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Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate
organs, acting as building blocks of the gap junctions (GJs) known to play vital roles
in the normal function of many organs. Mutations in Cx genes (particularly GJB2,
which encodes Cx26) cause approximately half of all cases of congenital hearing loss
in newborns. Great progress has been made in understanding GJ function and the
molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types
of Cxs work together to ensure normal development and function of the cochlea. These
findings include many aspects not proposed in the classic K+ recycling theory, such as
the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti),
the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation
of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data,
especially those collected from targeted modification of major Cx genes in the mouse
cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation
of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in
the EP generation, given that only Cx26 is required for normal hearing. This article will
review our current understanding of the molecular structure, cellular distribution, and
major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs
on the design and implementation of translational studies of cochlear gene therapies for
Cx mutations are also discussed.
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INTRODUCTION

Connexins (Cxs) are ubiquitous membrane proteins that are present throughout the vertebrate
organs. Six Cx subunits are assembled into a connexon, a hexameric structure in the cell
membrane (also called a hemichannel; Dermietzel et al., 1990; Liu et al., 2006; Laird and Lampe,
2018). Undocked hemichannels provide conduits to connect intracellular and extracellular spaces
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when opened upon different stimuli and allow movement of
molecules such as ions, ATP and fluorescent dyes (Alstrøm
et al., 2015). Two hemichannels align to form one gap
junction (GJ) channel that spans the plasma membrane and
provides a conduit connecting the intracellular spaces of two
adjacent cells (Dermietzel et al., 1990). These intercellular
channels facilitate the movement of ions and biochemically-
active molecules [e.g., glucose (Chang et al., 2008), ATP (Bevans
and Harris, 1999; Anselmi et al., 2008), miRNA (Zong et al.,
2016), and cell signaling molecules such as second messengers
(Laird and Lampe, 2018)] that are essential for nutritional and
signaling needs of cells. Invertebrates have similar proteins
called innexins (Phelan et al., 1998; Güiza et al., 2018; Slivko-
Koltchik et al., 2019). Another family of proteins shared between
lower chordates and vertebrates are termed pannexins (Baranova
et al., 2004; Tang et al., 2008), which generally form membrane
channels that connect the intracellular and extracellular spaces,
but rarely form GJs (Beyer and Berthoud, 2018). Currently
there are 21 and 20 subtypes of Cxs found in humans and
mice, respectively. Nineteen of these Cxs are orthologs that
are shared between the two species (Söhl et al., 2003; Bedner
et al., 2012). Compatible Cx subtypes co-assemble to form GJs
in order to perform specific functions appropriate for local
microenvironment (White, 2002; Ahmad et al., 2003). The most
common GJs found in the adult rodent cochlea are co-assembled
from Cx26 and Cx30, both of which are present in all types of
non-sensory cells in the cochlea (Ahmad et al., 2003; Sun et al.,
2005; Hoang Dinh et al., 2009).

GJs play vital roles in maintaining homeostasis of the
microenvironment of cell-cell interactions in tissues (Zhao et al.,
2006; Meşe et al., 2007). These intercellular channels are essential
in the normal development and function of many organs,
especially where microcirculation is poor, such as lens in the
eyes (White, 2002) and the organ of Corti in the cochlea
(Wang Y. et al., 2009) where physiology requirements demand
special arrangements. The formation of morphogen gradients
during development is critically dependent on GJs (Pietak
and Levin, 2018). During cardiovascular and uterine muscle
development, synchronization of myocyte contraction depends
on the transmission of action potentials through GJ-mediated
‘‘electrical synapses’’ (Delorme et al., 1997). Mutations in various
types of Cxs directly cause a large spectrum of human diseases
(Srinivas et al., 2018). Most relevant to this review, mutations
in Cxs cause more than half of all congenital cases of both
syndromic and non-syndromic deafness (Hoang Dinh et al.,
2009; Beheshtian et al., 2016).

The idea of GJs in the organ of Corti was first suggested
in the 1970s, when ultrastructural examination of cochlear
morphology led to the proposal of a ‘‘functional syncytium’’
among supporting cells in the organ of Corti (Jahnke, 1975;
Iurato et al., 1977). The essential role of GJs in hearing
is revealed through numerous genetic linkage analyses and
functional studies associating mutations in Cx genes with
congenital hearing impairment in humans (White et al.,
1998; Bruzzone et al., 2003; Chang et al., 2003; Del Castillo
et al., 2003). Meanwhile, various roles for hemichannels in
cochlear supporting cells and lateral wall cells have been

proposed as well, such as releasing of K+, ATP or IP3 into
extracellular space by cochlear cells (Verselis, 2019). Abnormal
opening of hemichannels caused by GJB2 mutations has serious
consequences on the ability of cells to maintain homeostasis
and are suspected to cause syndromic hearing loss that may
lead to death in early childhood (Stong et al., 2006). The
accumulation of data demonstrates that mutations in GJB2,
which encodes Cx26, account for approximately half of all
inherited prelingual non-syndromic deafness cases in both
European and East Asian populations (Maw et al., 1995; Morell
et al., 1998; Dai et al., 2009, 2015; Liu X. Z. et al., 2009).
It is now clear that mutations in Cx genes are one of the
most common genetic causes of hearing loss. Recently, a role
for Cx26 in noise- and age-dependent hearing loss has also
been proposed (Wang et al., 2014; Wu et al., 2014; Zhou
et al., 2016; Zong et al., 2017). In addition, hundreds of
mutations associated with human deafness have been identified
in Cxs other than GJB2, such as GJB6 (encoding Cx30;
Grifa et al., 1999), GJB3 (encoding Cx31; Xia et al., 1998;
López-Bigas et al., 2001), GJE1 (encoding Cx29; Yang et al.,
2007), and GJB1 (encoding Cx32; Rabionet et al., 20001). The
deafness-linked GJB2 mutations include at least 93 truncation
mutations, 239 point mutations that are known to cause either
non-syndromic or syndromic deafness. Most of these mutations
are inherited in the autosomal recessive manner, but there are
at least 14 reported autosomal dominant point-mutations as
well (Figure 1).

A complex set of Cxs forming homotypic/
heterotypic/heteromeric GJs are expressed in the cochlea in
developmentally-regulated and cell type-specific manners.
Recent data suggest that Cx26 and other Cxs play essential
roles in the development and maintenance of the cochlear
function (Ahmad et al., 2003; Qu et al., 2012; Chang et al., 2015a;
Mammano, 2018), such as the formation of the normal cochlear
morphology, development of the endocochlear potential (EP;
Qu et al., 2012; Wingard and Zhao, 2015; Mammano, 2018).
In contrast to the assumptions made by the K+ recycling
theory, Cx mutations clearly affect GJ function long before
the establishment of the high concentration (∼150 mM) of
K+, the EP, and the onset of hearing (Kamiya et al., 2014).
Many studies have suggested plausible theories (e.g., expression
profile, functional maturation of the cochlea, hair cells (HCs)
synaptic formation, etc.; Chang et al., 2015a; Jagger and Forge,
2015; Zhao, 2017). This review article will provide a brief
review of our current understanding of the molecular structure,
cellular distribution and function of cochlear GJs, as well as
the translational relevance of knowledge of cochlear GJs to the
success of cochlear gene therapies for Cx mutations.

MOLECULAR STRUCTURE AND PATTERN
OF EXPRESSION OF COCHLEAR GJS

General Protein Structure of Cochlear GJs
Most mammalian Cx genes consist of two exons, with exon
1 encoding the 5′-untranslated region (5′-UTR), while exon

1http://davinci.crg.es/deafness/
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FIGURE 1 | A diagram of human Connexin 26 (Cx26) protein mutations linked to hearing loss. The four types of mutations (frame shift, truncation, single amino acid
substitution and in-frame deletion) are color-coded. Red stars denote residues with more than one type of mutation.

two contains the complete coding sequence (CDS) and the 3′-
UTR. However, GJB1 and GJC1 (encoding Cx32 and Cx45,
respectively) have more than two exons, with exon 3 encoding
the CDS (Teunissen et al., 2007). Hydropathy plots of Cxs predict
a common membrane topology consisting of four hydrophobic
membrane-spanning domains (M1–M4), connected by two
extracellular loops (El and E2) and one intracellular loop, with
C- and N-termini both in the cytoplasm. The N-terminus
and extracellular loops appear to be relatively conserved across
paralogous Cxs, while the C-terminus shows the most variability.
The C-terminus is not essential for surface expression of Cxs,
as truncating mutations do not prevent trafficking to the
membrane or GJ assembly (Martin et al., 2000). However, the
C-terminus is the major site for phosphorylation and contains
sites for interacting with non-Cx proteins (e.g., cell junction or
cytoskeleton proteins) such as vinculin, calmodulin, ZO-1, and
spectrin (Lampe and Lau, 2000; Batissoco et al., 2018). These
findings suggest that variability in the C-terminus may affect the
trafficking of Cxs. In contrast, the N-terminus of Cxs has been
found to form part of the pore entrance (Purnick et al., 2000;

Musa et al., 2004) together with the transmembrane M1 domain
and extracellular E1 loop. The three domains are key components
in GJ pore formation, as well as in voltage- and chemical-
gating [e.g., by (Ca2+) changes] of GJs (Purnick et al., 2000;
Sanchez and Verselis, 2014). The M1 domain also contributes to
GJ voltage-gating polarity (Verselis et al., 1994), size selectivity,
and unitary conductance (Kronengold et al., 2003). Importantly,
the E1 domain constitutes the bulk of the aqueous pore and
the E2 loop determines Cx compatibility in the assembly of
heterotypic GJs, which are essential for GJ functions in cochlea
and other organs (Sanchez and Verselis, 2014; Bai et al., 2018).

Cellular Expression Patterns of Various
Subtypes of GJs in the Cochlea
Multiple subtypes of Cxs are found in the cochlea, and many
exhibit temporal regulation of expression during development,
starting from early embryonic stages. For instance, Cx31 is
expressed starting at E12, Cx26 at E14.5, Cx30 at E15, Cx43 at
E15.5, and Cx45 at E17.5 (Lautermann et al., 1998; Xia
et al., 2000; López-Bigas et al., 2002; Ahmad et al., 2003;
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Cohen-Salmon et al., 2004; Sun et al., 2005). Given GJs
play a vital role in embryonic stages, it is necessary to
investigate the cellular pattern and developmental time course
of Cx expression in order to better understand the molecular
basis of hereditary deafness. One of the earliest studies
utilized a cDNA dot-blot analysis method, to quantitatively
investigate the expression levels of 15 Cx genes in the
mouse cochlea (Ahmad et al., 2003). The expression patterns
and relative abundance of four major cochlear Cxs were
determined by this method (from highest to lowest expression:
Gjb2>Gjc3>Gjb6≈Gja1). Multiple studies have demonstrated
that major subtypes of Cxs expressed in the cochlea are
Cx26 (Kikuchi et al., 1995; Lautermann et al., 1998; Forge
et al., 1999; Chang et al., 2008) and Cx30 (Xia et al., 2001;
Ahmad et al., 2003; Teubner et al., 2003) in non-sensory
cells of cochlea [e.g., supporting cells, lateral wall fibrocytes
and basal cells of stria vascularis (SV)]. The study by Tang
et al. (2006) was the first to show the expression of Cx29 in
the cochlear Schwann cells. Other studies have shown that
Cx43 is expressed in the SV and mature bony capsule (Suzuki
et al., 2003; Cohen-Salmon et al., 2004), and Cx45 is found
in the cochlear blood vessels (Cohen-Salmon et al., 2004).
Other reported but more controversial Cxs appear to be
minor cochlear Cxs, including Cx23 (Locher et al., 2015),
Cx31 (Xia et al., 2000), Cx30.2 (Buniello et al., 2004), Cx31.1
(Buniello et al., 2004), Cx32 (López-Bigas et al., 2002), Cx36
(Liu W. et al., 2009), Cx40 (Buniello et al., 2004), and
Cx59 (Buniello et al., 2004). Expressions of pannexin subtypes
1, 2, and 3 (Wang X. H. et al., 2009) have also been
reported, but their ability to form GJ channels is controversial
(Sahu et al., 2014). Data support that it is unlikely that
they are assembled into cochlear GJs, but may function as
hemichannels (Penuela et al., 2007).

The compatible pairs of major GJ-forming Cxs in the
cochlea are Cx26–Cx30 (Ahmad et al., 2003), and Cx26–Cx31
(Liu X. Z. et al., 2009). Depending on the Cx composition,
heteromerically and heterotypically assembled GJs demonstrate
characteristic unitary conductance, permeability, voltage- and
chemical-gating properties that are suited for their specific
physiological roles (White and Bruzzone, 1996). It has been
shown that heteromeric GJ channels assembled from Cx26 and
Cx30 facilitate intracellular Ca2+ signaling twice as fast as their
homomeric counterparts (Sun et al., 2005). In addition, the
permeability of hetero- or homomeric GJs constituting Cx26 and
Cx30 are found to display different charge- and size-selective
properties (Sun et al., 2005). The following sections provide more
detailed information about molecular structure of cochlear GJs
and their constituting Cxs.

Cx26 and Cx30
GJs constituting Cx26 and Cx30 are the predominant GJs in
the cochlea. These GJs connect all types of non-sensory cells in
the organ of Corti, the connective tissue fibrocytes in the lateral
wall and at least the basal cells in the SV (the expression of
Cxs in the intermediate cells in the SV is controversial; Forge
et al., 2003; Sun et al., 2005; Zhao and Yu, 2006; Liu W. et al.,
2009; Kamiya et al., 2014). Given that Cx26 and Cx30 are not

expressed in cochlear HCs (Ahmad et al., 2003; Zhao and Yu,
2006; Liu W. et al., 2009; Kamiya et al., 2014), it is generally
believed that there are no direct intercellular conduits linking
HCs and supporting cells. Cx26 expression and formation of
Cx26-containing GJs are detected in the mouse cochlea as
early as E14.5 (Sun et al., 2005; Kamiya et al., 2014). mRNA
levels of both Cx26 and Cx30 peaks in the cochlea around
P10, just before the onset of hearing in mice (Ahmad et al.,
2003). In contrast, Western blots demonstrate that protein
levels of both Cxs saturate around P15, and stay at the adult
patterns and levels afterward. Cx26 and Cx30 exhibit gradient
expression in the basilar membrane, with three-fold greater
expression in the apex than the base (Zhao and Yu, 2006).
In animals other than mice, immunofluorescent staining of
guinea pig and rat cochleae shows an expression pattern of
Cx26 and Cx30 consistent with that found in mice (Zhao
and Yu, 2006; Liu and Zhao, 2008), namely that Cx26 and
Cx30 are not expressed in the IHCs or OHC but in all
types of cochlear non-sensory cells. However, largely due to
limited availability of materials, the expression profiles of
Cx26 and Cx30 in the human cochlea are still unclear. One
preliminary study using human adult cochlea (Liu W. et al.,
2009) reported that Cx26 and Cx30 are widely expressed in
the lateral wall fibrocytes and supporting cells of Organ of
Corti. A subsequent study by the same group showed that
Cx26 and Cx30 proteins may not necessarily be co-assembled
in the lateral wall of adult human cochlea, and homomeric GJs
consisting of either Cx26 or Cx30 may be more prevalently
assembled than previously thought (Liu et al., 2016). In human
embryonic cochlea, expression of Cx26 has been detected as
early as 11 weeks of gestation (W11; Kammen-Jolly et al., 2001;
Locher et al., 2015). At W18, Cx26 is consistently detected in
the supporting cells of the organ of Corti and the Kolliker’s
organ, the outer sulcus cells, and Claudius cells (Locher et al.,
2015). Cx30 is also detected in human embryologic cochlea in
the Kolliker’s organ and the cells lining the outer sulcus cells
(Locher et al., 2015).

Quantitative comparison of Cx26 and Cx30 protein levels
indicates that Cx26 is expressed earlier than Cx30 in the cochlea
(Sun et al., 2005), suggesting that loss of Cx26 expression may
transiently result in a near elimination of GJs in the developing
cochlea. Likewise, mice with a conditional knockout of Cx26 in
the cochlea exhibit more severe and rapid cellular degeneration
than mice lacking Cx30 (Sun et al., 2009). More importantly,
hearing could be normal in the absence of Cx30 as long as
Cx26 protein level is maintained at the WT level (Ahmad et al.,
2007; Qu et al., 2012; Boulay et al., 2013; Chang et al., 2015a;
Jagger and Forge, 2015). These observations suggest that the role
of Cx26 in the developing cochlea is not replaceable by Cx30
(Ahmad et al., 2003; Qu et al., 2012; Boulay et al., 2013).

Cx29
In the mouse cochlea, Cx29 expression was first detected by
the cDNA dot-blot hybridization and immunolabeling methods,
and it is localized to the cochlear Schwann cells after birth,
but not in the embryologic cochlea (Ahmad et al., 2003; Tang
et al., 2006). These findings were supported by additional studies
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using both in vitro and in vivo studies (Eiberger et al., 2006; Li
et al., 2007). Approximately 50% of Cx29−/− mice exhibit early
loss of high-frequency hearing and elevated sensitivity to noise
damage (Tang et al., 2006), suggesting that Cx29 is required
for normal cochlear function. Data from deaf patients have also
linked mutations in Cx29 to hearing loss in humans, suggesting
that Cx29 is a new candidate for studying auditory neuropathy
(Yang et al., 2007).

Cx31
The expression of Cx31 is detected by in situ hybridization
as early as E12 in Reissner’s membrane, SV and spiral
limbus, the supporting cells, and fibrocytes in the spiral
ligament (Xia et al., 2000; López-Bigas et al., 2002). In
contrast, Cx31 expression disappears postnatally in most
cells. After P12, only the type II and IV fibrocytes are
positive for immunolabeling of Cx31 (Xia et al., 2000).
However, no labeling in the sensory epithelial cells has
been observed at any developmental stage (Xia et al., 2000;
López-Bigas et al., 2002). Thus, the precise pattern of
Cx31 expression in the cochlea is still unclear. Mutations
in the GJB3 gene encoding Cx31 (e.g., in-frame 3 bp
deletion: 423-425delATT) have been linked to hearing loss
in Chinese families with recessive deafness (Xia et al., 1998;
Liu X. Z. et al., 2009).

Cx32
Cx32 is reported to be expressed in the SV, spiral limbus,
Reissner’s and basilar membranes, and spiral ganglion neurons
(SGNs) as detected by in situ hybridization (López-Bigas et al.,
2002). However, these results are inconsistent with other studies
utilizing cDNA microarrays, immunolocalization, and western
blotting (Forge et al., 1999; Ahmad et al., 2003). In particular,
Forge et al. (2003) failed to detect Cx32 using both RT-PCR and
Western blots. Overall, Cx32 appears to be a minor player among
cochlear GJs, as no severe hearing loss is observed in Cx32 null
mice (Scherer et al., 1998). Cx32 mutations (e.g., Va163Ile and
Glu186Lys) have been linked to X-linked peripheral neuropathy
(e.g., X-linked Charcot-Marie-Tooth disease), and deafness may
indirectly manifest as one of many phenotypes in humans
(Matsuyama et al., 2001).

Cx43
Cohen-Salmon et al. (2004) were the first to find Cx43 expression
in the developing cochleae of mice. They reported that
Cx43 expression starts as early as E15.5. Fibrocytes and the
mesenchymal cells below the basilar membrane are labeled at
E16.5. By P5, Cx43 expression is detected in fibrocytes of the
spiral ligament, in the SV capillaries and mesenchymal cells
lining the basilar membrane. From P8 onwards, the expression
pattern of Cx43 changes to the bony layer of the otic capsule,
and the expression level increases with maturation, which is
consistent with findings obtained by cDNAmicroarrays (Ahmad
et al., 2003). However, details of Cx43 cellular localization are
still unclear (Lautermann et al., 1998; Liu et al., 2001; Suzuki
et al., 2003). One consistent finding appears to locate the Cx43 to
the capillaries of the SV in mice. In human fetal cochlea,
Cx43 expression is detected by immunostaining in a subgroup

of spiral ligament fibrocytes at W14. By W18, these cells are
more clearly defined as type I fibrocytes (Locher et al., 2015). A
missense mutation (e.g., 976C→T, Thr326Ser) in Cx43 has been
linked to hereditary hearing loss in humans (Yang et al., 2007).

Cx45
Expression of Cx45 is detected in the mouse cochlea by E17.5,
in fibrocytes of the spiral limbus and ligament, mesenchymal
cells under the basilar membrane and lining the scala vestibule,
and in capillary cells (Cohen-Salmon et al., 2004). At P1, SGNs
are more intensely labeled compared to embryologic stage. After
P8, Cx45 is detected mainly in the capillaries and mesenchymal
cells lining the basilar membrane (Cohen-Salmon et al., 2004).
However, other groups reported that Cx45 was not detectable
by RT-PCR or by western-blot in mature mouse cochlea (Forge
et al., 2003). To date, no pathogenic mutations have been
identified in Cx45 (Ouyang et al., 2011).

Pannexins (Panxs)
Panx1 and 2 expressions were first reported by Tang et al.
(2008) as early as E16.5 in the mouse cochlea. Western-blot and
immunolabeling show that Panx1 is expressed in the inner and
outer sulcus cell, the Claudius cells and the SGNs. In contrast,
Panx2 is detected only in the soma and nerve fibers of SGNs
(Tang et al., 2008). Other studies (Wang X. H. et al., 2009;
Zhao et al., 2015; Zhao, 2016) reported labeling of Panx1 in the
supporting cells of the organ of Corti, and the Panx2 in SV and
SGNs, Panx3 was detected in cochlear bone. Only one case report
suggested that a homozygous PANX1 variant (c.650G→A) may
be associated with sensorineural hearing loss (Shao et al., 2016).

PROPERTIES AND PROPOSED
FUNCTIONS OF GJs IN THE COCHLEA

GJ intercellular channels possess a relatively large pore size
(10–15 Å; Wingard and Zhao, 2015; Zhu et al., 2015b) that allow
the passage of ions, nucleotides, miRNA, second messengers
and other small molecules up to 1.8 kDa (Neijssen et al.,
2005). Gating of GJs may regulate permeability to both larger
(e.g., via gating to stay at various incompletely closed sub-
states; Hesketh et al., 2009) and small molecules (e.g., by
completely closed GJs; Bukauskas et al., 2002). Based on the
studies that electrical coupling was not significantly affected
in many mutant GJs known to affect hearing in humans
(Kameritsch et al., 2005; Zhang et al., 2005), regulation of
GJ permeability for cell-signaling and biochemically-important
molecules (e.g., glucose, cAMP, nitric oxide) has been considered
as the major function of cochlear GJs. The importance
of GJ-mediated biochemical coupling is further supported
by studies demonstrating that Cx26 mutations linked to
human deafness (e.g., V84L, V95M, A88S) specifically affect
GJ-mediated biochemical coupling (Beltramello et al., 2005;
Zhang et al., 2005). Based on current understanding about
the molecular properties of gating, developmental and spatial
expression patterns, and molecular composition of cochlear
GJs, multiple theories/hypotheses have been proposed for
their functions.
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K+ Recycling Theory: GJs Facilitate the
Diffusion of K+ Away From the Base of Hair
Cells
The scala media is filled with endolymph which contains
a high concentration of K+ of ∼150 mM extracellularly.
Acoustic stimulation induces K+ ions to flow into HCs
through mechanotransduction channels, causing K+ ions to
accumulate at the base of HCs if not quickly removed. The
K+ recycling theory proposes that K+ accumulated during
auditory transduction is removed by passive diffusion through
intercellular GJs in supporting cells surrounding the HCs. These
K+ ions are then recycled back into the endolymph through the
GJs in the spiral limbus as well as the GJs in the lateral wall. One
fault of this theory is that it does not identify the nature of the
driving force for making the upward turn along the proposed
K+ recycling pathway. Furthermore, new results obtained by
multiple groups (Sun et al., 2009; Mammano, 2011; Zhao, 2017)
from conditional Cx26 and Cx30 knockout mice are inconsistent
with the predictions of classical K+ recycling theory:

(a) OHC degeneration starts days before the degeneration
of IHCs (Wang Y. et al., 2009). As IHCs are the true
mechanotransducer cells that are innervated by 90–95% of
type I afferent fibers, and would be expected to accumulate
large amount of the extracellular K+ that needs to be removed,
this observation is not compatible with that expected by the
K+ recycling theory.

(b) Data clearly show that the major cochlear GJs constituted
by Cx26 play an essential role in the structural development
(e.g., the opening of the tunnel of Corti) and functional
maturation (e.g., cessation of spontaneous depolarization
activities) of the cochlea (Wang Y. et al., 2009). Abnormal
GJ formation is also observed in embryonic cochlea (Kamiya
et al., 2014) weeks before the establishment of high K+, EP,
and onset of hearing in mice (Wang Y. et al., 2009; Qu et al.,
2012; Chang et al., 2015a; Jagger and Forge, 2015; Zhao, 2017).
The timing of these observed events wouldmake the proposed
K+ recycling unnecessary.

(c) Conditional knockout of Cx26 before early postnatal stages
(e.g., before P4) results in severe hearing loss inmice (Wang Y.
et al., 2009; Chang et al., 2015a). Many cellular defects in
the developing cochleae are observed, such as abnormal
ribbon synapses, spontaneous depolarizing activities, pruning
of type I and type II fibers of SGNs (Chang et al., 2015a). In
contrast, conditional null of Cx26 expression in the cochlea
after P16 does not significantly affect normal hearing (Chang
et al., 2015a). These observations are not compatible with K+

recycling theory.
(d) There are other GJ systems in the cochlea, but not in the

proposed K+ recycling pathway (e.g., GJs assembled from
Cx29, Cx43), that play important cochlear functions that are
clearly not linked to K+ recycling at all.

Initiation of the EP
The EP is generated by a complex regulation of K+ fluxes by ion
channels, membrane transporters/co-transporters and GJs in all

types of cells in the SV (Prazma, 1975; Nin et al., 2008). The
EP starts to develop around P5 in mice and reaches maturity
at P17–18 (Sadanaga and Morimitsu, 1995). Importantly, EP is
never developed in Gjb6−/− mice, which lack Cx30, presumably
due to disruption of the endothelial barrier in the SV (Teubner
et al., 2003; Cohen-Salmon et al., 2007). Alternatively, the
reduction of EP has been related to the absence of Cx30 and
reduced Cx26 expression in the basal cells of the SV (Boulay
et al., 2013; Chen et al., 2014; Mei et al., 2017). In contrast,
conditional knockout of Cx26 in the mouse cochlea reduces but
does not eliminate, positive EP (Chen et al., 2014; Mei et al.,
2017; Mammano, 2018). However, this phenotype results may be
due to incomplete elimination of Cx26 expression in basal cells
and fibrocytes in the lateral wall in the conditional Cx26-null
mouse model. These studies indicate that Cx30 is needed for
the initiation of the EP, but may indirectly act by reducing
Cx26 expression (Ahmad et al., 2007).

Intercellular Biochemical Signaling That
Plays Vital Roles in Development and
Survival of Cochlear Cells
Cochlear development requires well-established intercellular
communication to coordinate cellular proliferation and
differentiation. Given that the sensory epithelium in the
cochlea is an avascular organ, GJs are proposed to act as an
extension of the microvasculature to facilitate the transfer
of metabolically-important molecules in cochlear supporting
cells (Zhang et al., 2005; Chang et al., 2008). GJ-facilitated
intercellular transfer of nutrient and signaling molecules
may, therefore, play essential roles in cellular homeostasis during
development andmaintenance of cochlear functions. At the early
postnatal stage, multiple phenotypes including abnormal ribbon
synapse development, spontaneous depolarizing activities,
fine-tuning of the innervation of the HCs are observed (Chang
et al., 2015a). Missense or null mutations in Cx26 disrupt
GJ formation as early as E14.5 in mice (Kamiya et al., 2014).
In Cx30-null mice, double-electrode patch clamp recordings
show that the absence of Cx30 does not significantly change
GJ conductance among cochlear supporting cells (Chang et al.,
2008). Dye diffusion assays, however, show that the rate and
extent of intercellular transfer of multiple fluorescent dyes
including a non-metabolizable D-glucose analog (2-NBDG)
are severely reduced. In addition to glucose transport, a lack
of Cx26 or Cx30 expression disrupts intercellular transfer of
miRNAs (e.g., microRNA-96), inositol 1,4,5-trisphosphate,
cAMP/cGMP, and ATP (Beltramello et al., 2005; Wang Y. et al.,
2009; Conte et al., 2013; Forge et al., 2013; Zhu et al., 2015b;
Mammano, 2018), all of which are likely to play critical roles in
the cochlear development.

GJs Contribute to Active Cochlear
Amplification
Disruption of GJ expression in supporting cells has been shown
to change active cochlear mechanics (Zhu et al., 2013, 2015a).
Targeted deletion of Cx26 specifically in the Deiter and outer
pillar cells alters nonlinear capacitance of OHCs and reduces
high frequency DPOAEs. Reduction in DPOAEs progressively
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extends to the middle and low frequency regions with aging of
mice (Zong et al., 2017). The results suggest that Cx26-containing
GJs in the supporting cells play important roles in active cochlear
amplification (Zhu et al., 2013; Lukashkina et al., 2017).

Functions of GJs Constituted by Cxs Other
Than Cx26 and Cx30
Cx29 is found to be exclusively expressed in Schwann
cells surrounding SGNs in the cochlea (Tang et al., 2006).
Cx29 does not form GJ plaques or functional GJ channels
(Ahn et al., 2008), it is therefore proposed to play a major
function as a hemichannel (Ahn et al., 2008) or by its novel
association with the voltage-dependent K+ channel (Kv1;
Altevogt et al., 2002; Cisterna et al., 2019) in the innermost
layer of myelin-facing membranes of SGNs, allowing glial
uptake of K+ from the extracellular space between axon
and the myelin. The Gjc3−/−(Cx29 knockout) mice show
a delay in the maturation of hearing thresholds and an
early loss of high-frequency sensitivities. In addition, a
prolongation in latency and distortion in the wave I of
the auditory brainstem responses and elevated sensitivity
to noise damages are found. However, the morphology
of sensory HCs and DPOAE that depend on the integrity
of outer HCs are normal in Gjc3−/− mice, indicating
that the organ of Corti is not directly affected. The
phenotypes in Gjc3−/− mice are explained by proposing
that Cx29 hemichannels provide a pathway for removing
accumulated K+ in peri-axonal space during high-frequency
firings of the auditory nerve (Tang et al., 2006; Kagiava
et al., 2015). Cx43 is found mostly in the bony capsule
of the mature inner ear and is believed to play a critical
role in the maturation of the otic capsule (Cohen-Salmon
et al., 2004). Cx45 has been proposed to be involved in
the inner ear vascular functions (Cohen-Salmon et al.,
2004). Panx1 deficiency has been reported to activate the
Caspase-3 cell apoptotic pathway and cause cochlear cell
degeneration (particularly HCs; Zhao et al., 2015), thereby
suggesting that Panx1 deficiency may lead to hearing loss.
However, other studies have found that Panx1 is dispensable
for normal hearing functions in mice (Zorzi et al., 2017;
Abitbol et al., 2019).

KNOWLEDGE ABOUT COCHLEAR CXs
AFFECTS DESIGN AND IMPLEMENTATION
OF TRANSLATIONAL STUDIES OF
COCHLEAR GENE THERAPY

According to theWorldHealthOrganization (WHO)2, hundreds
of millions of people are affected by hearing-impairment
(defined as >40 dB hearing loss in at least one ear).
Population-based studies in Europe and North America have
identified a prevalence of approximately 1/1,000 of children
affected by hearing loss3. Early interventions have been
found to be a key factor to improve speech and language

2https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
3https://www.cdc.gov/ncbddd/hearingloss/data.html

acquisition skills in affected children (Chen and Oghalai,
2016; Abdurehim et al., 2017). For patients with severe
to profound hearing loss, cochlear implantation is currently
the best available treatment option. Meanwhile, biology-based
treatments are explored by many labs around the world
for their intrinsic advantages in terms of improved sound
perception quality and costs of long-term usage. More than
half of congenital hearing loss cases arise from genetic
causes, most commonly due to mutations in GJB2 and
GJB6. The most common GJB2 mutations are: 35delG for
European populations, 167delT for the Ashkenazi Jewish and
235delC for Eastern Asian populations. All three mutations
generate functional null of Cx26, theoretically give rise to
effects similar to those observed in functional null mouse
models (Denoyelle et al., 1998; Cohen-Salmon et al., 2002;
Dere et al., 2003; Wang Y. et al., 2009). In addition to
Cx26, mutations in Cx30, Cx31, and Cx29 are also reported
to cause heritable hearing loss. In most cases, deafness is
caused by recessive mutations in a single gene, though
some special cases of digenic inheritance have been reported
(Riazuddin et al., 2000; del Castillo et al., 2002; Liu X. Z.
et al., 2009). Monogenic deafness is potentially amenable to
treatment by gene replacement or supplementation therapies,
typically by utilizing a viral vector to express a WT gene
(Zhang et al., 2018).

However, there are many challenging hurdles that must be
overcome before cochlear gene therapy can be applied to humans
(Zhang et al., 2018), including therapeutic time window, safe
vector delivery route, transfection efficacy, and the specificity
of the target cells. To date, many viral vectors have been
used for cochlear gene therapy in animal models, such as
AAV, adenovirus, herpes simplex virus, lentivirus, Sendai virus
(Kurioka et al., 2016). However, most viral vectors have low
transfection efficiency in cochlear supporting cells (Kilpatrick
et al., 2011; Kurioka et al., 2016; Shu et al., 2016). It is
interesting that a new synthetic viral vector (AAV-ie) shows
promising high transfection efficiency in all types of cochlear
supporting cells even injected at the adult stage (Tan et al.,
2019). The majority of studies have used AAVs and results
suggest it is the most promising viral subtype to be used in
the next translational stage. Optimization of viral subtypes and
their modifications, surgery delivery method and delivery routes
have been reviewed in many published articles (Sacheli et al.,
2013; Zhang et al., 2018; Wang et al., 2019) and they are not
the focus here. Mutations in a single gene can lead to both
syndromic and non-syndromic hearing loss [e.g., in cases of
GJB2 (MIM 121011), COL11A2 (MIM 120290), MYH9 (MIM
160775), MY07A (MIM 601317), PDS (MIM 274600), CDH23
(MIM 605516), and WFS1 (MIM 606201)]. Different mutations
in the same gene may cause either dominant or recessive forms
of non-syndromic hearing loss [e.g., GJB2 mutations may cause
either DFNA3 (MIM 601544) or DFNB1A (MIM 220290)].
Treatment designs will need to be considerably different (Gao
et al., 2018). The phenotypic diversity demonstrates how the type
of mutation, the position of the mutation within the gene, and
allelic combinations (i.e., compound heterozygosity) can affect
the overall clinical presentation.
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Studies conducted in mouse models show that null mutations
in Cx26 predominantly affect the normal development of
the sensory epithelium in the cochlea before the onset
of hearing (Wang Y. et al., 2009; Chang et al., 2015a).
Relatively few studies on the cochlear pathological changes
induced by Cx26 or Cx30 mutations have been performed
in human samples. In one case-report of a 41-year-old
female with congenital severe hearing loss associated with
the Cx26 35delG mutation, examination of the inner ear
found near-total degeneration of cochlear HCs (Jun et al.,
2000). The patient’s tectorial membrane was also abnormal,
and there was mild vestibular hydrops. Importantly, there
was no obvious neural degeneration in the cochlea. It is
unclear whether these pathological changes in the inner ear
started from birth or gradually developed. These findings
from human samples are consistent with the massive cellular
degeneration observed in the cochlear sensory epithelium of
conditional Gjb2−/− mice after the onset of hearing, suggesting
that any gene therapy attempts to correct Cx26 defects in
adults is unlikely to be successful (Yu et al., 2014). Some
studies have reported success in preventing hearing loss when
treatment is performed at embryonic stages (e.g., at E11.5)
in Cx30 KO mice (Miwa et al., 2013; Minoda et al., 2015).
These findings suggest that the time window of cochlear gene
therapy for GJB2mutations need to be carried out early (perhaps
embryonically) in humans to restore normal hearing (Zhang
et al., 2018). Any treatment after malformation of the cochlea
and HC death would have a significantly diminished chance
of success.

Compared to Cx26 mutations, Cx30-null mutations show
a slower time course of cellular degeneration in the mouse
cochlea (Sun et al., 2009). The time window of treating
patients with Cx30-null mutations may extend to a postnatal
stage. Interestingly, over-expression of Cx26 can completely
restore hearing sensitivity and prevent hair cell death in
Cx30-null mice (Ahmad et al., 2007; Boulay et al., 2013),
indicating that up-regulation of Cx26 might be a novel
therapeutic strategy to prevent and treat deafness caused by
Cx30 mutations. Another interesting finding is that mice
homozygous for the A88V mutation in Cx30 show an improved
high-frequency hearing threshold, while low frequency hearing
is moderately impaired (Bosen et al., 2014; Kelly et al.,
2019). This unusual finding may suggest a novel approach in
clinical intervention using genome editing for treating high
frequency hearing loss. Table 1 lists examples of Cx26 and
Cx30 mutations that may demand different treatment time

window. The expected outcomes of cochlear gene therapy based
on our current knowledge learned from mouse models are
also given.

Other factors that need to be considered in designing
cochlear gene therapy for Cx-linked deafness should include
the following: (1) Turnover rate of Cxs. Many Cxs, including
Cx26, exhibit limited stability and degrade within 1–5 h (Fallon
and Goodenough, 1981; Kelly et al., 2015). Cx30 exhibits a
longer half-life of about 12 h (Kelly et al., 2015). It is unclear
how over-expression of Cxs from viral vectors will affect this
turnover rate, though such a strategy could still potentially alter
GJ function and offer long-term treatment benefits; (2) Efficient
delivery to the targeted cochlear cells. Studies have shown
that ectopic Cx26 expression usually does not result in the
formation of GJs in the cell membrane (Yu et al., 2014). Although
it is unclear whether these intracellular or hemichannel Cx
proteins are functional, the observation that the ectopically-
expressed Cx26 in the cochlea of WT mice did not affect
normal hearing (Yu et al., 2014) suggests that ectopically-
expressed Cx26 does not seem to have harmful effects for
the organ of Corti; and (3) A clinically-important question is
how to maintain a long-term treatment efficacy of cochlear
gene therapy. Many studies have shown that AAV1-mediated
improvement of hearing is not necessarily long-lasting (Chang
et al., 2015b; Kim et al., 2016; Isgrig et al., 2017). Therefore, more
studies are needed before cochlear gene therapy can become
clinically appealing.

Our current knowledge about GJ structure and functions in
the cochlea indicates that Cxs play essential roles in the structure
and functional maturation of the cochlea. Both Cx26 and
Cx30 play vital roles in EP generation and maintenance.
Reduced Cx26 expression is the likely cause of deafness
even in cases of Cx30-null mutations since Cx26 expression
at WT levels is sufficient for normal GJ function in the
cochlea and the preservation of hearing. Before we can
make a conclusion, one needs to keep in mind that studies
have also shown that results obtained from mouse models
may not necessarily be extrapolated to humans (and vice
versa). Thus, larger animal models such as pig or non-human
primates may be needed for further studies. Many human
GJB2 point mutations (e.g., M34T, V37I, L90P) give only
mild-to-moderate hearing loss (Norris et al., 2006; Minami
et al., 2013), which is very different from hearing phenotypes
found in knockout mice. These studies warn us of the danger
of oversimplification. We, therefore, need to be cautious in
reaching any conclusion before we can get more accurate

TABLE 1 | Types of Connexin26 (Cx26) and Cx30 human mutations and their possible treatment windows and outcomes by cochlear gene therapy.

Type of hearing loss Mutation examples Possible time window of treatment Possible outcome

Late onset of mild hearing loss Cx26: V37I, M34T, C202F, etc., Cx30: M203V,
etc.,

Broad time window, possibly even after
onset of hearing loss.

Complete recovery.

Syndromic hearing loss Cx26: D66H, Y65H, G59A, G45E, D50N, H73R
and N54K, etc., Cx30: G11R, A88V, etc.,

Embryonic (before W20)/early
postnatal, likely need to be before the
manifestation of hearing loss.

Uncertain treatment efficacy
based on mouse model
studies.

Non-syndromic hearing loss Cx26: 35delG, 167delT, W44S, R75W, and
R75Q, etc., Cx30: T5M, 342-KB DEL, etc.,

Embryonic (before W20)/Postnatal
treatment needed.

Partial recovery of hearing.
However, treatment benefit vs.
risk is debatable.
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genotype and phenotype information from human samples
(e.g., high-quality cochlear histopathology from genotype-
confirmed patient inner ear samples) and non-human primate
studies. Bear these in mind, studies thus far from the mouse
models (mainly based on results obtained from conditional
Gjb2-null mice) have indicated that the appropriate time
window of gene therapy of Cx26 seems to be in early
development, possibly necessitating surgery in human embryos.
The ramifications of such aggressive intervention will need to be
carefully analyzed.
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