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Abstract
Objective The apparent diffusion coefficient (ADC) is in-
creasingly used as a quantitative biomarker in oncological
imaging. ADC calculation is based on raw diffusion-
weighted imaging (DWI) data, and multiple post-processing
methods (PPMs) have been proposed for this purpose. We
investigated whether PPM has an impact on final ADC values.
Methods Sixty-five lesions scanned with a standardized
whole-body DWI-protocol at 3 T served as input data (EPI-
DWI, b-values: 50, 400 and 800 s/mm2). Using exactly the
same ROI coordinates, four different PPM (ADC_1–ADC_4)
were executed to calculate corresponding ADC values, given
as [10-3 mm2/s] of each lesion. Statistical analysis was per-
formed to intra-individually compare ADC values stratified
by PPM (Wilcoxon signed-rank tests: α=1 %; descriptive
statistics; relative difference/Δ; coefficient of variation/CV).
Results Stratified by PPM, mean ADCs ranged from
1.136–1.206 *10-3 mm2/s (Δ = 7.0 %). Variances between

PPM were pronounced in the upper range of ADC values
(maximum: 2.540–2.763 10-3 mm2/s, Δ = 8 %). Pairwise
comparisons identified significant differences between
all PPM (P ≤ 0.003; mean CV = 7.2 %) and reached
0.137 *10-3 mm2/s within the 25th–75th percentile.
Conclusion Altering the PPM had a significant impact on
the ADC value. This should be considered if ADC values
from different post-processing methods are compared in
patient studies.
Key Points
• Post-processing methods significantly influenced ADC
values.

• The mean coefficient of ADC variation due to PPM was
7.2 %.

• To achieve reproducible ADC values, standardization of
post-processing is recommended.
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Introduction

Diffusion-weighted imaging (DWI) has become an indispens-
able tool for the examination of the central nervous system, and
is increasingly used in body radiology. In proton MR imaging,
extracellular water diffusion primarily contributes to measurable
diffusivity. Further, capillary perfusion and molecular motion
due to other causes, such as pressure or thermal gradients, also
influence measured diffusivity values. As a consequence, quan-
titative results of DWI measurements are referred to as an ap-
parent diffusion coefficient (ADC) [1].

Typically, lower ADC values are observed in malignant
tumours compared to healthy tissue [2, 3]. This is usually
explained by microstructural differences, such as an increased
cellularity in malignant tumours. Typical examples of false-
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positive cases are glandular structures in adenocarcinomas or
colliquative necrosis [4, 5].

In clinical practice, the ADC is assessed using parametric
maps. However, the generation of such maps is not straight-
forward. It requires post-processing of raw DWI data, and
multiple post-processing methods (PPMs) have been pub-
lished for this purpose. Notably, many ADC researchers have
used software tools provided by the vendor. Such tools are
frequently proprietary and thus details of the algorithms are
not generally available to users [3, 6].

This calls into question the reproducibility of ADC values.
Therefore, we aimed to investigate whether PPMs have an
impact on the ADC value.

Methods

Patients

We chose 25 patients (mean age 58 years, range 37–81
years) randomly from our prospectively populated insti-
tutional PET-MRI database. The latter contains patients
with various oncological diseases of advanced stages.
Thus, histological verification, imaging follow-up and in-
terdisciplinary tumour board consensus were defined as
the standard of reference (SOR). Details on patient diag-
nosis are summarized in Table 1.

Such inclusion criteria were used in order to create a
patient collective that would cover the whole spectrum of
ADC values, ranging from about 0.2 (lymph nodes, bone
marrow) to 2.4 * 10-3 mm2/s (kidney cortex [2, 7]).1

Imaging

All patients were examined on a 3-Tesla Biograph mMR unit
using phased array body coils (Siemens Healthcare Division,
Erlangen, Germany). Patients thus received a whole-body
(WB) examination at the Department of Radiology,
University Hospital Erlangen, including morphological T1-
and T2-weighted sequences and the DWI sequence.

The latter used WB, free-breathing, multiple-signal-
acquisition EPI sequences (echo planar imaging) with three
different b-values (50, 400 and 800 s/mm2). This DWI protocol
followed recommendations for BWhole-Body Diffusion-
weighted MR Imaging in Cancer^ published by Padhani and
colleagues in [3]. Technical details of this protocol are summa-
rized in Table 2.

Post-processing methods (PPMs)

Four different PPMs were executed in every lesion, based on
the same raw DWI data (i.e. the b50, b400 and b800 images).
This approach allowed the creation of paired sets of ADC
values to compare four PPMs on an intra-individual basis.
The following PPMs were used:

ADC_1: ADCmap generated automatically inline by the
scanner using b-values of 50, 400 and 800 s/mm2

(Biograph mMR, Siemens Healthcare Division,
Erlangen, Germany)
ADC_2: Manual logarithmic calculation [8]. ADC_2
was calculated using the signal intensity (SI) of raw
DWI data at the given ROI position (see below):

Table 1 Details on type and site of lesions

Disease Patients LN No LN

Lung cancer 10 10 21

Neuroendocrine neoplasm 5 7

Gastrointestinal neoplasm 3 4

Lymphoma 2 8

Breast cancer 1 6

Cancer of unknown primary 2 4

Ovarian carcinoma 1 1

Thyroid carcinoma 1 4

Total 25 32 33

NoteA total of 65malignant lesions in 25 patients were included. Thirty-two
lesions where located within lymph nodes (LN) of which eight were lym-
phomas and 24 lymph node metastases. The remaining 33 lesion consisted
of 12 organ metastases (liver, brain, bone, etc.) and 21 primary tumours

1 In the following parts of the manuscript, the unit of the ADC given as
[10-3 mm2/s] will be omitted to improve legibility.

Table 2 Imaging parameters of the DWI sequence

Parameter Value

Slice thickness 5 mm

Field of view 284 mm×379 mm

Matrix 108 × 192

Repetion time 9,200 ms

Effective echo time 82 ms

Fat saturation SPAIR

Parallel imaging GRAPPA: factor 2

Avarages 4

Slice orientation axial

GRAPPA GeneRalized Autocalibrating Partial Parallel Acquisition,
SPAIR Spectrally Adiabatic Inversion Recovery
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ADC_2 can thus be expressed as a function of SI at
b50 and b800 as follows:

ADC 2 ¼
ln

SIb800
SIb50

b50−b800
ð1Þ

ADC_3: Manual ordinary least squares regression
analysis [9]. ADC_3 is a function of SI at b50, b400
and b800 as follows:

ADC 3 ¼
b50− b

� �
* lnSIb50− lnSI
� �

þ b400− b
� �

* lnSIb400− lnSI
� �

þ b800− b
� �

* lnSIb800− lnSI
� �

b50− b
� �2

þ b400− b
� �2

þ b800− b
� �2 ð2Þ

Where b equals the arithmetic mean of all three b-values

(416.67 s/mm2) and SI equals the mean SI of all three b-
values at the given ROI position.

ADC_4: Dedicated task card on post-processing
workstation (MMWP: MultiModality Workplace, soft-
ware version B19, Siemens Healthcare Division).
According to prior exploratory analysis [10], noise reduc-
tion was set to a level of 10 (arbitrary units of pixel in-
tensities), which generated a visual aspect similar to that
of ADC_1.

The calculations of ADC_2 and ADC_3were performed in
Excel (v 15.16, Microsoft Corp., Redmond, WA, USA) on
Mac OS 10 (Apple Inc., Cupertino, Ca). Further details on
the ADC calculation are listed in the Supplementary
Material section.

Assessment of lesions

DICOM files of raw DWI data and the two parametric ADC
maps (ADC_1, ADC_4) were imported on a MMWP.
Previous investigations have verified observer-related bias
for the assessment of ADC values (CV from 6.8 to 7.9 [6]).
As our study focused on the impact of PPMs on the ADC
value, a single-read and single-reader approach was chosen
to decrease such potential reader-dependent bias. First, lesions
had to be identified based on the following criteria:

& Definition: A lesion was defined as a malignant focus
(primary, organ metastasis or lymphoma, c.f. Table 1).
Lesions were identified on raw DWI data based on the
SOR.

& Lesion size: In order not to be biased by partial volume
effects, a minimum lesion diameter of 1.5 cm was defined
and the lesion had to be clearly visible in three consecutive
slices on DWI images and ADC maps.

& Multiple lesions per patient: If multiple lesions were pres-
ent within one patient, only one lesion was included in
every anatomic region (e.g. cervical, mediastinal,

retroperitoneal lymph nodes (LN)). The maximum num-
bers of lesions assessed per patient was set to seven. This
was done so as not to overload the study collective by data
from patients at advanced disease stages.

Second, lesions were assessed by regions of interest
(ROIs). The latter were defined according to the following
criteria:

& Positioning: One circular ROI was carefully positioned in
order to encircle a representative area of the lesion with
restricted diffusion.

& Size: In order to minimize partial volume effects, the target
ROI size was set to 1 cm2.

& Transfer of ROI coordinates between PPMs: In previous
works on the reproducibility of the ADC, ROI coordinates
between different workstations were transferred manually
[6, 11]. This approach is prone to a user-dependent bias.
Our approach used user-independent software for this pur-
pose (MMWP). It enables the automatic transfer of slice
number, size and centre of the circular ROI between each
PPM and the raw DWI data. Accordingly, user-dependent
bias can be excluded and differences between ADC values
of the PPM are related only to the underlying algorithms
of the PPM.

This reading workflow is demonstrated on three clinical
examples in Figs. 1, 2, and 3. Finally, the mean value of SI
(raw DWI data) and the ADC (ADC_1 to ADC_4) of each
lesion ROI was documented in a central Excel database.

Statistical methods

Data analysis followed a lesion-based approach and the inde-
pendence of lesions in the same patient was assumed.

We evaluated the distribution of ADC values within each
PPM (ADC_1 to ADC_4) and performed pairwise compari-
sons of the PPM (i.e. ADC_1 vs. ADC_2, ADC_1 vs.
ADC_3, etc.).
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Descriptive data analysis included arithmetic mean, rela-
tive difference (Δ), median, SD (standard deviation), range
(minimum to maximum), percentiles (5, 25, 75, 95) and the
coefficient of variation (CV [%]=100*SD/mean; [6, 11]).

ADC values were not normally distributed, as shown by
the D’Agostino-Pearson test (P<0.05), with differing means
and medians, as well as visual analysis (box plots). Thus,
pairwise comparison of the four PPMs was obtained using
the Wilcoxon signed-rank test (α=1 %). P-values are given

uncorrected, but results were interpreted considering potential
alpha error.

Visual analysis was performed using box plots and Bland-
Altman plots (BAPs). BAPs were used to check for systematic
and proportional error between the four PPMs on the level of
pairwise comparison. ΔPPM (PPM_1 minus PPM_2) was
placed on the ordinate and PPM_1 on the abscissa. A regres-
sion line was placed into the point cloud of each BAP. If it the
regression line could be fitted to the point cloud (criterion:

Fig. 1 Examples of reading approaches: A 55-year-old male with
advanced-stage oesophageal cancer (arrow). The image shows the read-
ing set-up, with raw diffusion-weighted imaging (DWI) data on the top
row (b50, b400, b800 [s/ mm2]), and, below, parametric apparent diffu-
sion coefficient (ADC) maps of ADC_1 and ADC_4. The latter were
automatically generated inline by the scanner or by the viewing worksta-
tion (MMWP, details see above). On raw DWI data, the typical signal

decay of free water can be depicted in the adjacent stomach, whereas the
lesion itself shows signal alteration indicative of diffusion restriction (ar-
rowhead). The corresponding ROI 1 was placed within the tumour in the
b800 image and ROI coordinates were automatically transferred to all
other remaining series. This approach excluded user-dependent bias when
comparing the ROI statistics between the given series

Fig. 2 A 59-year-old male with advanced-stage lung cancer and multiple
cervical lymph node metastases. Set-up and automatic region of interest
(ROI) transfer were the same as that in Fig. 1. A signal-to-noise (SNR) of
21.9 at b800 [s/mm2] was achieved in this small lesion that showed

diffusion restriction as follows: apparent diffusion coefficient (ADC)
values ranged from 0.453 (ADC_1) to 0.458 (ADC_4). Using the formu-
las (1) and (2) (see text), slightly higher values were calculated (ADC_
2= 0.459 and ADC_4= 0.464)
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slope, intercept: P<0.05), the presence of a proportional error
was assumed [12].

Statistical analyses were performed using MedCalc for
Windows, version 12.5 (MedCalc Software, Ostend,
Belgium).

Results

Mean ADC values of the PPMs ranged from 1.136 (ADC_1)
to 1.206 (ADC_3; Table 3). This led to a relative ADC differ-
ence Δ of up to 7.0 %.

With a Δ=8 %, dispersion of data was pronounced in the
upper range of ADC values (Fig. 4). Thus, maximal values
reached from 2.540 (ADC_1) to 2.763 (ADC_3). As shown in
Fig. 4, comparable results were observed for the 95th percen-
tiles (2.002: ADC_1 to 2.152: ADC_2). On the lower end of
ADC, data were less scattered. Minimum values ranged from
0.312 (ADC_1) to 0.317 (ADC_4), with Δ≤1.6 %.

The pairwise comparison of ADC values revealed mean
differences of ADC values ranging between −0.070 (ADC_1

vs. ADC_3) and 0.043 (ADC_3 vs. ADC_4; Table 4). On a
case-by-case basis, such differences reached up to −0.866
(maximum difference for ADC_2 vs. ADC_4) or −0.137 in
case of the 25th–75th percentile (ADC_1 vs. ADC_3).

Significant differences between all PPMs were noted
(ADC_2 vs. ADC_3: P=0,003, all other pairs: P<0.001;
c.f. Table 5). This led to a CV between 1.1 % (ADC_2 vs.
ADC_3) and 10.4 % (ADC_1 vs. ADC_3). This gave a mean
CVof 7.2 % (8.4 % if ADC_2 was not considered).

Visual analysis of BAP (Fig. 5) excluded the presence of
systematic error. However, up to four outliers (ADC_1 vs.
ADC_2, ADC_1 vs. ADC_3) were noted beyond the levels
of agreement. Only one outlier was noted in two PPM pairs
(ADC_1 vs. ADC_4 and ADC_2 vs. ADC_3).

A proportional error was identified in two PPM pairs
(ADC_2 vs. ADC_4 and ADC_3 vs. ADC_4). Accordingly,
differences between such pairs were significantly cor-
related (P < 0.05) with the magnitude of measurements.
Namely, differences increased with rising ADC levels
(slope = 0.12: ADC_2 vs. ADC_4; slope = 0.13: ADC_3
vs. ADC_4).

Fig. 3 A 47-year-old female diagnosed with Hodgkin’s lymphoma.
Protocol was identical to that in Fig. 1. In this case, the corresponding
region of interest (ROI) 1 (arrow) was placed within the tumour (noise
ROI: arrowhead). Apparent diffusion coefficient (ADC) values ranged

from 1.800 (ADC_1) to 1.972 (ADC_2; Δ= 9 %). Note the low remain-
ing signal at b800 (signal-to-noise ratio (SNR) of 3.5) in this heteroge-
neous lesion

Table 3 Descriptive data
analysis of apparent diffusion
coefficient (ADC)-values in four
post-processing methods (PPMs)

PPM Mean SD Median Range 25–75 P 5 - 95 P

ADC_1 1.136 0.435 1.034 0.312–2.540 0.871–1.352 0.478–2.002

ADC_2 1.201 0.473 1.057 0.313–2.744 0.905–1.457 0.614–2.152

ADC_3 1.206 0.473 1.062 0.315–2.763 0.904–1.473 0.643–2.146

ADC_4 1.163 0.438 1.044 0.317–2.599 0.894–1.389 0.607–2.030

All values given in [10-3 mm2 /s]

SD standard deviation, P percentile
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Discussion

DWI is an essential part of state-of-the-art oncological MR
protocols. One reason for the unique success of DWI is cer-
tainly the seemingly easy way to interpret ADC maps.
Concurring techniques – such as MR spectroscopy – require
far more sophisticated post-processing, whereas ADC maps
are usually generated fully automatically inline by the scanner.

In the literature, there are few clinical reports on the vari-
ability of the ADC. Essentially, there are three aspects that
should be addressed in order to investigate the variability of
the ADC:

First, ADC is influenced by the imaging protocol itself.
Thus, many factors must be considered. Changing the
echo time (TE), numbers of averages, spatial resolution
or size of the field of view (FOV), etc., will have an
impact on the signal-to-noise ratio (SNR). The latter
plays a key role in the generation of raw DWI data and
has an important impact on ADC values [2, 13].
However, factors such as the scanner itself, sequence
type, coils and vendors are also likely to have an impact
on ADC values. Due to the number of influencing fac-
tors, it is difficult to express the effect of the imaging
protocol itself on final ADC values in a simple number.
Corona-Villalobos et al. [11] performed serial measure-
ments both of healthy tissue and a phantom using two
different DWI sequences. The variability of correspond-
ing ADC values were analyzed and quantified by a
mean CV of 11 %. Donati et al. [14] compared ADC
values of healthy volunteers within various regions of
the abdomen. They used six different scanners sold by
three different vendors at 1.5 and 3 Tesla field-strength.
Those authors reported significant inter-vendor differ-
ences, with a minor effect of field strength. CV ranged
from 7.0 % to 15.9 % if the liver ROIs were not consid-
ered. Of note, the CVof liver lesions was much higher
(up to 27.1 %).
Second, identification of the ADC values depends on
the radiologist her-/himself. This means that ADC as-
sessment – although a quantitative measure by nature –
is influenced by observer-related bias. This fact is due to
inter- and intra-observer variability regarding manual

Fig. 4 Box plots summarizing the distribution of apparent diffusion
coefficient (ADC) values provided by the four different post-processing
methods (PPMs). Median ranks between the PPMs showed significant
differences (P ≤ 0.003). Note the different size of boxes and whiskers at
the upper range of ADC values. In ADC_2, there were two outliers
beyond the 97.5 quartile. One bone metastasis of lung cancer
(ADC= 2.301) and one prostatic metastasis of a neuroendocrine tumour
(ADC= 2.744) are shown. The latter caused all the outliers in the remain-
ing PPMs

Table 4 Comparison of post-processing methods (PPMs): Descriptive
data analysis

PPM-pair Mean SD Range 25–75 P

(1) ADC1
vs. ADC_2

-0.065 0.157 -0.483 to 0.81 -0.128 to -0.012

(2) ADC_1
vs. ADC_3

-0.070 0.159 -0.493 to 0.806 -0.137 to -0.015

(3) ADC_1
vs. ADC_4

-0.027 0.046 -0.36 to 0.006 -0.032 to -0.007

(4) ADC_2
vs. ADC_3

-0.005 0.019 -0.14 to 0.013 -0.008 to 0.002

(5) ADC_2
vs. ADC_4

0.038 0.146 -0.866 to 0.454 0.005 to 0.092

(6) ADC_3
vs. ADC_4

0.043 0.148 -0.861 to 0.465 0.002 to 0.106

Note Mean: Given are relative mean differences between each PPM-pair
(e.g. of ADC_1minus ADC_2). Corresponding parameters of descriptive
statistics are given: Difference: All ADC-Values given in [10-3 mm2 /s].
Negative values indicate that the first PPM provided smaller values than
the second one (e.g. in Pair (1) on average ADC_1 values were lower by
0.065 10-3 mm2 /s compared to ADC_2)

All values given in [10-3 mm2 /s]

ADC apparent diffusion coefficient, SD standard deviation, Range from
minimum to maximum difference, P percentile

Table 5 Differences between post-processing methods (PPMs):
Detailed analysis

PPM-pair P Slope Intercept Outliers CV

(1) ADC_1 vs. ADC_2 <0.0001 n.s. n.s. 4 10.2

(2) ADC_1 vs. ADC_3 <0.0001 n.s. n.s. 4 10.4

(3) ADC_1 vs. ADC_4 <0.0001 n.s. n.s. 1 3.2

(4) ADC_2 vs. ADC_3 0.003 n.s. n.s. 1 1.1

(5) ADC_2 vs. ADC_4 <0.0001 0.12 -0.11 3 9

(6) ADC_3 vs. ADC_4 <0.0001 0.13 -0.1 3 9.1

Note P value according to Wilcoxon signed-rank test

If there was a significant (P < 0.05) correlation between x (PPM_A) and y
(PPM_A minus PPM_B), the slope and intercept of the corresponding
regression equation are given. These results indicate a proportional error
within PPM-pairs (5) and (6); see also Fig. 5. Accordingly, the difference
between ADC_2/ADC_3 and ADC_4 increased with rising ADC-levels

ADC apparent diffusion coefficient, Outliers number of ADC-values be-
yond +/-1.96 * SD, CV coefficient of variation (%)
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ROI placement by the reader. A paper recently pub-
lished by Clausner et al. [6] focused on this particular
aspect of ADC analysis. The authors quantified this
observer-related bias with a mean CV of 7.2 % (range
6.8–7.9%). This value is in the range of ADC variability
caused by the PPMs, according to our results (CV: 7.2).
Third, the PPMs of DWI data might have an impact on
ADC values. Different from the first two, this fact has
been largely ignored by the radiological community.
Basic and computational scientists have developed a
variety of different algorithms to calculate the ADC
based on raw DWI data. All such approaches work
slightly differently, and, thus, are likely to generate dif-
ferent numerical values. Of note, many software solu-
tions being used in clinical, as well as scientific practice,
are basically black boxes, as PPMs for DWI data are not
generally available to the user. Based on an oncological
dataset, we intra-individually compared ADC values of
four different PPMs typically used for this purpose.

In our series, average ADC values did show a range of
7.0 %, providing values between 1.136 and 1.206. As these
two extremes were calculated by the proprietary scanner soft-
ware (ADC_1: the exact algorithm is not disclosed) and the
ordinary least squares fit (ADC_3), results are indicative of
further post-processing in the former. This could include
fitting and smoothing algorithms, as well as the filtering of
raw data. We did not aim to identify the best algorithm for the
calculation of the ADC, yet, from a scientific perspective, the

use of a black box tool should be discussed critically
(ADC_1), particularly if the results differ significantly from
an open-source tool such as that used for method ADC_3.
However, average values showed not only significant differ-
ences between the two extremes, but also between all other
methods (all pairwise comparisons: P≤0.003).

One should question whether statistical significance really
translates into clinical relevance. One approach to the inter-
pretation of ADCmaps in clinical practice is visual inspection.
If such a qualitative analysis of ADC maps is the task, the
choice of different post-processing algorithms certainly has a
minor impact on final radiological assessment. However, if
quantitative measurement is performed, the reader should be
aware of this potential bias. This is becoming increasingly
important, because a growing number of scientific papers sug-
gest definitive ADC thresholds for differential diagnosis.

In a recent article, Baltzer et al. [15] proposed an ADC
threshold of 1.4 to differentiate benign from malignant
breast lesions. Data was supported by good specificity
(80.5 %) and sensitivity (100 %), which was improved
by integrating contrast-enhanced MRI (specificity
96.1%, sensitivity 100%). The authors used ADCmaps
that were automatically generated by the scanner soft-
ware. Noise reduction level was set to an arbitrary level
of 30 [15].
Similarly, the ADC was reported as a promising tool for
differentiating focal liver lesions as benign or malignant.
For example, ADC values under 1.470–1.600 were

Fig. 5 Pairwise comparison of post-processing methods (PPMs) using
Bland-Altman plots (BAPs). ΔPPM (PPM_1minus PPM_2) is shown on
the ordinate. PPM_1 is shown on the abscissa. Indicated are the limits of
agreement, the mean relative difference, and the regression curve. Note

the significant difference in mean ADC value in each pair as well as the
presence of up to four outliers beyond the limits of agreement (+/-
1.96*SD: A and B). A proportional error was identified for E and F, with
a slope of 0.12 and 0.13, respectively
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described as a potential sign of malignancy again with
good, yet varying sensitivity (74–100 %) and specificity
(77–100 %) [16–22]. Kim et al. [18] reported the use of
a linear logarithmic regression. The other authors mea-
sured the ADC using ROIs on ADC maps.
Recently, DWI has become a popular tool for MR phe-
notyping of prostate lesions. Indeed, ADC could be
used to predict Gleason grades, to stratify into further
treatment groups (watchful waiting vs. therapeutic inter-
vention), and to assess treatment response [23–25].
Again, methodological documentation within such pa-
pers on DWI post-processing is sparse, and the authors
reported the use of only ADC maps that were generated
by the scanner software [23–25].

Up to this point, we have discussed our results in the con-
text of mean values provided by the four DWI PPMs. This
approach averages out a number of details that are important
for clinical practice. For example, mean values of ‘method A’
might be exactly the same as of ‘method B’. However, ‘meth-
od A’ might still produce different results on a pairwise com-
parison in certain cases. In fact, this is exactly what we ob-
served in our data. Such details are of clinical importance and
should be discussed.

As summarized in Table 3 and Fig. 4, variances between
PPMs were pronounced in the upper range of ADC
values (maximum: 2.540–2.763, Δ=8 %). The highest
values were generated by ADC_2 (up to 2.744) and
ADC_3 (up to 2.763). In comparison, the maximum
ADC values generated by the proprietary algorithms
were lower (ADC_1: 2.540, ADC_4: 2.599).
However, dispersion of data was much smaller at the
lower range of ADC values. Minimum values ranged
from 0.312 (ADC_1) to 0.317 (ADC_4), giving a
Δ≤1.6 %. Such a finding could be due to low SNR on
the b800 images [2].
Differences were noted not only at the extremes, but also
in terms of data distribution. This is reflected by a mean
CV of 7.2 %. As shown in Table 4, differences also
reached up to 0.137 in the 25th–75th percentile
(ADC_1 vs. ADC_3). According to the point clouds
of the BAP (Fig. 5, Table 5), proportional error could
be identified between the ADC_4 and both open-source
algorithms (ADC_2 and ADC_3; Fig. 5 E, F).
Accordingly, the difference between such PPMs in-
creased with the rising magnitude of ADC values.

Our results are of clinical importance. As the widespread
clinical application of quantitative DWI is continuously in-
creasing, academic MR radiologists are not the only group
that should be aware of the impact of PPMs on ADC values.
This effect might be relevant even within one single

institution. For instance, if dedicated post-processing methods
are used in addition to the standard ADC maps provided by
the MR system, ADC metrics might be different. Therefore,
we recommend the standardization of PPMs. This is of the
utmost importance in longitudinal studies, for example, during
follow-up of chemotherapy, in order to evaluate treatment
response [3].

Limitations

In addition to the PPMs, in the present analysis, all other
‘confounding factors’ on ADC estimates were set constant.
This approach was required to determine the exact effect of
PPMs on ADC metrics. Accordingly, the results of our WB
DWI study cannot be translated into other clinical scenarios
literally. Such other ‘confounding factors’ are likely to further
increase the variability of ADC-metrics in addition to the ef-
fect of PPMs. This is why they should be discussed briefly.

First, ADC metrics depend on the imaging protocol
itself. It is well known that the protocol is not constant,
but has to be optimized for the specific scenario. For in-
stance, if a dedicated examination of the upper abdomen is
required, parameters will necessarily differ from our pro-
tocol. For instance, more b-values will be chosen in this
case [14], whereas a dedicated breast MRI [15] or even a
WB DWI protocol will require different settings [3].
Yet, even in the given WB imaging scenario, different
protocols coexist. Accordingly, some research teams fa-
vour the use of high b-values for this purpose, and skip
low values below 200 for WBMRI [13]. In this scenar-
io, the ADC value is, again, likely to be different from
our data.
Future investigations should assess to what degree dif-
ferences between PPMs are present, if DWI protocols
are altered. Special attention should be paid to the com-
parison of ADC values derived only from the high-b-
value signal intensities.
Second, there is no singleway to document the results of
ROI measurement. As the latter sums up the ADC
values of every pixel within the given ROI, many met-
rics can be used for this purpose. These include
minimum-ADC, maximum-ADC or histogram analysis.
However, in clinical practice, the mean ADC value
within the ROI is typically used [15]. This is why we
chose this approach.
If the method of ROI analysis is changed, differences
between the PPMs might also be altered. This is likely if
a pixel-by-pixel comparison is performed between ADC
metrics derived from various PPMs. As this approach is
particularly capable of highlighting outlier values, it
should be investigated in future studies.
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Third, repeatability of DWI measurements is a limita-
tion in itself. Thus, during serial measurements of a giv-
en pathology, ADC values will not be constant and will
necessarily scatter. Even if all other ‘confounding fac-
tors’ – including the PPM itself – are set as constant, the
repeatability ADC values will not be perfect. This effect
has been reported by [11].

Certainly, such considerations limit the literal translation of
our results into clinical practice. However, we did not aim to
establish ‘the optimal PPM’. In fact, the aim of our study was
to demonstrate that BPPM has an impact on ADC values^.
Even if absolute differences between PPMs change due to
altered study protocols, this key point will certainly hold true.

Conclusion

Post-processing of rawDWI data and calculation of theADC is a
delicate act and depends on the choice of the post-processing
algorithms. We observed significantly different mean ADC
values between all of the four algorithms tested, and demonstrat-
ed substantial intra-individual differences on a case-by-case ba-
sis, leading to a mean CVof 7.2 %. As the widespread clinical
application of quantitative DWI is constantly increasing, MR
radiologists should be aware of this phenomenon.
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