

In the ROC curve, the TPR is plotted as a function of the

FPR. The AUC was then calculated to compare the per-

formance of different receptor models quantitatively [23].

An AUC of 0.5 corresponds to a random selection of the

ligand by a receptor.

To evaluate the statistical significance of the AUC val-

ues of different receptor models, we performed the two-

sided p test at the 95 % level. A two-sided p value of less

than 0.05 (corresponding to 5 %) rejects the null hypoth-

esis that the AUC values of a pair of receptors are statis-

tically identical and accepts the alternative hypothesis that

their difference is statistically meaningful. Hence the pair

of receptors with statistically different AUC values is dif-

ferentiated by their abilities to rank the actives and decoys.

The two-sided p values were calculated following Craig

et al. and references therein [41, 42], which is described

below briefly. As in Eq. 4, the AUC is first calculated as

the mean TPR of decoys:

AUC ¼
Xdecoys

i

DFPR TPRi ¼
1

Ndecoys

Xdecoys

i

TPRi

¼ TPRh idecoys¼ 1� FPRactives ð4Þ

where TPRi is the true positive rate at decoy i and DFPR is

the constant increment in the false positive rate. The

difference between the AUC values of the pair of receptor

models A and B becomes as Eq. 5:

Table 1 AUC values of 36 receptor models with different proton-

ation and rotameric states

Receptor

model

His62 His119 AUC EF1% EF10%

1 HIE HIE 0.942 60 8

2 HIE Flipped HIE 0.992 60 10

3 HIE HID 0.868 30 5

4 HIE Flipped HID 0.961 50 9

5 HIE HIP 0.875 30 6

6 HIE Flipped HIP 0.996 80 10

7 Flipped HIE HIE 0.963 70 9

8 Flipped HIE Flipped HIE 0.945 30 7

9 Flipped HIE HID 0.991 60 10

10 Flipped HIE Flipped HID 0.938 50 6

11 Flipped HIE HIP 0.918 0 8

12 Flipped HIE Flipped HIP 0.963 60 8

13 HID HIE 0.989 30 10

14 HID Flipped HIE 0.991 40 10

15 HID HID 0.989 30 10

16 HID Flipped HID 0.990 20 10

17 HID HIP 0.916 0 8

18 HID Flipped HIP 0.991 20 10

19 Flipped HID HIE 0.992 80 10

20 Flipped HID Flipped HIE 0.957 40 8

21 Flipped HID HID 0.969 50 9

22 Flipped HID Flipped HID 0.987 50 10

23 Flipped HID HIP 0.981 40 10

24 Flipped HID Flipped HIP 0.988 60 10

25 HIP HIE 0.971 40 8

26 HIP Flipped HIE 0.991 30 10

27 HIP HID 0.982 0 10

28 HIP Flipped HID 0.933 40 9

29 HIP HIP 0.869 0 7

30 HIP Flipped HIP 0.936 30 9

31 Flipped HIP HIE 0.945 30 9

32 Flipped HIP Flipped HIE 0.933 10 6

33 Flipped HIP HID 0.964 40 8

34 Flipped HIP Flipped HID 0.917 0 6

35 Flipped HIP HIP 0.950 0 8

36 Flipped HIP Flipped HIP 0.969 20 9
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DAUC ¼ AUCA � AUCB ¼ TPRh idecoys;A� TPRh idecoys;B

¼ TPRA � TPRBh idecoys

ð5Þ

where the last step arose from docking of the same library

into all receptor models, which statistically indicates the

pairing of samples. As a result,

DAUC ¼ 1

Ndecoys

Xdecoys

i

TPRi;A � TPRi;B

� �
¼ TPRA � TPRBh idecoys

¼ 1

Nactives

Xactives

i

FPRi;B � FPRi;A

� �
¼ FPRB � FPRAh iactives

ð6Þ

Then the variances for the actives and decoys are given by:

VarD;a ¼
1

Nactives

Xactives

i

ðFPRi;A � FPRi;BÞ
�

� FPRA � FPRBh iactives

�2

ð7Þ

VarD;d ¼
1

Ndecoys

Xdecoys

i

n
ðTPRi;A � TPRi;BÞ

� TPRA � TPRBh idecoys

o2

ð8Þ

with the standard error in DAUC given as:

SED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarD;a

Nactives

þ VarD;d

Ndecoys

s
ð9Þ

Finally, the two-sided p value for DAUC between the two

receptors is obtained as a Gaussian distribution with a

standard deviation equal to SED:

p ¼ erfc
DAUCj jffiffiffi

2
p

SED

� �
ð10Þ

where erfc is the complementary error function. All anal-

yses of the receptor predictive power were done with

Matlab R2011a (Version 7.12.0.635) [43].

pKa prediction analysis

PROPKA [5–8], Maestro [28, 44], H?? [9–11], and

MCCE [12–14] were employed to predict the protonation

states of His62 and His119 in the active site of RmlC.

Along with the dimer of chains A and B from the

homodimeric holo structure (PDB ID: 2IXC [27]), we also

generated an additional structure by removing the bound

TRH molecule to examine the effect of the ligand on pKa

prediction. Therefore, the dimers with and without the

ligand were subjected to the pKa calculation with PROP-

KA, Maestro, H??, and MCCE.

PROPKA predicts the pKa by solving the linearized

Poisson–Boltzmann equation [5–8]. The algorithm calculates

a pKa shift, DpKa, arising from perturbation of electrostatic

energy of an ionizable residue between its charged neutral

states. Thus the pKa is predicted by:

pKa ¼ pKModel þ DpKa

with additional terms and parameters describing the Cou-

lomb interaction, desolvation, unfavorable electrostatic

reorganization energies, and hydrogen bonding networks.

The model pKa used for histidine in PROPKA is 6.50.

The Protein Preparation Wizard of Maestro [28, 44] has

been updated to employ PROPKA by default, from its

previous version using Epik [31, 32]. The pKa calculation

with Epik relies on the well-established Hammett and Taft

(HT) [45] linear free energy approach and the quality of

hydrogen bonding networks. In this study, we compared the

pKa prediction of Maestro both with and without PROPKA.

H?? is a single-structure continuum electrostatics

methodology that predicts the pKa values of the titratable

residues based on either Generalized Born or Poisson–

Boltzmann method using the AMBER 10 force field

[9–11]. Multi-conformation continuum electrostatics

(MCCE) calculates the pKa values of the ionizable protein

residues and ligands by generating rotamers throughout a

titration with Monte Carlo sampling [12–14]. The changes

in the conformation create a position dependent dielectric

response and the degrees of freedom of the conformers are

added to calculate the Boltzmann distribution of the ioni-

zation states and atomic positions. The pairwise electro-

static interactions between different conformers are

calculated by the DelPhi Poisson–Boltzman solver.

Results and discussion

In order to evaluate the effect of histidine protonation and

rotameric states on the predictive performance of receptors,

we performed virtual screening (VS) for the Mtb enzyme

RmlC based on the results of a previous high-throughput

screening (HTS) study. Below, we will first examine the

typical interactions of the co-crystal ligand TRH to probe

the ligand pose dependence on histidine protonation. We

further contextualize analysis of enrichment performance

and predictive power of various receptor models, by dis-

cussing the interactions with the receptor to show the effect

of different histidine protonation states on VS. Finally, we

compare the predicted pKa values calculated by several

common pKa calculation packages to the receptor proton-

ation states with the best predictive power.

Docking of TRH

Docking the co-crystal ligand TRH back into 36 receptor

models was carried out to show the pose, or ligand

J Comput Aided Mol Des (2013) 27:235–246 239
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orientation relative to the receptor, dependence on histidine

protonation and rotameric states. Chemically intuitive

hydrogen bonding patterns for the crystal coordinates of

His62 and His119, shown in Fig. 2b, imply the potential

significance of hydrogen bonds in docking of TRH.

Docking this ligand allowed for preliminarily examination

of the dependence of pose on the possible hydrogen

bonding networks with the receptor.

Varying histidine protonation states has a clear effect on

pose prediction for the determined co-crystal ligand.

RMSD of docking pose of self-docked TRH into the crystal

coordinates for different protonation and rotameric states

of His62 and His119 varied from 2.91 to 5.44 Å. The

protonation state of both histidines with the best average

RMSD is HIE, which agrees with the most probable pro-

tonation states of the crystal coordinates of TRH. Also, in

all cases the docking algorithm predicts the position of the

pyrophosphate of the ligand correctly, but the large devi-

ation from the crystal coordinates mainly stems from the

flipping of the thymidine and rhamnose moieties around

the pyrophosphate, resulting in different hydrogen bonding

patterns between TRH and two histidines. This indicates

the importance of hydrogen bonding networks with His62

and His119 in the pose prediction of the co-crystal ligand

TRH. Therefore, after examining the pose dependence

upon hydrogen bonds provided by two histidines, we

expanded our study to look systematically at ranking

compounds in VS and how it is affected by the protonation

and rotameric states of histidines.

Virtual screening

Molecular docking was carried out to examine compound

ranking dependence on histidine protonation and rotomeric

states. The ligand set included ten actives and 2,000 inac-

tives selected at random from a HTS. We note that Tan-

imoto scores indicate that most of our decoys have a low

similarity to the actives. Such a decoy set presents a

smaller challenge to the docking algorithm and the pre-

dictive performance of VS itself may be affected when

decoys with greater similarity to the actives are used.

However, this study aimed to examine not the predictive

performance of the docking algorithm per se, but how

histidine protonation states affect the relative performance

in VS.

Docked active ligands and the product analog were

examined initially to characterize important interactions in

the RmlC binding site. In all receptor models, hydrophobic

pi–pi stacking interactions contribute significantly to

docking score of the active compounds within the RmlC

active site. The initial hit compound from HTS,

SID7975595, is ranked high in most receptor models,

between 8th and 51st rank in 26 out of 36 receptors.

Although there is only limited structural similarity between

SID7975595 and the co-crystal ligand TRH, the tricyclic

ring of SID7975595 readily replaces the TRH thymidine

moiety, while the benzimidazolone ring replaces the

rhamnose moiety, providing structural basis of the inhibi-

tion. As shown in Fig. 3, the hydrophobic interaction

between the actives and receptor often involves Tyr132 and

Tyr138 from chain A and Phe26 from chain B (note that a

part of chain B intrudes in the active site of chain A).

Through interacting with the essential binding site residues

and preventing water molecules from accessing Phe26 and

Tyr132, the actives provide abundant hydrophobic contacts

to achieve the high binding affinity. As discussed in

Sivendran et al. [16], substitution of the ethyl group

attached to the nitrogen on the tricyclic ring of

SID7975595 by an allyl group (e.g., the active compound

77074) further enhances the binding affinity by forming an

even tighter hydrophobic seal. In comparison, substitution

of this group by a smaller methyl group or a hydrogen atom

results in a lower binding affinity [16]. In addition to the

hydrophobic contacts described above, some of the actives

also form hydrogen bonds with Ser51, Arg59, and Arg170.

A figure describing the interactions of the docked actives

can be found in Online Resource 3.

Interestingly, the actives generally do not achieve polar

interactions with His62 and His119. As shown in Fig. 3,

the carbonyl oxygen and two benzimidazolone nitrogens of

SID7975595 face away from His62 and His119. The

direction of aromatic hydrogens of the actives is often

unable to participate in hydrogen bonding networks with

the two histidines. Nevertheless, different protonation and

Fig. 3 Predicted interaction of the initial hit compound SID7975595

with flipped HID62 and HIP119 in receptor model 23. Generally, the

actives do not have strong interactions with His62 or His119, yet

varying histidine protonation states have a profound effect on the

ranked results. Favorable interactions are observed with other binding

site residues, such as Tyr132 and Tyr138 as depicted here
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rotameric states of these histidines do affect the VS results

through their interactions with the decoys.

Assessment of differences in ranking

It is not uncommon that only the top 1 % of compounds

screened can be tested experimentally in a VS study, due to

the limited resources. Therefore, the enrichment factor

(EF)1% metric, which reflects the database enrichment

performance in the top 1 % (20 docked compounds) of a

library, becomes particularly relevant in assessing the

predictive power of VS. The EF1% ranges from 0 to 80 for

36 receptor models (Table 1), indicating that the VS results

are sensitive to the protonation and rotameric states of

His62 and His119 of RmlC. Nevertheless, 28 out of 36

receptors rank more than eight actives within the top 10 %

in the VS, as reflected by the EF10% (Table 1), suggesting

that most receptors are able to distinguish the actives and

decoys when a larger portion (10 %) of the database is

considered. The EF results also suggest that the receptor

models with HIP62 or HIP119 tend to have poor enrich-

ment performance, likely due to the extensive hydrogen

bonding networks with the decoys, as discussed later.

The area under the receiver operating characteristic

curve (AUC) for each receptor model was evaluated to

report the enrichment performance of models upon differ-

ent protonation and rotameric states of His62 and His119.

As shown in Fig. 4a and Table 1, the AUC values of all

receptor models range from 0.868 to 0.996, indicating an

overall good predictive performance (an AUC of 0.5 cor-

responds to no differentiation between the actives and

decoys). In general, the AUC result is complementary to

the EF assessment for receptor predictive performance.

Summarizing Table 1, Fig. 4c shows how the range of the

receptor performance depends on the two histidine pro-

tonation and rotameric states. Considering the 25–75 %

range of the AUCs (Fig. 4c, indicated by the thicker lines),

the His62 models show a larger variation across His119

states. The His119 models, on the other hand, have a more

consistent performance regardless of the protonation states

of His62, with the exception of HIP state. This indicates

that different protonation states of His62 have a smaller

influence than those of His119 on the receptor performance

in our screening.

A stronger dependence of enrichment on the protonation

states of His119 is observed in the HIE62 and HIP62

models. With HIE62 state, the models with flipped HIP119

(model 6) and flipped HIE119 (model 2) yield the highest

receptor performance. Models 3 and 5 with HID119 and

HIP119, respectively, lead to the worst enrichment. In

examining why HIE62 state has the largest variation in

AUCs, one finds that His62 has either pi–pi stacking or no

interactions with ligands, and makes only a few hydrogen

bonds with high-ranking decoys. Therefore, the receptor

performance depends on the interaction of His119 with the

decoys. This is also seen when examining the broad per-

formance range of the AUCs of the HIP62 models. The

hydrogen bonding networks with the decoys will be dis-

cussed later in the following section.

In order to evaluate the statistical significance of dif-

ference of the AUC values between a pair of receptor

models, we performed a two-sided p test at the 95 % level

on the null hypothesis that the pair has statistically com-

parable AUC values, against the alternative hypothesis that

their difference in the AUC values and predictive power is

statistically meaningful. The result is shown in Online

Resource Table 1, with the p values less than 0.05

emphasized. On average, the receptors have more than 16

p values less than 0.05, demonstrating the sensitivity of VS

on histidine protonation and rotameric states. As one might

expect, the receptors with the most significant differences

correspond to the models with the highest (model 6) or

lowest AUC values (models 3, 29, and 5). Model 6 is

statistically better at ranking the actives over decoys than

26 other receptors in the ensemble. Models 3, 29, and 5 are

distinguishably worse at ranking the actives than 29, 25,

and 31 other receptors, respectively.

Quantitative analysis of the hydrogen bonding interac-

tions was carried out for the top 1 % (20 docked com-

pounds) of each VS result to account for the abundant

hydrogen bonding interactions with the binding site resi-

dues often observed with the decoys. The results indicate

an inverse correlation between the hydrogen bonding

contribution and receptor performance. Figure 4b shows

the average hydrogen bond percentage of each receptor

model for the top 1 % docked compounds. Hydrogen bond

percentage is defined as the portion of the Glide XP

hydrogen bonding term in the total docking score. Com-

parison of Fig. 4a, b reveals the inverse relationship

between the hydrogen bond percentage and AUC with a R2

of 0.42 (y = -56.18x ? 67.95, the correlation is plotted in

Online Resource 4). The inverse relationship is commonly

observed with models with HIP119, flipped HIP119, or

HID62, where the high hydrogen bond percentage resulted

in poor enrichment. For example, receptor model 29 with

HIP62 and HIP119, where both histidines presenting active

site facing hydrogen bond donors, has one of the worst

AUCs due to the high percentage of hydrogen bonds in the

top hits.

Notably, the hydrogen bonding potential of His119 often

determines the receptor performance. For example, the

model with HID62 and HIP119 was an outlier among the

HID62 models in Fig. 4c, with noticeably low enrichment

compared to the overall good performance of the other five

HID62 models. The HID62 models have a high median

AUC of 0.989, despite the frequent hydrogen bonding to
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the decoys from HID62. This is due to His119 states

achieving few hydrogen bonding interactions with the

decoys. Only with HIP119 state does the HID62 model

make hydrogen bonds with a number of decoys, resulting

in the relatively low AUC. This observation agrees with the

stronger dependence of the receptor performance on the

protonation states of His119, as discussed above. Online

Resource 4 describes the AUC distribution and hydrogen

bond percentage along with the direction of hydrogen bond

donor or acceptor from two histidines facing the receptor.

Above analyses highlight the hindering effect of

hydrogen bonding to the decoys on the predictive power of

VS, due to the various coordinates of two histidines with

different protonation and rotameric states. The scatter of

the observed correlation with the R2 of 0.42 is likely

attributed to several causes, including the chemical nature

of the decoy dataset, as well as the slight differences in

geometry of each receptor upon minimization in the initial

preparation of the protein. By clearly showing the sensi-

tivity of virtual screening results on different protonation

and rotameric states of histidines in the active site, we

emphasize that care should be taken when preparing the

atomic coordinates of a receptor for VS, particularly con-

sidering the general properties of the ligands being

screened. This includes taking into account the hydrogen

bonding to the co-crystal ligand and its effect on protein

preparation, as well as a comprehensive analysis of prox-

imal hydrogen bonding networks. This is usually achieved

by examining the results from widely used pKa prediction

software packages, and to this point, we have compared

Fig. 4 a AUC values of 36 receptor models. Protonation and

rotameric states are marked for each histidine. Flipped states are

marked with the letter F. Darker color indicates higher AUC and

better predictive performance of the corresponding receptor model.

b Average hydrogen bond percentage of the top 1 % compounds in 36

VS runs. Protonation and rotameric states are marked for each

histidine. Lighter color indicates higher hydrogen bond percentage,

with % unit for the colorbar. The R2 for the correlation between the

AUCs and average hydrogen bond percentage for each VS run is 0.42

(see Online Resource 4 for the scatter plot). c Receptor performance

dependence on His62 (top) and His119 (bottom). The median of the

AUC values of each protonation state is shown with large horizontal
line. The small ticks in each histidine model mark six different

protonation states of the other histidine. The thicker vertical lines
represent 25–75 % range of the AUCs. The best receptor models are

shown explicitly with the models’ protonation states

242 J Comput Aided Mol Des (2013) 27:235–246

123



results from different packages relative to our VS results

and discuss them further.

Docking of the decoys

Various factors lead to differences in ranking across the

receptors, particularly with respect to the decoys. Gener-

ally, the decoys that ranked higher than the actives were of

high molecular weight and had more potential to have

hydrogen bonds with the receptor. In this section, we fur-

ther analyze the frequent interaction patterns observed

between the decoys and receptor, with a focus on the

receptor models with poor enrichment.

Decoys tend to have larger molecular weight and more ring

structures than the actives (Table 2). This results in the decoys

ranking higher, due to hydrophobic interactions in the absence

of hydrogen bonds to the receptor. Figure 5a shows the

hydrophobic interactions achieved through the large inactive

compound 16952387 in receptor model 19. This compound is

often ranked within the top five in many VS runs for its sub-

stantial pi–pi stacking interactions with Phe26, Tyr132, and

Tyr138. This trend is frequently observed in virtual screening

where larger molecules rank better as a result of extensive

interactions with the receptor [46].

The enrichment performance is particularly low for the

receptors providing abundant hydrogen bonding networks

to the decoys. Interactions through His62 and His119 were

not widely observed for the actives, and therefore com-

pounds with larger enthalpic contributions erroneously

rank more favorably. An example shown in Fig. 5b depicts

the interaction of inactive compound 17388064 in receptor

model 3 (AUC 0.868), ranked as first. In this receptor,

which is the worst at ranking compounds based on AUC,

compound 17388064 forms two hydrogen bonds with two

histidines, one between its hydroxyl hydrogen and the

d-nitrogen of HIE62 and the other between its hydroxyl

oxygen and the hydrogen on d-nitrogen of HID119. This

compound has five hydrogen bond donors and nine

acceptors, a large number compared to the respective

averages of those of the decoys and actives (Table 2).

Therefore, with a high hydrogen bonding contribution to

the total score of 34.7 ± 6.62 %, this decoy compound is

frequently observed to form at least one hydrogen bond

with either of the two histidines, thereby achieving high

ranks in multiple VS runs.

Two other receptor models, model 29 with HIP62 and

HIP119 and model 5 with HIE62 and HIP119, show similar

interaction patterns to decoys as model 3. These three models

have the lowest AUC values, with an average of 0.870 among

them. As discussed above, their AUC values differ signifi-

cantly from other receptors, reflecting the subtle relationship

between hydrogen bonds achieved through His62 and

His119 and poor enrichment. An additional figure describing

the hydrogen bonding networks between the decoys and

receptors is provided in Online Resource 5.

pKa prediction for His62 and His119

Our results clearly demonstrate the sensitivity of virtual

screening on histidine protonation and rotameric states. In

Table 2 Comparison of molecular weight, number of hydrogen bond

donor, and number of hydrogen bond acceptor for the actives and

decoys

Actives Decoys

Average molecular weight (g/mol) 417.69 353.85

Stdev. of molecular weight (g/mol) 27.07 80.85

Average number of hydrogen bond donor 1.1 1.04

Average number of hydrogen bond acceptor 5.8 5.89

a

b

Fig. 5 a Interaction of the inactive compound 16952387 with flipped

HID62 and HIE119 in receptor model 19. The compound has no

interaction with either histidine. Pi–pi stacking interactions with

Phe26 from chain B, Tyr132, and Tyr138 contribute to its high rank,

along with hydrogen bonds with Arg23, Arg59, Arg170, and Ser51

(not shown). b Interaction of the inactive compound 17388064 with

HIE62 and HID119 in receptor model 3. Both histidines provide

hydrogen bonds to the compound
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many computational biophysical studies, the protonation

states of the titratable residues are determined using vari-

ous pKa prediction programs. To assess the performance of

these programs to identify the receptor model with the best

predictive power in docking, we compared the pKa pre-

diction results of His62 and His119 from PROPKA,

Maestro, H??, and MCCE, as shown in Table 3 with the

calculated pKa values.

First, PROPKA 3.1 predicts that both His62 and His119

are neutral regardless of the presence of TRH during prep-

aration. The program, however, cannot assign rotameric

states of histidines. Therefore, a state of HID, flipped HID,

HIE, or flipped HIE must be determined manually. Similar to

PROPKA, the program H??, which uses a single-structure

continuum electrostatics, also finds both histidines to be

neutral, although the predicted pKa values are different from

those from PROPKA. The program MCCE, which is based

on multi-conformation continuum electrostatics, predicts

His62 to be neutral while His119 to be protonated.

Next, we used the Protein Preparation Wizard in Mae-

stro to calculate pKa of His62 and His119 with and without

TRH. Note that Maestro is able to vary rotameric states,

whereas PROPKA cannot. A recent update enables Mae-

stro to employ PROPKA in its pKa prediction instead of

Epik. With Epik, Maestro predicts both His62 and His119

in doubly protonated states, regardless of the presence of

TRH. Interestingly, the receptor model that corresponds to

this multi-histidine state has the worst predictive power

with an AUC of 0.869. When PROPKA is used, HIP62 and

HIE119 are predicted for the protein-TRH complex and

HIE62 and HIE119 for the apo protein. These two pre-

dictions by PROPKA in Maestro correspond to the models

of moderate enrichment performance, with AUCs of 0.971

for model 25 (HIP62 and HIE119) and 0.942 for model 1

(HIE62 and HIE119), respectively.

Given that the above predictions made by different

software vary significantly from each other, caution should

be taken when using these results as a guideline to prepare

a protein for virtual screening. Without intimate knowledge

of the true protonation state of the receptor as well as the

ligands being screened, it is difficult to address this prob-

lem. Therefore, we suggest that a small-scale analysis, like

one performed in this study, and comparison with experi-

mental data, if available, could provide a more accurate

description of protonation and rotameric states of the

titratable residues in protein receptors for future larger-

scale screenings. Alternatively, a model that includes

explicit incorporation of alternative side chain protonation

and rotameric states during docking, potentially with

information stored in the grid as exists for rotatable

hydroxyls and thiols in Glide, may be worth pursuing.

Examination of the results with respect to the protonation

states and rankings based on interactions with histidines

should be carefully examined before proceeding to exper-

imental testing.

Additionally, receptor flexibility will likely affect the

protonation states of the ionizable residues. While this was

not explicitly studied here, aside from minimization of each

receptor after assigning protonation states, protein flexibil-

ity is clearly important for drug design and development

[47, 48]. Considering conformational and protonation space

in conjunction becomes quickly intractable with physical

methods such as those described here, but enhanced sam-

pling methods show promise in tackling such difficulties

[49]. This includes constant pH molecular dynamics simu-

lations, for which the pH is an external thermodynamic

variable, used for blind prediction of pKa values of the

titratable residues [50–52]. Effectively applying results

from these simulations to molecular design is an ongoing

area of interest. Equilibrium ensembles from such simula-

tions can be used in conjunction with docking as an appli-

cation of relaxed complex scheme, where virtual screening

is conducted with an ensemble of differently protonated

structures, to improve the enrichment results [53]. Taking

receptor flexibility into account in the target preparation

will lead to broader sampling of conformational and pro-

tonation space, thus enhancing the performance of VS.

Conclusions

Protein–ligand recognition is of central importance in

structure-based drug discovery. Correctly accounting for the

chemical environment surrounding the ligand is imperative

for characterizing and predicting the molecular interactions.

Table 3 Comparison of the predictions for protonation states of

His62 and His119 of RmlC made by commonly used software, with

calculated pKa values

RmlC-TRH complex RmlC without TRH

His62 His119 His62 His119

PROPKA 3.1

pKa 4.24 5.8 5.16 6.12

Protonation Neutral Neutral Neutral Neutral

Maestro with PROPKA

pKa 7.09 5.6 4.99 6.12

Protonation HIP HIE HIE HIE

Maestro with Epik

Protonation HIP HIP HIP HIP

H??

pKa 3 \0.0 3 \0.0

Protonation HIE HIE HIE HIE

MCCE

pKa \0.0 7.201 2.771 1.347

Protonation Neutral HIP Neutral HIP
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The possible effect of the various protonation and rotameric

states of the ionizable residues of the receptor on virtual

screening (VS) is critical yet often overlooked. In this study,

we thoroughly examined the influence of the protonation and

rotameric states of histidine on the predictive power of the

docking protocol for drug discovery.

A histidine can adopt three different forms depending on

the net charge and the location of proton(s). Due to common

ambiguities in X-ray crystal structures, three additional

states may be generated through flipping of the imidazole

ring. In this work, we performed a VS study on the Mtb

enzyme RmlC to investigate the effect of six protonation and

rotameric states of histidines. We systematically examined

the contribution of hydrogen bonding interactions provided

by two histidines in the active site, His62 and His119. The

predictive performance of receptors was assessed by quan-

titatively analyzing enrichment factors and area under the

receiver operating characteristic curve. We showed that the

hydrogen bonding networks involving His62 and His119 are

important in the interaction between the co-crystal ligand

TRH and active site, validating the significance of accurate

description of protonation and rotameric states of the two

histidines in VS. We compared the typical patterns of

interactions achieved with the active site residues observed

for the active compounds and decoys; whereas the actives

often involve only hydrophobic interactions, the high-

ranking decoys are erroneously enriched by additional

hydrogen bonds provided by His62 and His119. Our analy-

ses reveal the sensitivity of virtual screening on protonation,

ionization, and rotameric states of active site histidines. We

recommend a priori analysis of receptor-ligand hydrogen

bonding interactions, in addition to the usage of protonation

assignment software packages, to prepare a receptor for

virtual screening. Systematically assessing binding site

protonation state effects before conducting a large virtual

high-throughput screening, beyond empirical state predic-

tion, may therefore result in enrichment gains.
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