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ARTICLE INFO ABSTRACT

The highly potent carcinogen, Aflatoxin B,, induces liver cancer in many animals including humans but some
mice strains are highly resistant. This murine resistance is due to a rapid detoxification of AFB;. Hepatic lipid
droplets (LDs) ultimately impact the liver functions but their potential role in AFB; detoxification has not been
addressed. This study describes the structural and functional impacts on hepatic LDs in BALB/C mice after
exposure to 44 (low dose) or 663 (high dose) ug AFB,/kg of body weight. After 7 days, the liver of AFB;-dosed
mice did not accumulate any detectable AFB; or its metabolites and this was associated with a net increase in
gene transcripts of the AhR-mediating pathway. Of particular interest, the livers of high-dose mice accumulated
many more LDs than those of low-dose mice. This was accompanied with a net increase in transcript levels of LD-
associated protein-encoding genes including Plin2, Plin3 and Cideb and an alteration in the LDs lipid profiles that
could be likely due to the induction of lipoxygenase and cyclooxygenase genes. Interestingly, our data suggest that
hepatic LDs catalyze the in vitro activation of AFB, into AFB;-ex0-8,9-epoxide and subsequent hydrolysis of this
epoxide into its corresponding dihydrodiol. Finally, transcript levels of CYP1A2, CYP1B1, GSTA3 and EH1 genes
were elevated in livers of high-dose mice. These data suggest new roles for hepatic LDs in the trapping and
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detoxifying of aflatoxins.

1. Introduction

Aflatoxins (AF) are a group of lipid-derived toxins secreted by cer-
tain common fungi including Aspergillus flavus and A. parasiticus [1-3].
AFs cause both chronic and acute toxicity in humans and animals fol-
lowing consumption of fresh and/or stored AF-contaminated food and
feed. In terms of chronic exposure, aflatoxin B; (AFB;), [(6aR,9aS)-
2,3,6a,9a-Tetrahydro-4-methoxy-1H,11H-cyclopenta[c]furo[3',2":4,5]
furo[2,3-h][1]benzopyran-1,11-dione], is the most toxic form of AFs
and is regarded as the most potent environmental carcinogen identified
to date, where the exposure to AF is considered as a major causal factor
of hepatocellular carcinoma (HCC) [1,3,4]. Acute exposure to AFB; also
provokes many immunotoxicological effects and alterations in cytokine
expression in various animal species [5-7]. Of particular interest, it was
shown that AFB; affects the expression of lipid metabolizing genes in
rat liver, suggesting a potential connection between the AFB;-induced
lipid metabolism and in the long term a possible elevated risk of cor-
onary heart disease [8].

It is well known that the livers of AF-exposed animals are the most
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active accumulating organs of such toxins, and that the liver plays
important roles in the sequestration and biotransformation of AF
[9,10]. The hepatic detoxifying capability of AFs, which are highly li-
pophilic molecules, is ensured by the high intracellular lipid content
plus a battery of AF-metabolizing enzymes, most notably microsomal
cytochrome P450s. The biological connection between AF and hepatic
lipids has been demonstrated in AFB;-producing fungal cells where
biosynthesis, trafficking and exporting of AFB, are strictly modulated
by fungal LDs and their associated proteins, especially caleosin/per-
oxygenase AfPXG [11,12]. Addition of exogenous AFB; also causes al-
terations in plasma and liver lipid levels in exposed animals [8,13,14].
Moreover, the integrated analysis of transcriptomic and metabolomic
profiles of AFB;-induced hepatotoxicity in AFB;-dosed rats revealed
that dysfunction of lipid metabolism was a major metabolic effect,
suggesting its potential use as a biomarker for detecting AFB;-induced
acute hepatotoxicity [15].

The efficient and rapid detoxification of AFB; requires a set of en-
zymes that actively metabolize such xenobiotics into more hydrophilic
metabolites that are more readily excreted in the urine (via the kidney)
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or in the bile (via the liver). This process varies between different an-
imal species and even between strains of the same species. In the case of
common laboratory animals, mice are less sensitive than similar
mammalian species such as rats, guinea pigs, and rabbits [16]. More-
over, different inbred mouse strains have differential cellular suscept-
ibilities towards AFB;, with the BALB/C strain being highly resistant
compared with strains such as C57B1/6, B10A and CBA/J [17]. In this
context, murine resistance to AFB; is related to, but not limited to, the
activation of AFB; by hepatic a-glutathione-S-transferases (GSTAs),
mainly GSTA1 and GSTA3, that rapidly conjugate the AFB;-exo-8,9-
epoxide (AFBO) with glutathione forming the AFB;-exo-glutathione
[18], suggesting GSTA as a primary pathway responsible for the de-
toxification of the AFB; in mice [19,20]. Although the AFBO conjuga-
tion reaction by GSTA is well characterized in mice, the upstream
catalytic activating of AFB; is still uncertain. This is because mice do
not harbor an ortholog of human CYP3A4 that catalyzes the epoxida-
tion of AFB;, but do express an ortholog of CYP1A2 that putatively
epoxidizes AFB; in other mammals, an activity that has never been
reported in mice [21], suggesting that the AFB,-resistance is probably
due to the involvement of other pathways.

Mammalian liver cells are well known as active sites of lipid me-
tabolism and this is often reflected in the accumulation, or even hyper-
accumulation, of hepatic LDs that typically contain a mainly tria-
cylglycerol core that is surrounded by a specific population of lipid-
associated proteins [22-24]. In some cases, hepatic LDs can also serve
as storage organelles for lipophilic molecules such as retinoids [25].
Recent studies have demonstrated that the murine hepatic LD proteome
is highly dynamic and can undergo rapid compositional changes in
response to fasting and refeeding [26]. Hepatic LDs are also implicated
in a variety of pathologies, most notably alcohol-related and non-al-
colohic fatty liver disease [27,28] and hepatitis C infection [29,30].
However, although LDs have been shown to sequester lipophilic toxins,
such as AFBy, in fungi an analogous role for hepatic LDs has yet to be
elucidated in animals.

In this study, we report the involvement of hepatic LDs in the se-
questration/trafficking, and possibly, the biotransformation of AFB; in
BALB/C mice, an AFB;-resistent strain. To investigate this, hepatic LDs
from female mice, exposed to low or high doses of AFB, for 7 days, were
isolated, purified and characterized with respect to their abundance,
size, lipid and protein content. Furthermore, the in vitro bio-
transformation activity of hepatic LDs towards AFB; was measured
together with transcript abundances of key genes involved in the
binding and activation of AFB;.

2. Materials and methods
2.1. Chemicals, animals, conditions and treatments

Aflatoxin Bl (AFB1) standards from Aspergillus flavus, aniline, cu-
mene hydroperoxide and all organic solvents were purchased from
Sigma-Aldrich, USA. Oligonucleotides (Table S1) were supplied by the
Unit of primers synthesizer at AEC. Twelve-week old female mice, with
average weight of 20 g, of BALB/C were obtained from the Breeding
Unit for Inbred Mice at the Department of Molecular Biology and
Biotechnology, Atomic Energy Commission of Syria (AECS). Mice were
housed in clean cages, received feed and clean tap water ad libitum and
kept under standard 12-h light/dark cycles at 25 = 2°C and 40-60 %
humidity. Fifteen mice were used in the experiments which were ran-
domly divided into three groups of five animals. Dose-related tox-
icological effects have been reported in AFB1-exposed laboratory ani-
mals notably in mice [17,31-33]. Apparently, these different effects are
produced by different pathways. For this reason, in the current work we
studied the effects of a low dose (L-dose) and a high dose (H-dos) of
AFB1 on the hepatic LDs to determine the responsive and functional
capacities of these organelles as a function of AFB1 dose. To do this,
groups I and II mice orally received a single 50 pL-dose of corn oil
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containing 44 (low dose) or 663 (high dose) ug AFB,/kg of body weight
while group III was received a similar dose of corn oil alone [31]. Seven
days later, mice were weighed and euthanized. The livers were rapidly
removed, rinsed with 0.9 % NaCl, weighed, immediately frozen in li-
quid nitrogen and stored at -20 °C until further use. All animal experi-
ments were carried out in accordance with the U.K. Animals (Scientific
Procedures) Act, 1986 and associated guidelines, EU Directive 2010/
63/EU for animal experiments. This study was approved by the AECS
Committee of Animal Ethics.

2.2. Extraction and thin layer chromatography (TLC) analysis of aflatoxins

Liver tissue (about one gram) of each experimental mouse was used
for analysis of aflatoxin B, and its potential biotransformation products.
Extraction of AFs was done according to Hanano et al., [12] using 2 mL
of chloroform for one hour on a rotary-shaker. Recovery of the ex-
tracted AFB; was evaluated using a spiked sample with 50 ng AFB; for
one gram of liver tissue. Thus, the recovered concentration of AFB; was
considered in the subsequent calculations. The extracts were analyzed
by thin layer chromatography (TLC) according to [11]. Samples were
spotted onto a C;g reverse-phase TLC plate (aluminum sheets
20 x 20 cm, 200 pum layer, Merck, Germany) and the chromatogram
developed using a solvent system of chloroform/acetone (90:10, v/v).
The detection of AFB1 was compared with a AFB;-standard point
containing 5ng by spotting 1 uL of AFB; standard (5 pg/mL). After
development, the spot having a Rf value similar to AFB; standard (20
ug/mL) was scraped then re-extracted with chloroform and evaporated
to dryness under nitrogen. The extract was resuspended with 100 pl
chloroform and the concentration of AFB; was measured by spectro-
photometer at 360 nm.

2.3. Isolation of LDs and microsomal fractions from animal livers

The isolation of LDs was based on their buoyant density, which is
less than 1 g/cm?®, by differential centrifugation and using a gradient
floating buffer in cooling conditions [34]. The pooled livers of each
animal group (about 3 g) were vigorously ground in a mortar and pestle
and in the presence of liquid nitrogen. The liver powder was im-
mediately homogenized with 6 mL of homogenization buffer (HB)
(50mM Tris—HCl, 1mM EDTA, 1M sorbitol, pH 7.5). The total
homogenate was divided into four fractions of 1.5 mL each, transferred
into 2-mL microcentrifuge tube and centrifuged at 5000 X g for 15 min
at 4 °C. The supernatant (about 1 mL) containing LDs was taken into a
clean 2-ml tube, overlaid with an equal volume of floating buffer (FB)
(50 mM Tris—HCI, 1 mM EDTA, 1M sorbitol, pH 7.5) and centrifuged
at 21,130 x g for 1h at 4° C. After centrifugation, three fractions were
obtained, an upper creamy floating layer corresponding to the LDs, an
infranatant phase corresponding to cytosolic proteins fraction, and a
pellet corresponding the microsomal fraction (M). LD fractions were
separately and carefully taken and subjected to a one-step washing with
1 mL of FB, then centrifuged at 21,130 X g for 1h at 4 °C. Finally, the
respective fractions, LDs or M, were re-suspended in 100 pL of sus-
pension buffer (50 mM Tris — HCI pH-7.5, 1 mM EDTA pH-8.0 and 10 %
glycerol) and stored at 4 °C.

2.4. Characterization of LDs

Isolated LDs were examined under light microscope (Olympus with
a mercury light source) at a magnification of X 40. LDs were stained by
Nile Blue dye and examined by a fluorescent microscope. For that, the
lipophilic Nile Blue dye was dissolved in dimethyl sulfoxide (DMSO) at
concentration of 1 mgmL ™! then diluted 10 X and freshly used to stain
1puL of LDs for 15min at room temperature. Stained LDs were im-
mediately examined under a fluorescent microscope (Nikon Ti-U mi-
croscope supplied with an Olympus FE-4000 camera) using red and
green fluorescence filters (excitation, 545 and 480 nm; emission, 620
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and 535 nm, respectively) at x 40 magnification. The concentration of
proteins associated with LDs was determined by the Bradford method
using bovine serum albumin (BSA) as a standard [35]. The absorbance
at 595 nm was measured using a Jenway 6840 spectrophotometer.

2.5. Lipid profile using TLC

The organic mixture (chloroform/acetone) described above for
protein precipitation was also used for extraction of lipids from LDs.
After centrifugation, the organic phases containing the lipid fraction
were transferred into new tubes and evaporated to dryness under ni-
trogen. Extracted lipids were re-dissolved in 50 pL of the same solvent
mixture and analyzed by TLC. Samples were spotted onto a C;g reverse-
phase TLC plate (aluminum sheets 20 x 20 cm, 200 um layer, Merck,
Germany) and the chromatogram developed using a solvent system of
hexane/diethyl ether/acetic acid (80:20:1, v/v/v). Developed TLC
plates were dried at room temperature and lipids visualized by iodine
vapor.

2.6. Hydroxylation enzymatic activity

The potential fatty acid-oxygenation activities of LD-associated
proteins were assayed by a rapid test based on measurement of aniline
hydroxylation [11,36]. This was performed by incubating an increasing
amount of LDs containing about 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8 and
25.6 ug of total proteins with 1 mM of aniline in a final volume of 1 mL
of 10 mM sodium acetate buffer, pH 5.5 and 20 % (v/v) glycerol. The
enzymatic activity was initiated, at room temperature, by adding 4 mM
of cumene hydroperoxide as an oxygen donor. The accumulation of
hydroxyaniline was spectrophotometrically measured at 310 nm.

2.7. Genes, primers and transcripts analysis

Three sets of genes were selected to study hepatic transcriptional
changes in response to the AFB,. Set I refers to key genes involved in the
reception and detoxification pathway of AF, e.g. aryl hydrocarbon re-
ceptor (AhR), aryl hydrocarbon receptor nuclear translocator (ARNT),
nuclear factor kappa (NFxB), cytochrome P450 1A1(CYP1Al), cyto-
chrome P450 1A2 (CYP1A2), cytochrome P450 1B1 (CYPIBI1), glu-
tathione S-transferase a-1 (GSTA1), glutathione S-transferase a-3
(GSTA3) and epoxide hydrolase 1 (EH1). Set II comprises the lipox-
ygenases (LOX5, LOX12 and LOX15) and cyclooxygenases (COX1 and
COX2) catalyzing oxygenation of polyunsaturated fatty acids. Set III
contains a collection of genes encoding LD-associated proteins, e.g.
Perilipin 2 (Plin2), Perilipin 3 (Plin3), Perilipin 4 (Plin4), Perilipin 5
(Plin5), Cell death-inducing DFFA-like effector b (Cideb), Cell death-
inducing DFFA-like effector c (Cidec), peroxisome proliferator-activated
receptor a (Ppara), peroxisome proliferator-activated receptor gamma
(Pparg) and peroxisome proliferator-activated receptor delta (Ppard).
Gene expression was normalized to that of a set of reference genes, i.e.
actin-beta (Actb), ribosomal protein L13a (RPL13a), hypoxanthine
phosphoribosyl transferase 1 (Hprtl) and succinate dehydrogenase
complex flavoprotein subunit A (SdhA). Table 1 summarizes gene name,
NCBI-accession number, forward and reverse oligonucleotides and ex-
pected amplicon size.

Changes in relative transcriptional abundance of three sets of genes
in response to AFB1 exposure were analysed by reverse-transcription
quantitative PCR (RT-qPCR) as described [37]. For RNA extraction,
30 mg of liver from each animal group were finely ground in the pre-
sence of liquid nitrogen and the total RNA was extracted using an
RNeasy kit according to the manufacturer’s instructions (Qiagen, Ger-
many). DNA traces were removed by treating the samples for 1h at
37 °C with 2 U of RNase-free RQI DNase (Promega, USA). RNAs were
diluted to 50 ng/uL using RNase-free water and stored at - 80 °C. Ali-
quots of 1 ug total RNA were used for first-strand cDNA synthesis using
M-MLV RT (Invitrogen), for more details please refer to Hanano et al.,
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[38]. Real-time PCR was performed in 48-well plates using an AriaMx
Real-time PCR System from Agillent technologies, USA. In brief, 25 puL
reaction mixtures contained 0.5 uM of each specific oligonucleotide
primer for the target and reference genes, 12.5 uL of SYBR Green PCR
mix (Bio-Rad, USA) and 100 ng cDNA. qPCR conditions were as de-
scribed before [36]. Each point was replicated in triplicate and the

average of Cy was taken for calculation of the relative quantification RQ
_ 2(7aach,

2.8. In vitro biotransformation of AFB;

The activity of LD and microsome fractions isolated from control
and AFB;-treated mice were assayed for biotransformation of AFB;. An
aliquot of 100 pL containing about 15 pg protein from each fraction was
separately incubated with 15ng of standard AFB; pre-dissolved in
DMSO at 37° C for 1h with gentle shaking (~200 rpm). After incuba-
tion, the AFB1 and its metabolites were immediately extracted with
1 mL of chloroform by vigorous vortexing for 15 min and a brief cen-
trifugation at 14,500 rpm for 5 min. The organic phase was evaporated
under nitrogen and resolved in 50 pL chloroform for further analysis.
AFB; metabolites were analyzed by TLC onto a C;g reversed-phase plate
(Aluminum sheets 20 X 20 cm, 200 um layer, Merck, Germany) using a
solvent system of chloroform/acetone (9:1 v/v). Plates were examined
under UV light at 365nm. UV-florescent metabolites of AFB; was
scraped and re-extracted from the silica gel by 0.5 mL of chloroform as
described above.

2.9. Detection of AFB; metabolites by HPLC-FD

Purified AFB; and its metabolites were analyzed on a Waters
Alliance 2695 HPLC system (Waters Corporation, Milford, MA, USA)
equipped with a 2475 fluorescence detector. Samples were run at 25 °C
on a ZORBAX SB-C;g column. The mobile phase, the gradient schedule,
and detection conditions were as described previously [39]. The flow
rate was 1 mL/min and the injection volume was 50 pL. Fractions cor-
responding to each metabolites were collected and the spectral char-
acterization of both metabolites, AFB; 8,9-epoxide and AFB;-exo0-8,9-
dihydrodiol, was performed by UV- and Fluorescent-spectroscopy as
described by Johnson et al., [40]. First, absorbance (Abszgp— 400) Spectra
were recorded using a Jenway 6840 spectrophotometer with a wave-
length range from 300 to 400 nm. Fluorescence spectra were recorded
using a Varian SF-330 spectrofluorometer, with a wavelength range
from 350 to 550 nm.

2.10. Statistics

All data presented were expressed as means * standard deviation
(SD). Statistical analysis was performed using IBM SPSS statistics 23p4.
Statistical significance between control and treatments was evaluated
by ANOVA.

3. Results
3.1. Detection of AFB; and its metabolites in mouse liver

AFB; and its metabolites were extracted from livers of healthy and
AFB;-dosed animals and analyzed by TLC. No blue-fluorescent spots
were detected in the extracts of livers from L- (low AF doses) and H-
dosed (high AF doses) animals corresponding to the AFB, standard Rf of
0.316 (Fig. 1 A). The rapid detoxification of AFB; was accompanied
with an increase in transcripts levels of selected genes involved in cy-
totoxicological responses of animal cells towards aflatoxins, i.e., aryl
hydrocarbon receptor (AhR), aryl hydrocarbon receptor nuclear trans-
locator (ARNT), nuclear factor kappa (NFxB). These gene products po-
tentially regulate expression of genes involved in the initial steps of
AFB;-activation. The relative quantification of genes transcripts, shown
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Table 1
Names and nucleotide sequences of primers used in this study.
Name Accession # Forward Primer Reverse Primer Amplicon
Actb NM_007393.5 TCCAGGCTGTGCTGTCCCTGT ACGCAGGATGGCGTGAGGGA 125
RpL13a NM_009438.5 CGAGCCCCCAGCCGCATTTT AGCAGGGACCACCATCCGCT 147
Hprtl NM_013556.2 GCAGCGTTTCTGAGCCATTG TCATCGCTAATCACGACGCT 172
SdhA NM_023281.1 ACCTGACAGCTACAGGACCA GACAAAGTCTGGCGCAACTC 173
AhR NM_001314027.1 TCCACCGCTGCTGGTGAGGT CTGCTGCTGGCAAGCCGAGT 117
ARNT NM_001037737.2 GCTCATTCCCTCCTAACCCC GTCTTGGCTGTAGCCTGGG 217
NFkB NM_001177369.1 CGCCACCTGCTGATGGCACA GCAGAGGCGTCTGGTGCAGG 163
CYP1A1 NM_009992.4 CCTGTGGTGGTGCTGAGCGG CAGGGCATTCTGGGCCAGGC 183
CYP1A2 NM_009993.3 TCACTAACGGCAAGAGCATGA TGGCTGACTGGTTCGAAGTG 223
CYP1B1 NM_009994.1 GCGACGATTCCTCCGGGCTG CTCATGCAGGGCAGGCGGTC 193
GSTA1 NM_008181 CCCCCAGACCAAAGAGAAGCCA ACCCTGGTCAGCCTGTTGCC 131
GSTA3 NM_001077353 TACCCCCACATGCCCCCTGA AGCCCTGCTCAGCCTGTTGC 144
EH1 NM_001312918 ATTCCCTGACCCCTCTCCTGGG CCCACAGTGTCCGGCTTGGT 160
LOX5 NM_009662.2 CCCCTGGAGAGAGTAACCCA TGAAAAGGGGATGCACAGCA 192
LOX12 NM_007440.5 TTTGACTTCGACGTTCCCGA GGAGGCTCAGGATTCCCTCT 181
LOX15 XM_006532036.3 GAAGATGTAACCCACCACGTTC CCAAGACAGAGGAACACAGGG 174
COX2 NM_011198.4 AACCGCATTGCCTCTGAAT CATGTTCCAGGAGGATGGAG 130
COX1 XM_017316496.1 TTTCTCTCAGCCTCTTCGGG GGTTCAATCCCTCCCAGCTC 244
Plin2 NM_007408.3 ACCGTGACCTCTGCGGCCAT TCGCCCCAGTTACGGCACCT 181
Plin3 NM_025836.3 CAGCAGCAGCGACAGGAGCA AGCCTCTGGTCCACACCCTGT 191
Plin4 NM_020568.3 AAGGCACAGCGCAGATGGGT ACAGCCCCTGTGAGCCCTGT 187
Plin5 NM_025874.3 GCGCAGCGTGGATGCTCTACA GGCCCGCAGGACCAAATCCA 145
Cideb NM_009894.3 AGCCTTCAACCCCAATGGCCTG ACACGGAAGGGTCGCTGAGGT 105
Cidec NM_178373.4 TGCTCCGCTGGACCCTCTTCA GCTTGGCCTTGGCAGGCTGT 117
Ppara NM_011144.6 TCGGCTGAAGCTGGTGTACGA CCCGACAGACAGGCACTTGTG 106
Pparg NM_001127330.2 CAGGTTTGGGCGGATGCCACA TCGCCCTCGCCTTGGCTTTG 167
Ppard NM_011145.3 AAAGACGGGCTGCTGGTGGC CGCGATGAAGAGCGCCAGGT 162

in Fig. 1 B, reveals a brief raise in AhR gene transcript levels while those
of ARNT and NFkB increased by 27.9 and 5.5-fold respectively. These
results show that, after seven days, the livers of AFB;-dosed mice do not
accumulate detectable traces of AFB; or its metabolites, possibly due to
a rapid and efficient hepatic AFB,-detoxifying system mediated by the
AhR pathway.

3.2. The exposure to AFB1 modulates the number and composition of
hepatic LDs in a dose-dependent manner

LDs were firstly fractioned from liver of healthy mice. The quality
and purity of LD fractions were examined by light and fluorescence
microscopy. As shown in Fig. 2, isolated LDs appeared as intact sphe-
rical structures under the light microscopy and confirmed by Nile Blue
staining under fluorescence microscopes, where the stained LDs were
highly fluorescent in green and in red under according to the filter used.
The LDs were subsequently fractioned from livers of control (Fig. 3 A I
and II) and AFB1-exposed animals of L-dose (Fig. 3 B I and II) and H-
dose (Fig. 3 C I and II), respectively. The LD count was about of
60 x 10* per mL in the fraction isolated from the liver of control mice
(Fig. 3 ATII), decreased to about of 45 x 10* per mL L-dose mice (Fig. 3
B III), but considerably increased to about of 148 x 10* per mL in H-
dose mice (Fig. 3 C III). The concentration of LD-associated proteins
was much lower in L-dose fractions, not exceeding 0.22 mg mL (Fig. 3 A
IV), but was considerably higher in the H-dose fraction, reaching about
2.5mgmL ™! (Fig. 3 B IV). This compared to an LD-associated protein
concentration in the control fraction of about 1.8 mg/mL (Fig. 3 C IV).

Unexpectedly, although the concentration of LD-associated proteins
decreased in L-dose fraction, we did not detect any significant change in
the transcript levels of their respective genes (Fig. 3 D). In contrast, the
increase in the concentration of LD-associated proteins in the H-dose
fraction was accompanied by increases in the transcript levels of key
LD-associated proteins encoding genes, notably Plin2, Plin3 and Cideb.
The transcript levels of these genes increased about of 25-, 9- and 6-
fold, respectively (Fig. 3 D). These data indicate that exposure of mice
to AFB1 affects the accumulation of hepatic LDs and possibly their
proteomic signature in a dose-dependent manner. Also, while, a chronic
dose of AFB; leads to a net decrease the hepatic LDs, an acute dose
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stimulates their accumulation.
3.3. Exposure to AFB1 affects the lipid profile of hepatic LDs

Both the composition of LD-associated proteins and the nature of
their lipidic core can play important roles in the diverse biological
functions of LD organelles. The lipid composition was evaluated for
each fraction of LDs using TLC. Compared to controls, the lipidic profile
of LDs extracted from L-dose set contained only small amounts of TAG
and a surprising amount of MAG (Fig. 4 A). However, the LD lipids of H-
dose mice contained the expected main five classes, namely as MAG,
DAG, TAG, free fatty acids (FFA) and sterol esters (SE) albeit with re-
duced relative amounts of MAG and DAG. Polyunsaturated fatty acids
and their oxygenated metabolites, collectively termed oxylipins, that
are present in the lipidic core of LDs are crucial for their biological
functions. Therefore, the expression of selected genes involved in the
oxygenation of polyunsaturated fatty acids pathways was examined,
i.e., Lipoxygenases (LOX5, LOX12 and LOX15) and Cyclooxygenases
(COX1 and COX2) respectively catalyzing the formation of leukotrienes,
prostaglandins and thromboxanes. As shown in Fig. 4 B transcripts le-
vels of these genes varied as a function of AFB; dose. In particular,
transcripts levels of LOX5, LOX12, LOX15 and COX2 were significantly
more induced in the livers of L-dose animals while COX1 transcripts
were only increased in the livers of H-dose animals. Furthermore, the
induction of LOX genes in the livers of L-dose animals was synchronized
with a similar induction of the hyroperoxide reductase activity of the
LDs fraction prepared from the livers of L-dose animals. Compared to
controls, this activity was about of 0.2 Abssz;( greater in the LDs of L-
dose animals and about of 0.1 Abss;, less in the LDs of H-does animals
(Fig. 4 C). These results indicate that exposure of mice to AFB; modi-
fies, in a dose-dependent manner, the lipid profile of hepatic LDs and
the expression of key oxylipin biosynthesis pathway genes.

3.4. Purified hepatic LDs can catalyse the biotransformation of AFB; in
vitro

The sequestration of AFB; into LDs of fungal cell was recently de-
monstrated [11]. However, the biochemical connection between the
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AFB,; Control

L-dose H-dose

40 -
Control = L-dose m H-dose

RQ (fold)

AhR

ARNT NFKB

Fig. 1. Hepatic metabolism of AFB; and activation of genes expressed from the
AhR-mediating pathway. A, TLC-analysis of AFB; extracted from livers of
control and AFB;-treated mice at low (L) or high doses (H). The Rf values of
samples were compared to the Rf of an AFB, standard. B, Relative quantifica-
tion (RQ) data of AhR, ARNT and NFkB gene transcripts as described in
Methods. Two independent measurements were taken of cDNAs prepared from
three individual animals for each treatment. For each dose, the expression level
for a given gene in the control was defined as 1 and the corresponding abun-
dance changes in L- and H-dosed animals were calculated. Uppercase letters
indicate significant differences in the genes expression between control and
AFB;-dosed animals, where columns with different upper case letters (a,b) were
statistically significant ((®P < 0.05) and (a,c) were statistically very significant
(P < 0.01), as determined by the ANOVA test.

AFB; and LDs in animal cells has yet to be elucidated. To determine
whether a such connection exists, AFB; was incubated with LD fractions
from livers of control, L-dose and H-dose mice. The TLC data in Fig. 5
show that LD fractions from L-dose and H-dose mice metabolized AFB,
similarly to each other but differently from controls. Most of the AFB;
was still intact after incubation with control LDs but it was metabolized
in the treated mice into two derivatives (1 and 2) with Rf values of 0.57
and 0.44, respectively (Fig. 5 A). To characterize the AFB; metabolites,
the two spots were re-extracted and separately analyzed by TLC (Fig. 5
B). In parallel, the purified metabolites were subsequently analyzed by
HPLC-FD, where the less retained metabolite was eluted at retention
time (Rt) of 8.75, while the other metabolite was eluted at Rt of 20.58,
compared with the intact AFB1 that has a Rt of 25.62 (Fig. 5 C). In
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respect to their Rt values, compared with those that have been earlier
reported, the both metabolites could probably correspond to AFB;-exo-
8,9-dihydrodiol and AFB;-exo-8,9-epoxide, respectively. To gain more
information about the biochemical identity for these metabolites, both
was characterized in the respect to their respective spectral features and
this was summarized in Table 2. First, in term of absorbance changes
(Abs300—400), the absorbance spectra indicate a |y, of 348 nm for the
AFB;-ex0-8,9-epoxide and a | max of 364 nm for the hydrolysis product,
AFB;-ex0-8,9-dihydrodiol. A comparison of spectra shows that the
widest change in Abs upon hydrolysis of the epoxide was between 370
and 390 nm. Moreover, the difference in the fluorescence spectra be-
tween the AFB;-ex0-8,9-epoxide and the AFB;-exo0-8,9-dihydrodiol was
significant. The |,.x for AFB;-exo0-8,9-epoxide was 382 nm, however,
the |max for AFB;-exo0-8,9-dihydrodiol was 454 nm. In addition, com-
pared to their levels in controls, transcripts levels of CYP1A2, CYPIBI,
GSTA3 and EHI1 were much higher in the H-dose animals (2.1, 5.02,
3.75 and 4.94-fold, respectively) (Fig. 5 D). These data suggest that
hepatic LDs of AFB;-dosed can effectively catalyze the biotransforma-
tion of AFB1 and this activity conducts the transformation of AFB;-exo-
8,9-epoxide into its corresponding dihydrodiol.

4. Discussion

Aflatoxin B, (AFB,) is a highly potent poison that contaminates both
human foods and animal feedstuffs and particularly targets the liver of
exposed individuals. The acute-hepatotoxicity of AFB, is typified by the
induction of apoptosis and genotoxicity in humans, with a potential
additional risk of hepatocellular carcinoma [41-44]. Minimizing the
cytotoxicity of AFB; is dependent on the presence of an efficient hepatic
detoxifying system that ensures a rapid elimination of AFB;. In this
report, we describe new evidence for the involvement of hepatic LDs in
the detoxification of an acute dose of AFB, in the AF-resistant strain of
BALB/C mouse. The results show that, after seven days, the livers of
AFB;-dosed mice did not accumulate detectable traces of AFB, or its
potential metabolites and that this could be due to a rapid and efficient
hepatic AFB;-detoxifying system mediated by the AhR pathway. These
data support earlier reports of the rapid elimination of AFB; from liver
tissue of BALB/C mouse and its correlation with a specific transcrip-
tional pattern of the AhR-mediating pathway [17,45]. Such a rapid
elimination of AFB, is in accordance with a recent report of increased
transcripts levels of aryl hydrocarbon receptor (AhR), aryl hydrocarbon
receptor nuclear translocator (ARNT) and nuclear factor kappa (NFxB),
which are key genes implicated in the initial steps of AFB;-activation
[46].

Our data also indicate that the exposure of mice to AFB; affects the
accumulation of hepatic LDs and possibly their proteomic signature in a
dose-dependent manner. While, a chronic dose of AFB; caused a net
decrease in hepatic LD numbers, an acute dose stimulated their accu-
mulation, suggesting involvement of two different pathways relating to
AFB; detoxification by hepatic LDs. Interestingly, dose-differential re-
sponses to AFB; have been demonstrated by several groups [19,32].
Although acute aflatoxicosis is less common than the chronic condition,
it can occur occasionally as shown in episodes correlated with acute-
dose-specific gluconeogenesis and lipid metabolism disorders [15]. The

Fig. 2. Detection of hepatic LDs fraction under
light and fluorescent microscopy. A, micro-
graph of LDs fraction from liver of control an-
imal under normal light at x 40 magnification.
B and C, micrographs of LDs after staining by
Nile Blue. Stained LDs were examined under a
fluorescent microscope (Nikon Ti-U microscope
supplied with an Olympus FE-4000 camera)
using green and red fluorescence filters (ex-
citation, 515-560 nm; emission, > 590 nm) at
magnification of X 100. Bars represent 10 pm.
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determination of the proteomic signature of LDs requires isolation of
highly pure LDs fractions. The purity of LDs in this study was confirmed
by two sequential washings to eliminate endoplasmic reticulum-asso-
ciated proteins contaminants as previously discussed [26]. Several
previous investigations have highlighted the dynamic character of LDs
and the often rapid changes in LD proteomes in response to a wide

Ppara

Pparg

Ppard

Toxicology Reports 7 (2020) 795-804

Fig. 3. AFB, affects accumulation of hepatic
LDs and expression of their associated proteins
in a dose-dependent manner. A, B and C, mi-
crographs of LD fractions from control, L and H
dosed animals under a fluorescent microscope
using green (panel I) and red (panel II) filters at
magnification of X 40. Bars represent 5 um. LD
counts and the concentration of their asso-
ciated proteins are presented for each fraction
in panel III and IV, respectively. D, trancript
levels of LD-associated protein-encoding genes
analysed by qRT-PCR. Two independent mea-
surements were taken of cDNAs prepared from
three individual animals for each treatment.
For each dose, the expression level for a given
gene in the control was defined as 1 and cor-
responding abundance changes in L- and H-
dosed animals calculated. Uppercase letters
indicate significant differences in the genes
expression between control and AFB;-dosed
animals, where columns with different upper
case letters (a,b) were statistically significant
((° P < 0.05) and (a,c) were statistically very
significant (° P < 0.01), as determined by the
ANOVA test.

pathophysiological factors [24,26,47-50]. Perilipins are major compo-
nents of the mammalian LD proteome and are involved in their for-
mation and subsequent functions [51]. In this context, our data showed
that expression of certain perilipins, notably Plin2 and Plin3 was in-
duced by TCDD which is in line with earlier reports indicating the es-
sential role of these perilipins in the structural stability of LDs [52]. It is

range of developmental, environmental, physiological and suggested that Plin2 promotes LD formation and thereby protects the
A B C
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Fig. 4. AFB; modifies the lipid profile of hepatic LDs and the expression of key genes in the oxylipin biosynthesis pathway. A, TLC-analysis of neutral lipids of hepatic
LD isolated from control, low- (L)- and high- (H)-dosed animals. Abbreviations: MAG, monoacylglycerol; DAG, diacylglycerol; FFA, free fatty acids; TAG, tria-
cylglycerol; SE; sterol ester. B, relative quantification of transcripts for key genes of the oxylipin biosynthesis pathway. C, enzymatic activity of the LD-associated
oxygenases measured by differential absorption at 310 nm. For each set, two independent measurements were taken for three individual animals. Uppercase letters
indicate significant differences in the genes expression or enzymatic activity between control and AFB;-dosed animals (> P < 0.05).
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lipidic core from lipolysis [53,54]. More interestingly, the activation of
Plin2 is normally modulated by peroxisome proliferator-activated re-
ceptor a (PPARa) and y (PPARY) signaling in various tissues, including
the liver and kidney [55-57] which is in agreement with our data
showing a brief but significant increase in PPARa transcripts. More-
over, our data demonstrate that TCDD induced the expression of Cideb,
a member of cell death activator proteins. This observation is of special
importance regarding the biological roles of this protein in mediating of
LD growth as well as LD-LD interactions, especially in adipocytes, and
in promoting exchange of lipids and other components between LDs
[58].

In addition to their protein profiles, our data indicate that exposure
to AFB; also modifies LD lipid profiles and expression of key oxylipin
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Fig. 5. Trapping and biotransformation of AFB, by hepatic LDs. A,
TLC-separation of AFB; metabolites (spots 1 and 2) resulting from
in vitro incubation of standard AFB; with a pure fraction of liver
LDs from control, L and H dosed mice. B, sequential TLC-analysis
for the purified metabolites 1 and 2 compared to AFB; standard. C,
HPLC-FD-analysis of AFB; and its metabolites 1 and 2 compared
with their respective standards with retention times of 25.62,
20.58 and 8.75, respectively. D, relative quantification of tran-
scripts for key genes involved in the activation and bio-
transformation of AFB;. Two independent measurements were
taken of cDNAs prepared from three individual mice for each
treatment. For each dose, the expression level for a given gene in
the control was defined as 1 and the corresponding abundance
changes in L- and H-dosed animals were calculated. Uppercase
letters indicate significant differences in the genes expression be-
tween control and AFB;-dosed animals (> P < 0.05).

7=/

20

biosynthesis pathway genes. In this context, lipids have been used as
biomarkers to assess cell status under various conditions and even as
clinical diagnostic tools. For example, specific lipids associated with
diabetes and obesity are routinely used in diagnosis [59,60]. The ac-
cumulation and lipid patterns of adipocyte LDs was found to be con-
ditioned by several factors and this was mediated via fatty acid uptake
or lipogenesis [61]. We also found that the acute-AFB;-dosed mice had
high level of hepatic TAGs. This is in line with reports showing that
acute exposure to AFB; increased levels of plasma and liver lipids no-
tably TAGs [8,14]. Our results show that AFB;-related changes in LDs
lipid profiles were accompanied by increasing transcript levels of some
fatty acid metabolizing genes, notably LOXs and COXs, which were
differentially induced as a function of AFB; dose. In agreement with
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Table 2

Values of Rs; Rt and Amay of AFB; metabolites.
Metabolite Absorbance (Amax) Fluorescence (Amax) TLC (R)" HPLC-FD (Rt)" Reference
Metabolite 1 364 454 0.57 8.75 This study
AFB1-ex0-9,8-dihydrodiol 365 450 12.2 1,2
Metabolite 2 348 382 0.44 20.58 This study
AFB1-ex0-9,8-epoxide 350 380 21.20 1,2,3,4

1 [64].

2 [40].

3 [39].

4 [74].

@ Retention factor in TLC.
> Retention time in HPLC-FD.

this, several lines of evidence have demonstrated induction of LOX and
COX genes in response to inflammatory stimuli and to high risk of
carcinogenesis [62,63].

Interestingly, our results show that the purified LDs can catalyze the
biotransformation of AFB; into the corresponding dihydrodiol and this
activity is enhanced in the LD fraction isolated from AFB;-dosed ani-
mals. Indeed, the biochemical identities of the resulting metabolites, as
suggested as AFB;-ex0-8,9-dihydrodiol and AFB;-exo-8,9-epoxide, can
be supported by several lines of analytical evidence. First, each meta-
bolite was eluted from HPLC-FD system at retention time that is rela-
tively similar to the values reported before [39,64]. More specifically,
the purified metabolites exhibited absorbance and fluorescence spectral
features that are identical to those of AFB;-exo0-8,9-dihydrodiol and
AFB;-ex0-8,9-epoxide [40]. The formation of these metabolites under
the action of a purified fraction of hepatic LD necessity the presence of
the enzymes that are typically involved in a such process, i.e., an AFB;-
epoxidase and possibly a hepatic AFB;-epoxide hydrolase. The affinity
of AFB; for LDs has been experimentally proven in several previous
studies [11]. However, the integration of AFB;-metabolizing enzymes
into the LDs was unexpected. Indeed, the enrichment of LDs with such
enzymes could be explained by two possibilities; the first is that AFB,-
metabolizing enzymes, or a subset of them, are LD-associated proteins,
and the second is that these enzymes, or a subset of them, are stored/
trapped in the LDs. Whatever the method of association, there are
multiple reports of the presence of CYP450 proteins in hepatic LDs and
their increasing abundance increased during diet-induced hepatic
steatosis [65-67].

Although our observations suggested that the biotransformation of
AFB; by LDs is likely mediated by an AFB;-epoxidase and a microsomal
AFB;-epoxide hydrolase, the involvement of hepatic a-glutathione S-
transferases, especially GSTAS3, in this process is also possible. This can
be concluded by the net increase in the level of gene transcripts that we
detected in the liver of highly AFB,-dosed mice. Accordingly, the most
likely mechanism for the extreme sensitivity of some animal species and
humans is due to the absence of functional hepatic GSTA3 and its
analogs [68-70]. As a result, the AFB,-epoxide remains freely active to
form DNA and RNA adducts inducing mutations, block transcription
and/or alter translation [71,72]. The functional implication of GSTA3
in the detoxification of AFB; was also clearly demonstrated in the
GSTA3-knockout mice which, when exposed to AFB,, exhibited a strong
induction of hepatocellular carcinomas or cholangiocarcinomas [73].
Inversely, AFB1-resistent wild-type mice strains harbored a high ac-
tivity of GSTA3 which is consistent with our observations in this study
[19].

5. Conclusions

This study highlights the potential role of hepatic LDs in the rapid
detoxification of AFB; when BALB/C mice, known for high resistance to
AFB1, were exposed to an acute dose of AFB, for 7 days. An acute dose
of AFB, induced accumulation of LDs in the livers of exposed animals.

Of particular interest, purified fraction of LD was likely able to detoxify
AFB; in vitro into the corresponding dihyrodiol. Although the current
work presents some of interesting indication on a possible involvement
of hepatic LDs in the biotransformation of AFB,, future research is re-
quired for better characterization of this new mechanism. So, we sug-
gest to pay a particular attention to the hepatic LDs and their potential
roles in the detoxification of AFB;. It also opens up new horizons for
additional roles of LDs in the sequestration, biotransformation and ex-
cretion of lipid-soluble toxins in general.
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