
Citation: Litak, J.; Szymoniuk, M.;
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Abstract: Over the last decade, pedicle fixation systems have evolved and modifications in spinal
fusion techniques have been developed to increase fusion rates and improve clinical outcomes
after lumbar interbody fusion (LIF). Regarding materials used for screw and rod manufacturing,
metals, especially titanium alloys, are the most popular resources. In the case of pedicle screws,
that biomaterial can be also doped with hydroxyapatite, CaP, ECM, or tantalum. Other materials
used for rod fabrication include cobalt–chromium alloys and nitinol (nickel–titanium alloy). In
terms of mechanical properties, the ideal implant used in LIF should have high tensile and fatigue
strength, Young’s modulus similar to that of the bone, and should be 100% resistant to corrosion
to avoid mechanical failures. On the other hand, a comprehensive understanding of cellular and
molecular pathways is essential to identify preferable characteristics of implanted biomaterial to
obtain fusion and avoid implant loosening. Implanted material elicits a biological response driven by
immune cells at the site of insertion. These reactions are subdivided into innate (primary cellular
response with no previous exposure) and adaptive (a specific type of reaction induced after earlier
exposure to the antigen) and are responsible for wound healing, fusion, and also adverse reactions,
i.e., hypersensitivity. The main purposes of this literature review are to summarize the physical and
mechanical properties of metal alloys used for spinal instrumentation in LIF which include fatigue
strength, Young’s modulus, and corrosion resistance. Moreover, we also focused on describing
biological response after their implantation into the human body. Our review paper is mainly focused
on titanium, cobalt–chromium, nickel–titanium (nitinol), and stainless steel alloys.

Keywords: metal alloys; implants; inter body fusion; titanium; stainless steel; cobalt-chromium; nitinol

1. Introduction

Over the past few decades, lumbar spinal fusion (lumbar interbody fusion, LIF) has
been recommended as a well-known, standard surgical treatment for degenerative disc
disease (DDD) of the lumbar spine. DDD may cause low back pain and radicular symptoms,
which can significantly decrease the quality of life. The prevalence of symptomatic DDD
increases with age and occurs in 10% of the male population at the age of 50 and up to 50% at
the age of 70 [1]. According to some reports, DDD may concern even 90% of the population
including asymptomatic cases [2]. LIF effectively provides stabilization of painful motion
segment, restores lordosis and disc height, corrects the deformity, and may provide indirect
decompression of dural sac and nerve roots [3,4]. That allows immediate relief of DDD
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symptoms. Other indications for this procedure include traumatic injuries, degenerative or
congenital deformities, spondylolisthesis, spinal stenosis, and tumors [3,5–7].

There are various approaches to a lumbar interbody fusion. However, there is a lack
of sufficient and reliable evidence to establish one of them as a standard lumbar fusion
method. Posterior lumbar interbody fusion (PLIF) and anterior lumbar interbody fusion
(ALIF) are the most traditional techniques. Nowadays there are other, less invasive methods
including lateral lumbar interbody fusion (LLIF), extreme lateral lumbar interbody fusion
(XLIF), oblique lumbar interbody fusion (OLIF), and transforaminal lumbar interbody
fusion (TLIF) [6]. Moreover, minimally invasive approaches such as minimally invasive
TLIF or percutaneous pedicle screw fixation have gained popularity recently [8]. All lumbar
spinal approaches require the use of proper instrumentation. The basic spinal fixation
device consists of pedicle screws, connection rods, a cross-link device, and in some cases an
interbody cage. Pedicle screws are placed into the vertebral bodies through the pedicles of
vertebrae, the Harrington rods connect screws of adjacent vertebrae, and the cage is inserted
into the intervertebral space (Figure 1). Such an interbody device enables distraction of disc
space and successfully stabilizes the pathological segment.
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Figure 1. Radiographs and CTs of stabilized lumbar spine using the standard spinal fixation device:
(a) Radiograph, lateral view (with descriptions); (b) radiograph, AP view; (c) CT, sagittal plane;
(d) CT, axial plane.
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Over the last decade, pedicle fixation systems have evolved and modifications in
spinal fusion techniques have been developed to increase fusion rates and improve clinical
outcomes after LIF [3,7]. The new spinal fusion systems can vary in many strands including
pedicle screw design (monoaxial or polyaxial), the method for the attachment to the spine,
biomaterials used, and the screw–rod system connection (side-loading or top-loading) [7,9].

Spinal instrumentation efficiently improves interbody fusion rates and increases initial
spinal stability. However, long-term increased stiffness of the stabilized segment pro-
vided by implanted screws and rods may lead to the development of adjacent segment
degeneration (ASD) [10]. A possible pathogenic mechanism underlying that disease is the
redistribution of stress at the adjacent levels, which results in increased intradiscal pressure
and extended mobility in the neighboring segments [10,11]. These factors accelerate the
degeneration of the adjacent segment intervertebral disc. ASD has been described mainly
in the case of PLIF, but may also occur after other spinal fusion procedures. Recently, it
has been noticed that ASD less frequently occurs after polyaxial pedicle screw fixation
compared with monoaxial fixation [12].

The use of high-speed drilling, which is in some cases used during the LIF procedure,
generates a lot of heat, which may cause thermal necrosis around the implant. To prevent
this problem some authors showed that the use of CO2 as a coolant may be beneficial [13,14].

Regarding materials used for screw and rod manufacturing, metals, especially titanium
alloys, are the most popular resources. Nowadays, many of them are made from titanium
(mainly Ti-6Al-4V alloy). In the case of pedicle screws, that biomaterial can be also doped
with hydroxyapatite, CaP, ECM, or tantalum. Regarding other materials used for rod
fabrication, they include cobalt–chromium alloys and nitinol (nickel–titanium alloy) [9].
Furthermore, in the past few decades stainless steel (SS) has been commonly used in spinal
instrumentation systems. Nowadays, SS is less often chosen as a biomaterial [10].

The purpose of this literature review is to summarize the physical and mechanical
properties of metal alloys used for spinal instrumentation in LIF, which include fatigue
strength, Young’s modulus, and corrosion resistance. Moreover, we also focused on de-
scribing biological response after their implantation into the human body.

Our article is mainly focused on titanium, cobalt–chromium, nickel–titanium (nitinol),
and stainless steel alloys.

2. Physical and Mechanical Properties of Implant Important in LIF

The ideal biomaterial used in LIF should have high tensile and fatigue strength,
Young’s modulus similar to that of the bone, and should be 100% resistant to corrosion to
avoid mechanical failures. Therefore, the composition of the spinal rods and screws consti-
tutes a crucial factor in defining the general functionality of the spinal instrumentation.

2.1. Fatigue Strength

One of the most important features of LIF implants is their fatigue strength. That prop-
erty describes how long the spinal instrumentation can work without breaking down [15].
The cycling loading of the spine, which appears during daily activities, generates oscillating
stresses on spinal instrumentation and may lead to a crack in the implant material. When
the crack reaches a critical size, fatigue fracture of the material occurs, leading to the failure
of the implant [15,16]. Remarkably, long cracks cause implant collapse slower than very
small cracks, which are relative to the dimensions of the material micro-architecture [17].
Biomechanical performance and fatigue strength of spinal instrumentation significantly
depend on the microstructure of the metal alloy of which it is made [18–20]. To increase
the fatigue life of an alloy, many heat treatment techniques are implemented [21]. They
include plasma-assisted microwave chemical vapor deposition, plasma nitriding, plasma
etching, and deposition of amorphous diamond-like carbon (a-DLC) layers inoculated with
nitrogen and silicon. It has been shown that these methods have a substantial influence
on the surface characteristics and microarchitecture of alloys [22]. Furthermore, heat treat-
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ment allows for arranging an optimized balance of material features such as machinability,
ductility, and stability [21].

Fatigue fractures almost always occur at stress concentration sites such as notches or
the discontinuity of the geometrical structure of the material [16,17,23,24]. On the spinal
rod’s surface, notches may be generated during manual contouring, which can impair the
mechanical properties of the rod, especially its fatigue strength [16,25,26]. This phenomenon
is known as the “notch effect”. Before metal rods are fixed to the patient’s spine, they are
contoured to obtain optimal sagittal alignment of the spine [16,27]. Traditionally, contouring
can be done by the surgeon with the use of the French bender. Alternatively, the rods
can be anatomically designed and bent automatically by a machine before the surgical
procedure. A biomechanical study by Yamada et al. [28] has shown that pre-contoured rods
had a remarkably higher fatigue strength and ultimate load than intraoperative manually
contoured rods at the same load condition. Moreover, pre-contoured rods not only reduce
the risk of rod fracture but may also reduce operation time and bleeding and decrease
the risk of infection in comparison to the manually bent rods [28,29]. This results from
the manual contouring of the rods that requires a significant amount of time to adjust the
proper shape of the rod. Furthermore, tightening of the screw leaves surface defects on the
rods and may contribute to the notch effect formation, which has been described by many
authors [16–18]. Therefore, avoiding severe tightening of the screws is recommended.

Recently, some studies have shown the negative influence of direct electrocautery use
on the mechanical features of metal alloys [30–32]. According to a biomechanical study
by Zobel et al. [31], electrocautery contact with the material was found to significantly
decrease the fatigue strength of the Ti-6Al-4V titanium alloy. Even after a short contact
with the electrode, the fatigue strength reduced remarkably. When electrocautery contact is
applied at high-stress concentrations areas of instrumentation, it can be a notable problem
for the mechanical properties of the implant and in extreme cases, it may lead to implant
breakage [31,32]. Moreover, this problem was reported by many case studies in hip re-
placement surgery [32–34]. However, it remains unclear whether a decrease in fatigue
strength after electrocautery contact depends on the material and whether it is determined
by the type of the implant [31]. Furthermore, there is a lack of reports describing that issue
in the case of other metal alloys. Regardless of that, spine surgeons should pay special
attention and avoid any contact of the active electrocautery electrode with implants during
the revision surgery, especially in the case of titanium implants and areas of the implant
with high-stress concentrations.

2.2. Young’s Elastic Modulus

A further property, which is crucial for the metal alloy to be useful as the material
for the spinal implant, is its elasticity, which is the ability of a metal to resist distorting
influence and return to its initial shape. This feature of a material can be described by a
physical quantity known as Young’s elastic modulus. The value of the elastic modulus of
human cortical bone ranges from 10 to 30 GPa [35]. The perfect alloy for use in spinal fusion
systems should have Young’s modulus as similar as possible to the bone. That prevents a
phenomenon called a “stress shielding effect”. That term refers to the reduction in bone
density around the implant due to bearing of the majority of the mechanical load by the
instrumentation. Normally, the bone experience stresses and remodels in response to the
loadings. Therefore, due to decreased load, bone atrophy progressively occurs and it may
result in implant loosening and failure [36].

Contemporary material engineering enables the development of metallic biomaterials,
which have a modulus of elasticity more similar to human bone. They include different
compositions of metals in alloys, which impact their mechanical properties and also materi-
als with various porosity. Creating pores in the alloys not only improves osteointegration of
the implant due to the better ingrowth of bone tissue into them but can also affect the value
of Young’s modulus of the material. When the porosity of alloy increases, strength and
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elastic modulus of alloy decrease linearly [37,38]. Therefore, designing and manufacturing
implants with the value of the elastic modulus close to that of human bone is possible.

2.3. Corrosion Resistance

The perfect biomaterial should also be corrosion resistant in any environment, espe-
cially in the internal environment of the body over any period of time. Generally, corrosion
is a progressive degradation of a material resulting from its interaction with the extracel-
lular body environment [39]. That environment contains a lot of ions of sodium, calcium,
potassium, magnesium, chloride, phosphate, and bicarbonate, which may be potentially
very corrosive factors [15,39].

In the literature, there are three different types of corrosion—fretting corrosion, crevice
corrosion, and galvanic corrosion. Each of them has been observed in metallic spinal
fusion systems [40,41]. Fretting corrosion develops as a result of mechanical damage from
repeated micromotion and friction over time, occurring during the patient’s daily activity.
It leads to the release of debris into the surrounding tissue [40]. This type of corrosion is
determined by multiple factors such as the design of spinal instrumentation, used metal
alloy, electrochemical environment, and load conditions [42]. Crevice corrosion results
from exposing the metal to a surrounding tissue fluid, which can induce a local corrosion
process by the point destruction of the passive oxide film [43]. Galvanic corrosion is
the result of the presence of two different metals in contact with each other in the fluid
environment [40]. The use of dissimilar metal alloys in the same spinal instrumentation
systems could improve its mechanical features. On the other hand, mixing dissimilar metals
in spinal implants brings with it an increased risk of inducing galvanic corrosion [40,42,44].
However, biomechanical studies conducted in 0.9% sodium chloride at 37 ◦C and retrieval
analyses of spinal instrumentation have shown no evidence of galvanic corrosion in spinal
constructs made of different metals [42,45,46]. After the literature review, we compared
breakdown potential to assess corrosion resistance of each discussed metal alloy (Table 1).
Materials with breakdown potential below 300 mV are regarded as unacceptable. The
value of breakdown potential above 600 mV is considered corrosion resistance. Materials
with marginal breakdown potential which ranges from 300 mV to 600 mV should be tested
under the indicated use [47].

Most metallic alloys used in LIF are passive metals, which means that they have a
stable oxide film on their surface [48]. That layer plays an important role in corrosion
protection and the loss of its stability results in inducing the corrosion. In the presence
of the above-mentioned ions in the surrounding environment, especially chloride ions,
the passive film may be damaged [49]. Mean chloride ion concentration in interstitial
body fluids is 113 mEq/L, which can induce corrosion in metallic implants [50]. Moreover,
cycling loading, micromotion resulting from fretting, and other mechanical factors may
also discontinue the passive layer on the surface of the implant [51].

Corrosion has a negative impact and not only leads to failure of the implant but also
may leach debris and metal ions that could be harmful to the surrounding tissue. Moreover,
some studies of spinal implants have detected elevated serum metal ion levels [43,52,53].
Other studies have found metal debris in lymph and organs such as the liver, spleen,
and kidneys [54,55]. Metal ion release induces biological complications such as toxicity,
hypersensitivity, and also cancerogenicity [39]. This phenomenon has been correlated with
the output of cytokines and metallic proteases by activated macrophages, neutrophils, and
T lymphocytes [56]. Other noted complications include pseudotumor and particle-induced
osteolysis [57,58]. Localized neurological damage associated with rod breakdown has also
been noted in several case reports [59–61].
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Table 1. Quantitative comparison of mechanical properties of titanium alloys, cobalt–chromium,
nitinol alloys, and stainless steel 316 L.

Alloy Ultimate Tensile
Strength [MPa]

Yield Strength
[MPa]

Fatigue
Strength [MPa]

Young
Modulus

[GPa]

Corrosion
Resistance

(Breakdown
Potential) [mV]

References

Commercial Pure
Titanium (CP-Ti) 240–550 170–480 430 115 9000 [21,62]

Ti-6Al-4V 930 860 500 110 25,000 [21,62,63]

Ti-24Nb-4Zr-8Sn
(Ti2448) 665 ± 18 563 ± 38 375–500 53 ± 1 nd [21,64,65]

Cobalt–Chromium 655 450 310 210 870 [30,62,63,66]

Nickel–Titanium 895

195–690
(austenitic

phase)
70–140

(martensitic
phase)

nd 40–75 >1000 [63,65]

Nickel–Titanium (CS
64% porous) nd ~700 nd 1 772 [67]

316L Stainless Steel 490–1350 190–690 146 210 400–600 [21,47,62,67,68]

3. Mechanical Characteristics of the Most Frequently Used Metal Alloys in LIF
3.1. Titanium

Among all the metallic alloys used in the manufacturing of spinal instrumentation
for LIF, titanium alloys are the most common materials. They owe their popularity to
their excellent biocompatibility, superior mechanical properties, great corrosion resistance,
and appropriately low Young’s modulus and generate minimal artefacts on computed
tomography or magnetic resonance imaging [17,37,69,70]. These properties are highly
preferable for biomedical applications. Due to the low elastic moduli and quite often
observed notch effect of the titanium rods, titanium alloys are more often used in spinal
screw fabrication than the spinal rods [9,16]. In contact with the air, a passive oxide film
(TiO2) forms on the surface of the titanium. This layer is probably responsible for resistance
to corrosion, chemical inertness, and stability of that metal [37].

There exist two well-known allotrophic phases of titanium—α and β phases. The type
of alloy depends on the allotrophic phase of titanium which has been applied. Thus, we
distinguish between α, near-α, α–β, and β alloys of titanium (Table 2).

Table 2. Composition of titanium alloys used in lumbar interbody fusion.

Titanium Alloy Chemical Composition
(%wt) Phase Type References

Commercial pure titanium (CP-Ti) 99–99.5% Ti α type [71]

Ti-6Al-4V

6.29% Al

α–β type [31]
4.02% V

<0.2% other elements
Ti balanced

Ti-24Nb-4Zr-8Sn

24% Nb

α–β type [72]
4% Zr
8% Sn

<0.3% other elements
Ti balanced

Ti-45Nb
44.94% Ni

β type [73–75]<0.5% other elements
Ti balanced
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Ti-6Al-4V alloy (α–β type alloy) is the most frequently used titanium alloy for spinal
fixation devices [48,72,76]. Despite biocompatibility, excellent corrosion, and mechanical
resistance of that alloy, its elastic modulus (~110 GPa), which is higher in comparison to
human bone, may induce a stress-shielding effect and result in pedicle screw loosening
and bone absorption [15,76–78]. Moreover, some studies have shown that Ti-6Al-4V accel-
erates the development of adjacent segment disease [78]. However, compared with other
non-titanium metallic alloys used in spine fusion systems, Ti-6Al-4V has a relatively low
modulus of elasticity and the stress-shielding effect is not as strong. Coating the pedicle
screws with various materials such as PMMA, hydroxyapatite, extracellular matrix, and
titanium plasma spray in tantalum was developed to improve the fixation and pull-out
strength of the Ti-6Al-4V screws [79]. Many studies have successfully shown that coated
screws may significantly increase resistance against pull-out force in comparison to un-
coated screws [80–82]. Regarding potential toxicity associated with the leaching of the
vanadium and aluminum ions from the Ti-6Al-4V implants, the amount of these metals
released is minimal and does not induce suspected health problems, such as neurological
or enzymatic disorders [83].

To better adjust the elastic modulus of titanium biomaterials to the cortical bone,
increasing the β phase percentage in the alloy is an effective way [69]. One of them, in
which this method was applied, is Ti-24Nb-4Zr-8Sn (Ti2448 alloy, α–β type). This material,
drawing the attention of many researchers, has a lower Young’s modulus (~49 GPa) than
Ti-6Al-4V and shows no toxic features [84]. Therefore, due to the elastic modulus value
being more similar to human bone, the stress-shielding effect may be significantly less
observed. It has been confirmed in a study conducted by Qu et al. [85] on a porcine model,
which compared stress-shielding effects between Ti-24Nb-4Zr-8Sn alloy and Ti-6Al-4V
alloy. Another low-modulus titanium alloy is the Ti-45Nb alloy (β type alloy) [73–75].
Besides the decreased value of Young’s elastic modulus, Ti-45Nb presents beneficial os-
teogenic features, which result from a high content of niobium [86]. Additionally, titanium
alloys with increased content of β phase show increased corrosion resistance [87]. On
the other hand, titanium alloys with low elastic modulus, such as β type alloys, usually
also have low mechanical strength [78]. One of the well-known effective methods to in-
crease the mechanical resistance of metals is precipitation hardening. However, due to
irreversible changes in the crystalline structure, Young’s modulus increases, and corrosion
resistance reduces due to this technique [88]. On the other hand, many studies have shown
that severe plastic deformation (SPD) techniques, which include high-pressure torsion
(HPT) [74,89–91], hydrostatic extrusion (HE) [92], and rolling and folding (R&F) [75], may
improve the strength of β type titanium alloys without changing Young’s modulus. SPD
techniques also improve corrosion resistance through the thickening of passive film [91].
However, alloys containing niobium, molybdenum, wolfram, or tantalum are expensive
to manufacture due to the rarity and high melting points of these metals [48]. Thus, β
type alloys such as Ti-24Nb-4Zr-8Sn and Ti-45Nb, despite their appropriately low Young’s
modulus, excellent corrosion resistance, and sufficient mechanical properties after SPD
processing, may have problems with spread of their use in LIF devices due to the very high
costs of production.

Decreasing Young’s modulus of titanium alloys may be also achieved by creating
pores in them. A biomechanical study by Skolakova et al. [83] has shown that Ti alloy
with the addition of 30 wt.% pore-forming agent (PA) obtained with self-propagating high-
temperature synthesis (SHS) exhibits a very similar elastic modulus (~9 GPa) to human
bone with good corrosion resistance. However, mechanical strength decreased after the
SHS procedure and further studies are necessary to evaluate the usefulness of Ti with
30 wt.% PA in LIF.

3.2. Cobalt–Chromium

Another metal alloy which may be used in LIF systems is cobalt–chromium (CoCr)
alloy. This biomaterial usually consists of 63% cobalt, 28% chromium, 5% molybdenum,
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and minor amounts of other metals [48]. Well-known applications of CoCr alloy as bio-
material include hip and knee joint implants, as well as crowns and implant abutments in
dentistry [48,83,93]. CoCr is characterized by higher fatigue life and strength, increased stiff-
ness, and better resistance to notch effects in comparison to titanium alloys [18,23,94–97].
Due to its higher Young’s modulus (~210 GPa) [30] than titanium, CoCr spinal rods more
effectively stabilize the spine and correct abnormalities of spinal curvatures such as scolio-
sis [96,98,99]. In the study by Willson et al. [100], CoCr rods demonstrated the least amount
of shape loss in a radius of curvature compared with commercially pure titanium rods
throughout the study.

However, high stiffness of CoCr rods may result in acceleration development of ad-
jacent segment disease [99,101]. According to a comparative study by Han et al. [102],
breakages of CoCr rods have been less observed than for titanium rods, but in the case of
CoCr, they observed a more frequent occurrence of proximal junctional kyphosis (PJK),
which is a form of adjacent segment degeneration. Moreover, a Young’s modulus signifi-
cantly higher than that of human bone disqualifies CoCr alloy as a biomaterial for screw
manufacturing due to the increased risk of stress-shielding effects. Furthermore, compared
with titanium alloys, CoCr has lower corrosion resistance, which results in higher overall
metal ion release from CoCr implants. Leaching cobalt ions from the alloy due to fatigue
and biocorrosion may cause metallosis, neurological-related symptoms (such as deafness
and blindness), hypothyroidism, cardiological and hematological problems, and also can-
cers [103–106]. To prevent these issues, coating of CoCr implants with ceramics such as
calcium phosphate can decrease cobalt ion release and improve biocompatibility, which has
been proven in a study by Bandyopadhyay et al. [107] with the use of the surface melting
(LSM) technique for tribofilm formation.

3.3. Nitinol

Nickel–titanium (nitinol) is a metal alloy which consists of titanium and nickel in
equal atomic percentages [48]. Among all the alloys used in spinal fusion devices, nitinol is
characterized by a unique feature which is its superelasticity [48,83,108]. This phenomenon
enables the nitinol implant to immediately return to an undeformed shape after removal of
external load, even after large deformations. In this way, the use of this super-elastic alloy
in LIF systems as rod material makes stabilization more dynamic and may prevent ASD
occurrence [63]. Moreover, nitinol is used clinically in intravascular stents, osteosynthesis
staples, and orthodontic wires [63,67,83].

Additionally, nitinol has Young’s modulus ranging from 40 to 75 GPa, which is optimal
for biomedical applications. Moreover, nitinol fabrication by combustion synthesis (CS)
enables tailoring its elastic modulus to that of human bone with great accuracy. After that
procedure, metal alloy achieves high compressive strength with appropriately low Young’s
modulus and excellent corrosion resistance [67]. According to Aihara et al. [67], general
porosity of nitinol to obtain the best elasticity was found to be 64%.

Due to the formation of a passive titanium oxide film (TiO2) on the surface of the nitinol,
it is considered a long-term corrosion-resistant and biocompatible alloy [63]. Therefore,
coupling nitinol rods with titanium pedicle screws may be considered the best combination
for spinal fusion devices due to its high resistance to galvanic corrosion [109]. The corrosion
resistance of nitinol alloy is better than CoCr and 316L stainless steel, but inferior to that
of Ti-6Al-4V [48,63]. However, the in vitro study combined with retrieval analysis of the
nitinol, CoCr, and Ti-6Al-4V rods by Lukina et al. [63] has also shown that nitinol fretting
corrosion patterns were worse compared with CoCr. That result may be an effect of lower
resistance to fretting corrosion of the nitinol due to higher mobility of the rod. Moreover,
intensive fretting may damage the passive oxide layer, whose restoration is relatively low.
Thus, it may induce galvanic corrosion and deteriorate its overall corrosion resistance. As
result, it affects the fatigue strength of nitinol and may release nickel ions into the blood.
However, some studies have shown that the nickel ion levels in blood and tissues were not
higher compared with the control group. In any case, to prevent fretting corrosion, coating
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nitinol rods with protective layers and enhancing the locking mechanism of the pedicle
screws would be beneficial solutions [63].

3.4. Stainless Steel

Before introducing titanium alloy as a biomaterial for spinal construct manufacturing,
stainless steel (SS) was the most popular metal alloy in this field. It is widely used for
other biomedical applications such as bone fixation, cardiovascular systems, catheters,
surgical instruments, or dental crowns. Surgical 316 L SS is the most common form of
stainless steel for biomedical uses. This specific composition consists of 0.02% carbon,
10–14% nickel, 16–18% chromium, 2% manganese, 2–3% molybdenum, with the rest being
iron. The high mechanical properties of this alloy are great advantages for use in spinal
fixation. However, SS exhibits a significantly higher elastic modulus (210 GPa) [67] in
comparison to human bone. Thus, the stress-shielding effect is strongly observed after SS
implant application [110]. Regarding corrosion resistance, many studies have shown that
it is significantly inferior compared with CoCr and titanium alloys [40,42,45]. Long-term
biomechanical tests by Singh et al. [45] have shown that both CoCr and titanium constructs
were more resistant to the fretting corrosion compared with SS. Moreover, during the
corrosion process, SS constructs have produced a noticeably greater volume of debris than
titanium or CoCr instrumentation systems [45]. Therefore, stainless steel should no longer
be in used in spinal surgery.

4. Biological Response to Metal Implants Used in LIF

Implanted material elicits a biological response driven by immune cells at the site of
insertion as well as systematically [111]. These reactions are subdivided into innate (primary
cellular response with no previous exposure) and adaptive (a specific type of reaction
induced after earlier exposure to the antigen) and are responsible for wound healing, fusion,
and also adverse reactions, i.e., hypersensitivity [112–114]. A comprehensive understanding
of cellular and molecular pathways is essential to identify preferable characteristics of
implanted biomaterial to obtain fusion and avoid implant loosening.

4.1. Wound Healing

Bone decortication and bleeding are caused by the inserted implant triggering in-
tramembranous ossification, a process essential for successful bone remodeling and incor-
poration, leading to arthrodesis [115–117]. Implantation of the metal screw is followed by
adsorption of a proteinaceous layer [118] (made of serum molecules, water, and proteins)
on the implant surface followed by the formation of a blood clot that recruits inflammatory
cells on the side of the instalment and initiates provisional matrix formation [119]. Complex
molecular processes following wound healing and interbody fusion are characterized by
three main phases described initially by Boden et al.: inflammatory, reparative, and remod-
eling phases [120]. The acute inflammatory phase lasts up to three weeks and is defined by
the migration of inflammatory cells including lymphocytes, leukocytes, and macrophages
and secretion of cytokines at a site of merging [121]. Pro-inflammatory IL-6 and C reactive
protein are the key components of this stage. Here, it is vital to distinguish the healing
process from complications such as surgical site infection [122]. According to Thalander
and Larsson, the levels of CRP and IL-6 reach their peak on post-operative day 3 and then
decrease with time [123]. If otherwise, the patient should be suspected as having infectious
process development [124]. The prolonged, unresolved inflammatory response may lead to
chronic inflammation, the development of granulation tissue, and the formation of a fibrous
capsule—a host of reactions that lead to implant dysfunction. The main process following
the second, reparative stage is the differentiation of progenitor cells, neovascularization,
and resorption of necrotic tissue [125]. The fusion mass subsequently matures at the entry
point (transverse processes in the case of lumbar fusion) which is followed by the migration
of the ossification process to the central zone [126]. Consequently, the last, remodeling
phase occurs, which is defined by further maturation of new bone tissue and an increase
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in cortical to cancellous bone ratio [127]. The evolution of these processes is regulated
by the expression of various genes responsible for the translation of bone morphogenic
proteins—BMPs 2, 4, and 6 [128].

The success and intensification of the mentioned processes are largely dependent on
the properties of the implanted material. In recent years, instead of producing materials di-
minishing host responses, designed implants are made of biomaterials that aim to modulate
immunologic reactions towards enhanced fusion [129]. Desirable attributes which define
biocompatibility leading to osteointegration include osteogenicity, the capacity to provide
stem cells and osteoblast enabling new bone formation [130], osteoinductivity, recruitment
of osteogenic growth factors [131], and osteoconductivity, ensuring appropriate conditions
for the ingrowth of bone-forming elements and providing a scaffold for osteogenic cells
and neovascularization [132,133].

The opposite, undesirable chronic inflammatory reaction on the implant/bone inter-
face caused by metal debris or ions results in peri-implant bone osteolysis (PPOL) [134],
a process that threatens permanent implant endurance.

4.2. Foreign Body Reaction

Acceptance of implanted instrumentation is dependent on various innate reactions
that are collectively described as foreign body response (FBR) reactions that begin im-
mediately after insertion [135]. Injury to the bone tissue results in the recruitment of
immune cells and activates coagulation and complement pathways [136]. Subsequently,
extravasated proteins, i.e., fibronectin, fibrinogen, and vitronectin, are adsorbed on the
metal–tissue interface, which contributes to the formation of a provisional matrix in the
vicinity of the implanted material and, after migration of macrophages, contributes to
the formation of foreign body giant cells [137]. Due to potency variation of the Vroman
effect [138], a process of competitive protein adsorption and desorption on a metal surface,
foreign body response differs among materials used in fusion [139]. This event is followed
by neutrophil recruitment which further enhances the inflammatory process, i.e., activation
of mast cells and attraction of monocytes and, consequently, the transformation of mono-
cytes to macrophages [140]. Accumulation of cells and proteins on biomaterial through
integrins, particularly aMB2 [141,142], creates a privileged microenvironment between the
implant and host tissues. Due to the process called “frustrated phagocytosis”, macrophages
release degradation enzymes and ROI that aim to break down implanted biomaterial [135].
Unsuccessful degradation leads to the transition from an acute to chronic phase hallmarked
by a switch from M1 to M2 macrophage polymerization [143]. Whereas M1 macrophages,
referred to as classically activated, are pro-inflammatory, M2 macrophages, which are
alternatively activated, are responsible for anti-inflammatory reactions that participate in
wound healing. M1 macrophages produce TNF1, IL-1, and IL-6 and are linked to the Th1
type of immune response [144]. M2 macrophages produce anti-inflammatory cytokines
including IL-4, IL-10, and IL-13 and are associated with Th2 immune response [145,146].
Although, naturally, the preponderance of M2 polymerized macrophages heralds a typical
wound healing process, in the case of biomaterial implantation their predominance marks a
shift from elimination to the tissue healing process. In the chronic phase, macrophages fuse
to create foreign body giant cells on the implant’s surface [147]. This process is followed by
neovascularization mediated by VEGF and PDGF and terminates when the created capsule
becomes entirely isolated from neighboring tissues [148].

4.3. Response to Implant Wear Debris and Metal Ions

Biological reactivity to metal implant debris is the main factor that determinates
successful spinal implant fusion and is the leading cause of undesirable implant rejection.
There are two main types of immunologic reactions induced by implanted metals: innate
and adaptive [149,150].

Resident macrophages are responsible for the slow elimination of metal wear debris
particles due to subtle innate, non-antigen-specific immune responses [151]. As a result, no
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immunologic memory is preserved after exposure. Apart from that, their activation inau-
gurates a response to metal ions in a hypersensitivity reaction, a delayed hypersensitivity
response (DTH), which is a type of adaptive T lymphocyte and antigen-dependent reac-
tion resulting in immunologic memory development. Both processes cause pain, implant
loosening, and, in consequence, aseptic implant failure [152].

4.4. Innate Reaction

Innate reactions directed to metal implant wear debris are central immune responses
that lead to implant failure. Identification and uptake of wear particles activate macrophage
pattern recognition receptors (PRRs) and initiate the release of pro-inflammatory cy-
tokines (IL-1, IL-6, TNFα, PGE-2), chemokines (monocyte chemoattractant protein (MCP-1),
macrophage inflammatory protein (MIP-1a)) and pro-osteoclastic factors (receptor activator
of nuclear factor kappa B ligand (RANKL)) [153,154]. PPRs recognize stimuli composing
pathogen- or danger/damage-associated molecular patterns (PAMPs and DAMPs) and
are divided into Toll-like (TLRs) and C-type leptin receptors (CLRs) [155]. Metal particles
directly activate TLRs resulting in activation of NLRP3 inflammasome and promotion of
interleukins such as IL-1B secretion [156] and recruitment of myeloid-lineage cells [157,158].
Inflammasomes function as the main regulator of the wound healing process and cause the
production of various immune mediators including IL-1B, IL-6, CXCL8/L8, CCL/MCP-1,
TNFα, nitric oxide, etc. [159,160].

Pro-inflammatory cytokines, i.e., IL-1B and TNFα, enhance the expression of RANKL
and inhibit the expression of suppressors of osteoclastogenesis (i.e., osteoprotegerin),
impede mesenchymal stem cell differentiation into osteoblasts, and even cause osteoblast
apoptosis [161,162]. RANKL binds to RANK receptors on osteoclast precursors (OCPs)
and activates nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and
mitogen activated protein kinase (MAPK) signaling pathways, resulting in augmentation
of bone resorption and consequent implant failure [163,164].

4.5. Adaptive Response

Adaptive immunity depends on the activity of lymphocytes, is antigen dependent,
and results in the formation of immunologic memory following exposure. Metal particles,
i.e., ions, act as haptens with high immunogenic potential. Some, especially when present
at excessive levels, are able to initiate an adaptive immune response, in the form of antigen-
dependent metal allergy or type IV delayed type hypersensitivity (DTH) [165]. Due to the
preponderance of leukocytes among macrophages, giant cells, and other cells within peri-
implant pseudotumor/granule tissues, it has been proposed that adaptive reactions play
an important role in metal implant failure. These reactions are characterized by vasculitis
and infiltration of the vessel wall, perivascular space, endothelium edema, and necrosis.

Among known metals, beryllium [166], chromium [167], cobalt [168], nickel [169],
tantalum [170], titanium [171], and vanadium [172] belong to metals considered as sensi-
tizers. While nickel is known as the most common allergen in humans, chromium and
cobalt are frequent hypersensitivity inducers [173]. The available literature provides data
that demonstrate relevant dependence between the amount and size of metal debris and
initiation of hypersensitivity reactions [152,174]. In an event of suspicion of metal allergy, a
lymphocyte transformation test is advised.

4.6. Biocompatibility of the Most Frequently Used Metal Alloys in LIF
4.6.1. Titanium

Out of all available alloys, commercially pure titanium possesses the distinctive fea-
ture of osteointegration, an ability to create a direct structural and functional connection
between the implant and bone tissue without the production of any soft tissues in between.
Following implantation, on a micro- and nanometer scale, titanium is covered by a thin Ti
oxide layer, proteinaceous layer, a slender cell layer, calcified region, and bone tissue [175].
The efficacy and rate of the osteointegration process are enhanced by modification of Ti
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properties by altering surface micro- and nanostructure, roughness, hydrophilicity, biologi-
cal surface treatment, or chemical addition [176–180]. Titanium presents early macrophage
polarization into M2 macrophages, resulting in early anti-inflammatory/reparative (ARG1,
CD4+) response [181]. Moreover, the change in surface structure modulates the degree of
polarization into pro-healing M2 macrophages [179]. Through that mechanism, ceramic
coatings with the use of hydroxyapatite enhance osteogenic bone response [182]. In a study
conducted by Trinidade et al., during the first 10 days following titanium implantation,
bone suppression markers were downregulated in an in vivo rabbit model [183]. In a
further study on an animal model that investigated the osteointegration process in the
first 4 weeks following implantation, the genetic evaluation revealed suppression of bone
resorptive genes including ANKL, OPG, TRAP, and CathK compared to a sham control
group [183,184].

4.6.2. Titanium Alloys

Commercially pure titanium (CP-Ti) and titanium alloy Ti-6Al-4V are both widely
utilized in the operative field as metal implants. Although there are growing concerns
about toxicity of vanadium [185], in a study conducted by Doe et al., despite achieving
highest concentrations after 4 weeks of implantation, toxic levels have not been reached
in animal models [186]. The search for alternatives has driven adaptation of other alloys
such as Ti-6Al-7Nb, Ti-5Al-2.5Fe, Ti-15Mo, Ti-13Nb-13Zr, Ti-12Mo-6Zr-2Fe, Ti-35Nb-5Ta-
7Z, and Ti-29Nb-13Ta-4.6Zr. Some components present great biocompatibility (i.e., Au,
Ca, Mg, Mo, Nb, Pt, Pd, P, Sr, Sn, Si, Ta, Ti, and Zr) but others, i.e., Al, Ag, Be, Cr,
Co, Cu, Cr, Fe, Mn, Ni, V, and Zn, display toxic reactions both in in vitro and in vivo
studies [187–189]. Hence, alloys comprising biocompatible elements—Ti-39Nb-6Zr (TNZ)
and Ti-39Nb-6Zr + 0.45Al (TNZA)—started to gain growing attention [190]. Nevertheless,
some studies suggest a detrimental effect of Al and its involvement in neurodegenerative
disorders or metabolic diseases [104,191] which might necessitate additional research that
would evaluate its employment in spinal surgery.

4.6.3. Cobalt–Chromium

As reported in recent studies, metal ions and wear particles have the potential to
leach from metallic implants, eliciting adverse immunologic reactions [192–194]. In in vitro
studies conducted by Moeed Akbar et al., Cr (6+) and Co (2+) ions affected primary human
lymphocytes by inducing apoptosis, inhibiting T lymphocytes and impeding the release
of IL-2 through yet unknown mechanisms [195]. This is also viable with low circulating
ion levels [196]. Cobalt and chromium alloy particles as well as their ions activate the
NLR family pyrin domain containing 3 (NLPR3) inflammasome and caspase-1 mediated
pathway, leading to activation of pro-interleukin IL-1B and pro-IL-18 as a part of an innate
immunologic response [197–199]. This in turn activates NFκB that stimulates various
pro-inflammatory responses [156].

4.6.4. Nitinol

Nickel is the most common contact allergen and affects up to 10% of representatives
of the Caucasian population [200,201].

Nitinol has similar biocompatibility to titanium and it is better than that of stainless
steel, therefore it shows promising potential in clinical application. It has similar fibroblast
and osteoblast proliferation potential to Ti and SS [202]. In a study conducted by Haider
et al., Ni ions exhibited greater toxicity on HUVECs than Cr and Ta [203]. Biocompatibility
of nitinol then depends on Ni which is advised not to exceed 50% [204]. Its clinical use
is limited by Ni toxicity, which can cause inflammation, DNA damage, ROI formation,
etc. Although the level of tolerance is not established yet, due to a lack of evidence
in in vitro studies, even low concentrations are proved to limit proliferation in in vitro
experiments [185].
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Studies have shown that due to the passive titanium oxide layer coating the surface of
the nitinol implant, the likelihood of releasing the ions into the recipient’s tissues is similar
to that of stainless steel and cobalt-based alloys. Instances of Ni ions being released have
been noted as more frequent in parts of the implant covered with a thicker oxide layer,
and they are more prone to breaking [205]. In a study performed by Nagaraja et al., on
healthy lab minipigs with implanted optimally surfaced nitinol stents, no adverse effects of
nitinol on kidneys or the hematopoietic system were observed. Nevertheless, non-optimally
surfaced stents caused vessel stenosis and inflammation [206]. This outcome is coherent
with other studies and proves that avoidance of wear debris and adverse effect of nitinol is
feasible by surface processing, i.e., DLC coating [207,208].

4.6.5. Stainless Steel

The most commonly used types of stainless steel implants are ones made from the
SAE 316L alloy. This specific composition consists of 0.02% carbon, 10–14% nickel, 16–18%
chromium, 2% manganese, 2–3% molybdenum, with the rest being iron and it shall be
treated as a whole, as well as the sum of its’ metals and as such. All of the possible reactions
of the aforementioned metals shall be taken into consideration, as they have been reported
to dissociate into the recipient’s tissue [209,210]. Cytotoxicity of these metal particles
as well as immediate hypersensitivity caused by them have been characterized by peri-
implant infiltration of macrophages and lymphocytes with CD68+, CD14+, and HLA-DR+
macrophages, as well as formation of CD3+ T cell and CD20+ B cell congregates [209,211].

Other than direct primal inflammation, stainless steel implants have been shown to
cause apoptosis and chronic inflammation dependent on CD8+ cells [212]. As for metal
particles, histological research has shown a high expression of HLA-DR active cells proximal
to the SS area. T cell lymphocytes have been detected up to 6 months after initial surgery,
suggesting chronic inflammation; it is worth noting that this behavior is consistent with
both SS and titanium implants [212]. There have been reported cases of type IV delayed
allergic reaction to implanted stainless steel plates. It is mediated by antigen-presenting
cells and T lymphocytes causing the buildup of lymphocytes, histiocytes, and foreign body
giant cells as well as inflammation of the implant area [213,214].

As for specific components of the alloy, iron exhibits an important role in modulating
immune response from lymphocytes, NK cells, T cells, monocytes, and macrophages.
Research done on mice has shown that iron oxide, depending on doses and particle size,
either suppresses or enhances immune responsiveness. There are studies suggesting
that the surface texture and roughness also play a role in the severity of the reaction, as
macrophages tend to adhere more consistently to grooved surfaces of the metal and, in
turn, induce a more significant inflammation [215].

Stainless steel implants that undergo corrosion have also been found to release hex-
avalent chromium into the recipients’ tissues and bloodstreams [216]. There is a small
concentration of manganese ions that could be released from the implant, and there have
been cases of type IV allergic reaction to this component [217]. However, some research
has shown that stimulation of anti-viral immune responses is achievable by implementing
manganese ions. They have been reported to stimulate M1 macrophages and CD8+ T cells
as well as boost the host’s adaptive immunity [218]. Molybdenum has been reported to
induce an inflammatory response by activating the NLRP3 inflammasome in macrophages
by stimulating the secretion of IL-1β, which is hypothesized to be one of the reasons behind
peri-implant tissue inflammation [219].

The biocompatible characteristics of above-mentioned metal alloys have been com-
pared in Table 3.
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Table 3. Comparison of biocompatible characteristics of titanium, cobalt–chromium, nitinol, and
stainless steel alloys.

Alloys Foreign Body
Reaction Innate Reaction Adaptive

Response Healing Process References

Titanium
Formation of

foreign body giant
cells is common

Prolonged presence
of neutrophils Osteointegration Enhanced

osteogenic response [182,183]

CoCr

Fewer instances of
foreign body giant
cell formation than

in SS

Induction of IL-1B
and T cell

lymphocyte
proliferation

Decrease in
cytokine production

over time

Enhanced
angiogenesis [197–199,220]

Nitinol
Inflammatory

response due to Ni
ions being released

Inflammation in
presence of

macrophages and
lymphocytes

Rare cases of type
IV delayed

hypersensitivity
response

Osteointegration
higher than

titanium
[221,222]

SS

Higher
inflammatory

response than in
other analyzed

materials

Inflammation in
presence of

macrophages and
lymphocyte
congregates

Buildup of
lymphocytes,

histiocytes, giant
cells and

inflammation

Increased
inflammatory

response slows
down the healing

process

[209,211,213,214]

5. Summary

Both mechanical features of metal alloy and the biological response induced by the
metal implant are essential for the efficiency of LIF. An appropriate fatigue strength, mainly
determined by the microstructure of the metal alloy, decreases the risk of implant fractures.
Corrosion resistance has an influence not only on implants’ mechanical performance
but also can prevent releasing metal ions into the surrounding tissue and bloodstream.
Furthermore, decreasing the Young’s modulus may avoid the “stress-shielding” effect. On
the other hand, implanted material elicits a biological response driven by immune cells at
the site of insertion. That response is determined by wound healing, foreign body reaction,
response to implant wear debris and metal ions, innate reactions, and adaptive immunity.
All these properties are crucial to avoiding implant failure and obtaining spinal fusion.

Every metal alloy discussed in this paper has its advantages and disadvantages. How-
ever, high Young’s elastic modulus, poor corrosion resistance, and allergic and inflammation
reactions disqualify stainless steel from use in LIF instrumentation. Cobalt–chromium
alloy as a material eliciting adverse immunologic reactions and demonstrating high elastic
modulus does not appear to be a good alternative. The use of superelastic and biocom-
patible nitinol may reduce the rate of adjacent segment disease. Unfortunately, its clinical
use is limited by the toxicity of nickel. However, surface processing (e.g., DLC coating)
may prevent this limitation and in the future enhance the popularity of this alloy in spinal
instrumentation. Despite decreased, but still relatively high, elastic modulus, titanium
alloys, especially the most popular Ti-6Al-4V alloy, remain a standard biomaterial for
LIF instrumentation. Moreover, some manufacturing techniques (e.g., surface processing)
can decrease Young’s modulus while preserving the mechanical and distinctive osteoin-
tegration properties of these alloys. On the other hand, the osteogenicity of titanium can
be enhanced by ceramic coatings. Furthermore, adverse immunologic reactions are not
frequent in comparison to other alloys. Therefore, titanium alloys currently represent the
safest and the most effective materials among the discussed metal alloys for implants in LIF.

There are some more unknown aspects in designing implants and their material
properties that can connect lumbar interbody fusion to other spine disorders such as
cerebrospinal fluid leakage and CM-I that can be studied in future works [223]. In the future,
further achievements in biomaterial engineering may help to obtain desirable biological
and mechanical features of spinal implants to provide effective and safe spinal fusion.
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