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Abstract: The morphogenesis and defense evolution of plants are intricately linked to
soil microbial community dynamics, where beneficial and pathogenic bacteria regulate
ecosystem stability through chemical signaling. A microbial communication mechanism
known as quorum sensing (QS), which affects population density, virulence, and biofilm
formation, substantially impacts plant development and immune responses. However,
plants have developed strategies to detect and manipulate QS signals, enabling bidirectional
interactions that influence both plant physiology and the balance of the microbiome. In
this review, QS signals from bacteria, fungi, and nematodes are systematically examined,
emphasizing their recognition by plant receptors, downstream signaling pathways, and the
activation of defense responses. Most significantly, attention is given to the role of fungal
and nematode QS molecules in modulating plant microbe interactions. By elucidating
these communication networks, we highlight their potential applications in sustainable
agriculture, offering novel insights into crop health management and ecosystem resilience.
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1. Introduction
Plants coexist with a variety of soil microbiomes, some of which are pathogens that

reduce plant fitness, while others are beneficial bacteria that promote plant growth and
stress tolerance [1]. These microbial communities employ sophisticated communication
systems known as QS, which allow them to coordinate group behaviors based on pop-
ulation density through the production and detection of quorum signaling molecules
(QSMs) [2,3]. Crucially, plants have evolved the capacity to decipher or even sabotage
these QS signals, turning microbial communications into a battlefield for survival. While
bacterial QS mechanisms (e.g., N-acyl homoserine lactones, AHLs) are well-characterized,
recent studies reveal that fungal farnesol derivatives and nematode ascarosides similarly
orchestrate host–pathogen interactions, albeit through less understood pathways [4,5].
Though less well-characterized than their bacterial counterparts, they play equally pivotal
roles in pathogen–host plant communications and virulence strategies. Table 1 details
QS molecules associated with certain plant-associated microorganisms. These signals are
no longer viewed merely as microbial tools but as inter-kingdom mediators that directly
manipulate plant immunity and development. For instance, plants decode long-chain
AHLs (e.g., oxo-C14-HSL) as danger cues to prime systemic resistance, while hijacking
short-chain AHLs to enhance root growth; this is a double-edged sword that microbes
exploit in colonization [6,7].

As signaling molecules accumulate at threshold concentrations, they bind to specific
receptors and initiate coordinated gene expression programs that regulate the behaviors
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of microbial communities, including bioluminescence, biofilm formation, virulence pro-
duction, antibiotic production, and the establishment of symbiotic relationships [8–11].
Furthermore, microbial QSMs promote plant growth and root architecture and activate
plant immune defenses. It has been proposed that some AHL molecules, including oxo-
C14-HSL and oxo-C8-HSL, may be recognized by Arabidopsis thaliana as danger signals
that activate immune responses and enhance resistance to bacterial pathogens such as
Pseudomonas syringae [6,7]. Through this primed state, cells can respond better to pathogens,
reinforced by lignin and callose deposition in the cell walls [12].

The plant surveillance system is enhanced by sophisticated countermeasures such
as the production of QS mimic molecules and enzymes, which can disrupt microbial
communication and decrease virulence [13]. These fundamental insights into QS systems
have led to the development of quorum sensing inhibitors (QSIs), which offer promising
new avenues for the prevention and control of plant diseases [14]. Unlike conventional
antimicrobials, QSIs interfere with microbial communication rather than killing pathogens,
thus limiting opportunities for resistance to develop [8]. An example would be garlic-
derived QSI compounds that inhibit Pseudomonas aeruginosa virulence and block signal
reception by Xanthomonas pathogens via synthetic analogs of AHL [15]. This strategy
provides protection against plant pathogen infections while reducing bacterial resistance,
offering an alternative method of controlling plant diseases.

Increasing understanding of QS mechanisms across kingdoms (bacteria, fungi, and
nematodes) indicates their potential application in sustainable disease management prac-
tices. Three key avenues deserve attention: (1) pharmacological interference through QSI
compounds (e.g., garlic-derived inhibitors); (2) ecological modulation through QSM mimics
synthesized in plants; (3) microbiome engineering based on interspecies QS crosstalk [16,17].
In this review, we provide an overview of the QSMs for bacteria, fungi, and parasitic nema-
todes associated with plants. It summarizes the effects of QS on plants and their feedback
interactions while exploring QS applications related to plant diseases. By undertaking
these studies, new avenues are expected to emerge for the development of safer chemical
alternatives, providing theoretical support for sustainable agriculture. Future research
should focus on elucidating the molecular mechanisms of QS systems and developing more
efficient and specific QSIs to address the challenges associated with plant diseases.

2. QS Definition and Core Mechanisms
QS is a cell-to-cell communication mechanism used by microorganisms to coordi-

nate group behaviors by producing and detecting specific signaling molecules known as
QSMs [18]. There are several categories of QSMs, as shown in Figure 1 and Table 1. In
bacteria, QSMs consist of autoinducers such as AI-1 (N-acyl homoserine lactones), AI-2
(furanosyl borate diester), AI-3, and DSF (diffusible signaling factor) [19,20]. Less common
types, such as oligopeptides and furanones, are crucial for pathogenesis [21]. Among fungi,
farnesol derivatives are identified as key QSMs and, among plant-parasitic nematodes,
ascarosides serve as pheromone-like QSMs. Despite being less well characterized than
their bacterial counterparts, nematode and fungal QSMs play equally important roles in
pathogen–host plant communication and virulence, as shown in Figure 1 and Table 1.
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Figure 1. Quorum signaling molecules (QSMs) in bacteria, fungi and parasitic nematodes.
(A) Representative structures of typical bacterial QSMs; (B) Structures of several conserved fun-
gal QSMs; (C) Structures of several ascaroside derivatives produced by nematodes. Abbreviations:
S-THMF-borate, S-2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran-borate; R-THMF, R-2-methyl-2,3,3,4-
tetrahydroxytetrahydrofuran.

When the microbial population density reaches a certain threshold, QSMs accumulate
and bind to receptors (intracellular or membrane-bound receptors on other cells), triggering
the expression of related genes [8]. This process is responsible for controlling various micro-
bial community behaviors, including the secretion of virulence factors, biofilm formation,
antibiotic production, and the establishment of symbiotic relationships [9,10]. QSMs can be
directly recognized by host cells, while directly impacting host physiological functions [8].
It is worth noting that microbial QSMs play a significant role not only in plant growth
and root architecture, but also in the infection process. This signaling occurs through the
regulation of QSM-dependent effector release during infection. For instance, bacterial QS
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signals, such as oxo-C14-HSL or oxo-C8-HSL, may be cleverly utilized by the roots of
Medicago truncatula and A. thaliana seedlings as danger signals to initiate the expression
of immune genes. This regulation involves transcription factors, G-protein, and calcium
signaling, as well as the salicylic acid/oxylipin pathway, thereby enhancing resistance to P.
syringae pv. Tomato (Pst) [6,7].

3. Major Classes of QSMs and Their Functions
3.1. Bacterial QSMs

AHLs are the dominant QS signal molecules in Proteobacteria, which are widely
used by pathogens including Ralstonia solanacearum, P. syringae, and Xanthomonas oryzae
and mutualist Rhizobium species [22–25]. In terms of structure, the conserved HSL ring
facilitates signal recognition by binding to LuxR-family receptors, while the variable acyl
chain (C4-C18 with hydroxyl/keto groups) defines the specificity of functions [26–28]. In
this way, AHLs mediate flexibility in QS regulation across different bacterial species and
hosts. For example, plant cells are passively diffused with short-chain C4-HSL to stimulate
root growth, and long-chain 3-oxo-C12-HSL can activate immune responses by binding to
receptors [29].

The Autoinducer-2 molecule is a QS molecule produced by Gram-positive and Gram-
negative bacteria, catalyzed by the LuxS enzyme. As its core structural component, 4,5-
dihydroxy-2,3-pentanedione (DPD) undergoes spontaneous rearrangement to give rise
to a variety of DPD derivatives known as the AI-2 pool [30]. A number of derivatives
of DPD are available, including the boron-containing derivative S-THMF-borate and the
non-borated derivative R-THMF [31]. Plant pathogenic bacteria (e.g., Pectobacterium) use
S-THMF-borate to coordinate their infection. However, R-THMF is commonly associated
with symbiotic or mutualistic behaviors, such as nitrogen-fixing nodulation by rhizobia (e.g.,
Rhizobium). Occasionally, certain bacteria, such as Salmonella, can detect both derivatives
simultaneously [32–34].

The DSF molecules (cis-11-methyl-dodecenoic acid) contain cis-2-unsaturated fatty
acids with specific carbon chain lengths and double-bond configurations, which are pri-
marily found in Gram-negative bacteria such as Xanthomonas campestris. campestris (Xcc),
Burkholderia cenocepacia (Bcc), and P. aeruginosa [35]. Due to these signaling molecules, bac-
terial behavior is finely modulated, affecting their symbiotic and pathogenic interactions
with plants. Through the secretion of several virulence factors, such as exopolysaccharide
(EPS), extracellular cell wall-hydrolyzing enzymes, and glucan by the DSF, Xanthomonas
enhances its pathogenicity in rice [36]. The DSF quorum sensing signal molecule in wild
rapeseed X. campestris regulates a variety of biological functions, including three types of
metabolic adjustments, to adapt to high-population-density environments, inhibition of
biofilm formation, and enhanced expression of pathogenicity-related genes in X. campestris.

Gram-positive bacteria utilize short peptides (AIPs) (5–17 residues), either cyclic or
linear, which contain a conserved cysteine (positions 3–5 from the C-terminus) that forms a
thioester linkage with the terminal residue. These AIPs, well-documented in species such
as Staphylococcus, Streptococcus, and Bacillus, function through two-component systems (e.g.,
histidine kinase-response regulators). Notably, the plant growth-promoting rhizobacterium
(PGPR) Bacillus subtilis utilizes the ComX AIP to activate the comQXP pathway and regulate
root colonization [36]. Aside from the QSMs mentioned above, the pyrazinone-derived
autoinducer AI-3, which is usually found in pathogens such as E. coli and Vibrio cholerae,
remains controversial in plant-associated bacteria [37].
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3.2. Fungal QSMs

QS phenomena in fungi are less well-known than in bacteria, but certain QS phenom-
ena and regulatory molecules have been clearly identified in some fungi. For example,
farnesol is an active QS molecule that regulates various processes such as morphogenesis,
biofilm development, mating, drug efflux, and apoptosis in Candida albicans [38]. In yeast,
aromatic alcohols such as phenylethanol (PheOH) and tryptophol (TrpoH) drive filamen-
tation [38,39]. Additionally, in Fusarium oxysporum, pheromones are involved in spore
germination in response to cell density [40]. Unlike the structurally conserved AHL in bac-
teria, fungal QSMs are primarily alcohols, lipids, and other small molecules which are not
structurally conserved. Fungi coordinate pathogenicity-related behaviors at the individual
to population level through QS regulation, including germination, colony morphogenesis,
sporulation, and biofilm formation [41,42].

3.3. Parasitic Nematode QSMs

Nematodes use pheromones to detect complex environmental situations and thereby
modulate their behavior, population density and development, a mechanism analogous to
bacterial QS [43–45]. The ascaroside signaling molecules consisting of an ascarylose core
linked to a fatty acid side chain undergo modifications that result in highly conserved yet
functionally diverse molecules [46]. Multiple nematode species, including parasitic ones,
contain these molecules and can modulate host gene expression and immune responses [47],
as shown in Figure 1 and Table 1. To date, over 300 ascaroside variants have been identified
in more than 20 nematode species [48]. In parasitic nematodes, ascaroside#18 (Ascr#18) is
particularly prevalent, characterized by an ascarylose core coupled to a C11 fatty acid. The
application of Ascr#18 to Arabidopsis results in resistance to a variety of plant pathogens
and insects [49,50].

Table 1. Diverse effects of quorum signaling molecules (QSMs) on plants.

QSMs Producing
Pathogens Plant Functions/Effect Reference

C4-HSL(RhlI),
3-oxo-C12-HSL

(LasI)
P. aeruginosa Arabidopsis growth promotion [51]

3-hydroxy-C4-HSL Vibrio harveyi Tobacco plant resistance [52]

C6-HSL P. aeruginosa A. thaliana, wheat

root growth,
enhances cereal crop

resistance to
pathogens and
abiotic stress

[29,53]

C10-HSL to C14-HSL P. aeruginosa Barley and
Arabidopsis

resistance toward
biotrophic and
hemibiotrophic

pathogens

[54,55]

C8-HSL, C7-HSL
Castellaniella

defragrans,
Cryobacterium sp.

Mortierella alpine
A-178 colonization [56]
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Table 1. Cont.

QSMs Producing
Pathogens Plant Functions/Effect Reference

C6-and C8- HSL S. liquefaciens,
Pseudomonas putida Tomato ISR-like response [57]

3-OH-C10-HSL Acidovorax radicis
N35 Barley colonization of roots

3-oxo-C14-HSL Sinorhizobium meliloti M. truncatula nodulation in roots [58]

C12-HSL and C16-HSL Agrobacterium vitis
M. truncatula,

A. thaliana,
Hordeum vulgare

AHL-priming [59]

oxo-C12-HSL,
oxo-C16-HSL

Ensifer meliloti
P. aeruginosa M. truncatula

auxin-responsive
and flavonoid

synthesis;
mimicking QS

secretion

[60]

oxo-C14-HSL S. meliloti,
Ensifer melilot

Arabidopsis
barley, wheat, and

tomato
M. truncatula

AHL-priming for
agriculture

root nodulation in
M. truncatula

[61,62]

1-aminocyclopropane-1-
carboxylate

indole-3-acetic acid

Burkholderia
phytofirmans Phaseolus vulgaris

endophytically
colonizes and

promotes plant
growth,

forms symbiotic
nodules and fix

nitrogen

[63]

furanosyl borate
diester (AI-2)

Pasteurella,
Photorhabdus,

Haemophilus, and
Bacillus

Zoosporic plants promoting plant
infection [64]

pyrazinone derivative
(AI-3)

E. coli, Shigella sp.
and Salmonella sp. Animals virulence [65]

cyclic dipeptides H. marmoreus Arabidopsis
triggers plant

immunity [66,67]

CAI-1 Vibrio cholerae / / [68,69]

(R)-3-OH PAME,
(R)-3-OH MAME R. solanacearum Tomato, tobacco, and

potato pathogenicity [70,71]

indole-3-acetic acid Azospirillum,
Rhizobacteria

Citrus cinensis
Arabidopsis root formation [72]

N-3-oxo-hexanoyl-
homoserine M. truncatula Arabidopsis and

wheat

enhances salt
tolerance, primary

root elongation
[73]

3-oxo-C6-HSL Pantoea stewartii Mung beans,
Arabidopsis plant pathogen [74]
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Table 1. Cont.

QSMs Producing
Pathogens Plant Functions/Effect Reference

3-oxo-C14-HSL S. meliloti
Mung beans

barley, wheat, and
tomato

nitrogen-fixing
symbiont, plant

immunity
[75]

3-oxo-9-cis-C16-HSL S. Meliloti,
P. aeruginosa Mung beans

nitrogen-fixing
symbiont; induces

auxin response and
flavonoid synthesis

[76,77]

3-hydroxy-7-cis-C14-
HSL

Rhizobium
leguminosarum Mung beans nitrogen-fixing

symbiont [78]

9-cis-C16-HSL Sinorhizobium melioti Medicago nitrogen-fixing
symbiont [79,80]

farnesol
Candida albicans,

Trichoderma
harzianum

Tomato

plant defense,
regulates

morphogenesis,
biofilm development,
sporulation, mating,

drug efflux, and
apoptosis,

[38,41,81]

Phenylethanol,
tryptophol Yeast A. thaliana and

tomato drives filamentation [38,39]

2-ethyl-1-hexanol F. oxysporum A. thaliana and
tomato

enhances plant
growth [40]

α-factor
Saccharomyces

cerevisiae,
Aspergillus fumigatus

Tomato infection [42]

ascr#1, ascr#3, ascr#9,
ascr#10, ascr#18, oscr#9

M. Incognita,
M. javanica,

M. hapla, H. glycines,
Pratylenchus
brachyurus

Arabidopsis, tomato,
potato and barley

resistance to plant
pathogens [49,50]

Note: The majority of AHL-producing isolates from the plant rhizospheres belong to the genera Pseudomonas,
Rhizobium, Serratia, Burkholderia, Erwinia, and Pantoea.

4. Perception of and Responses to QSMs
Plants can simultaneously perceive QSMs, activate immune responses, or adjust their

physiological state to combat pathogen invasions [62]. Studies in Arabidopsis have provided
a great deal of insight into the mechanisms of plant responses to QSMs, as shown in
Figure 2.
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Figure 2. Plant perception of quorum sensing signals: proposed recognition model.

4.1. Molecular Mechanisms of QSM Perception in Plants

Plants employ distinct recognition strategies for different classes of QSMs based on
their physicochemical properties and molecular structures. For bacterial AHLs, chain length
governs perception mechanisms. The short-chain AHLs (C4/C6-HSL) passively diffuse
across plasma membranes due to their small size and hydrophobicity, subsequently inter-
acting with cytosolic histidine kinases like HK1 [82]. Medium-chain AHLs (C8/C10-HSL)
are detected through membrane-localized receptors, including GPCR (G-protein-coupled
receptor) complexes (GCR1-GPA1) and RLK (receptor-like kinases) (Cand2/Cand7), which
bind these molecules via extracellular domains with precise acyl chain length selectiv-
ity [83]. Long-chain AHLs (C12/C14-HSL) require active transport by ABC transporters
(e.g., ABCG40) and subsequent recognition by lectin receptor kinases (LecRK-I.9) through
PAN-Apple domains [84–86]. Non-AHL bacterial signals like XcDSF hijack host sterol
biosynthesis to alter membrane properties, disrupting receptor clustering (e.g., FLS2).
Fungal QSMs are decoded through specialized systems: farnesol binds oxysterol-binding
protein (ORP) homologs, while ergosterol/squalene engage GPCR-like receptors with
steroid-binding domains. Nematode ascarosides (e.g., ascr#18) are specifically captured by
the NILR1 receptor ectodomain, followed by peroxisomal β-oxidation to generate shorter
derivatives [49]. These interactions highlight a sophisticated “molecular fingerprinting”
system where plants discriminate QSM structural features among lactone rings (AHLs),
isoprenoid tails (terpenoids), and cyclohexenone cores (ascarosides), further initiating
context-dependent responses.

4.2. Plant Responses to AHLs

AHLs can trigger distinct physiological responses in plants depending on their carbon
chain lengths. Short-chain AHLs (e.g., C4-HSL, C6-HSL) promote plant growth and root
development by modulating auxin (IAA), cytokinin (CK) signaling, and the cell cycle [87].
In roots, short-chain AHLs upregulate auxin biosynthesis genes (e.g., YUCCA) and trans-
porters (e.g., PIN), stimulating primary root elongation, lateral root formation, and root
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hair development to enhance nutrient uptake [88]. They also accelerate meristematic cell
proliferation by regulating cell division-related genes (e.g., CYCD) [6,89]. Although short-
chain AHLs show potential as microbial fertilizer enhancers, these molecules can mildly
suppress immune-related gene expression (e.g., PR1), thereby reducing defense-associated
metabolic costs and diverting resources toward growth [90].

AHLs with long chains (e.g., C12-HSL, C14-HSL) promote disease resistance by prim-
ing plant immunity through epigenetic modifications and preactivation of defense-related
genes [86,91], triggering early defense signals, including MAPK cascade activation (e.g.,
MPK3/MPK6), calcium fluctuations, and ROS (reactive oxygen species) and NO (nitric
oxide) bursts, establishing an immune-alert state [92]. Epigenetically, long-chain AHLs
induce histone modifications (e.g., H3K4me3, H3K9ac) and DNA methylation changes,
loosening the chromatin structure of defense-related genes (e.g., PR1, WRKY53) to establish
an immune memory. As a result, antimicrobial metabolites (phenols, phytoalexins) are
accumulated [93]. In this manner, the SA (salicylic acid) and JA (jasmonic acid) path-
ways are prioritized, while growth-related pathways (e.g., gibberellin, GA) are moderately
suppressed [94].

Medium-chain AHLs (e.g., C8-HSL, C10-HSL) interact with plants in a concentration-
and receptor-dependent manner, facilitating growth while regulating immunity. The
Arabidopsis GPCR receptors are involved in the regulation of root growth and biomass
accumulation at low concentrations of 1 µM 3OC6-HSL or 10µM 3OC8-HSL [84,95], likely
by coordinating auxin (IAA), cytokinin (CK) pathways, and strigolactone signaling via the
transcriptional factor AtMYB 44. By contrast, high concentrations (>10µM) trigger immune-
related gene expression (e.g., PR1, WRKY53), bolstering pathogen resistance [96]. Due to
this dual nature, medium-chain AHLs are useful in regulating plant–microbe ecological
interactions, although their precise mechanisms of regulation must be further explored.

Unlike AHL signals, AIPs (autoinducing peptides) mediate intracellular communi-
cation but do not freely diffuse across cell membranes. Their release into the extracel-
lular space is facilitated by specialized oligopeptide transporters, primarily ABC trans-
porters [97,98]. AIPs primarily function in animal intestinal barriers, while their role in
plants remains scarce and has been reported mainly in Bacillus. Oligopeptides do not diffuse
freely through the cell membrane; therefore, the cells need two-component phosphorelay
cascades, consisting of a membrane-bound receptor/sensor histidine kinase protein with
an intracellular response regulator, to sense extracellular oligopeptides [99].

During infection, plants perceive these bacterial cues: X. campestris (Xcc)-XcDSF
(100–1000 µM) elicited immune responses (callose deposition, PR-1 expression, HR-like
cell death) in Nicotiana, Arabidopsis, and rice, enhancing resistance to X. oryzae [100]. At
lower concentrations (25 µM), mimicking early infection, XcDSF suppressed PTI (pattern-
triggered immunity) by hijacking host sterol biosynthesis. This alters plasma membrane
(PM) properties, disrupting FLS2 receptor clustering and endocytosis, desensitizing plants
to PAMPs such as flagellin [101]. Additionally, XcDSF remodels the cell wall–PM–actin
cytoskeleton (CW–PM–AC) continuum, impairing immune coordination [101]. It also
enhances cellulose biosynthesis, mechanically perturbing formin-mediated actin dynamics
during PTI [35]. This spatiotemporal regulation highlights complex bacteria–plant crosstalk,
where Xanthomonas exploits host structures for virulence.

4.3. Plant Responses to Fungal QSMs

Exogenous farnesol inhibits the growth of tomato and bean plants while upregulating
SA-related defense genes, acting as a toxic MAMP/PAMP [102]. Similar immune responses
are observed in tomatoes exposed to Trichoderma mycotoxins, including harzianum A [103].
Unlike farnesol, terpene analogs (squalene, ergosterol) induce only JA/ET-related genes
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and not SA-related genes [103]. Trichoderma-derived farnesol elevates SA signaling, while
ergosterol/squalene dominance shifts responses toward JA/ET. A combination of these
metabolites serves as a fungal MAMP or PAMP, and their relative concentrations determine
how plants respond to them. A high level of farnesol promotes SA pathways, while a high
level of ergosterol/squalene favors JA/ET pathways [104]. This highlights the nuanced
role of fungal terpenes in shaping host immunity [103].

Similarly, fungal oxylipins are better understood and known to regulate developmen-
tal processes including cell growth, sexual and asexual spore differentiation, apoptosis,
and pathogenicity [104,105]. The various oxylipins present in plants function as molecular
signals that regulate growth and development, senescence, sex determination of reproduc-
tive organs, defense against biotic and abiotic stresses, and programmed cell death [106].
It is becoming increasingly clear that oxylipins, such as jasmonates, operate primarily by
influencing signal crosstalk with other hormones. In general, host-derived oxylipins (e.g.,
jasmonates in plants) facilitate resistance to attack by fungal pathogens [107].

4.4. Plant Responses to Nematode QSMs

Plants recognize nematode-derived ascarosides (e.g., Ascr#18) through specific recep-
tors such as StNILR1. This recognition triggers immune responses in plants, analogous to
their responses to bacterial flagellin (Flag22), lipopolysaccharides (LPS), or fungal chitin
and β-glucans. The plant metabolizes ascarosides (e.g., Ascr#18) into a mixture of short-
side-chain derivatives, including Ascr#8, Ascr#10, Ascr#1, and Ascr#9. The metabolized
short-chain ascarosides are then secreted by plant roots, activating immune responses
that subsequently inhibit nematode infection. Additionally, plants mediate the signaling
of both brassinosteroids (BR) and ascarosides (e.g., Ascr#18) through interactions with
coreceptors such as StBAK1. This synergistic mechanism ensures a balanced regulation
between immune defense and growth responses in plants [108,109].

5. Strategies Used by Plants to Disrupt Pathogen QSMs
Pathogens use the QS system to coordinate group behaviors, such as secreting vir-

ulence factors or launching collective attacks against host plants. However, over time,
plants have evolved a suite of defensive mechanisms to disrupt bacterial QS systems [110],
primarily involving three levels of inhibition strategies: degradation of QS compounds,
interference with receptors, and suppression of QS synthesis [17].

5.1. Metabolic Modification of Pathogen QSMs

The chemical structure of AHLs is inherently unstable, making them susceptible to
hydrolysis or acylation in the environment or by plant-released hydrolytic enzymes such
as acylases or lactonases [111–113]. Moreover, plant-derived exudates (alkaloids, sugars,
hormones, polysaccharides, proteins, and lactones) exhibit notable anti-plant pathogenic
bacteria activity [114]. A. thaliana’s growth effects depend on AHL amidolysis by a plant-
derived fatty acid amide hydrolase (FAAH), yielding l-homoserine, which can encourage
plant growth at low concentrations by stimulating transpiration [111]. Moreover, plants can
edit parasitic nematode-derived Ascr#18 pheromones to produce other ascaroside groups
involved in developing defense mechanisms [108].

5.2. QS Mimics Enabling Receptor Interference

QSIs that target AI signaling molecules are primarily AHL-lactonases (for exam-
ple, autoinducer inactivation A, AiiA hydrolyzes 3-oxo-C14-HSL in rice blight resis-
tance), oxidoreductases, neutralizing antibodies (such as mAb AP4-24H11 binding to
S. aureus AIP-1) and small molecules such as vanillin (which blocks tomato C8-HSL receptor
binding) [115–117]. Inhibiting the QS system is accomplished by inactivating signaling
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molecule synthases, neutralizing AIPs with antibodies, modifying or degrading the signal-
ing molecules, and so on [65,118,119].

Quorum sensing inhibitors (QSIs) targeting autoinducer signaling molecules primarily
include (i) AHL-lactonases (for example, AiiA hydrolyzes 3-oxo-C14-HSL and attenuates
the virulence of Erwinia carotovora); (ii) oxidoreductases, which either oxidize the acyl
chain of AHLs or reduce 3-oxo-AHLs to their corresponding 3-hydroxy-AHL counterparts;
(iii) neutralizing antibodies, such as mAb AP4-24H11 binding to S. aureus AIP-1; and
(iv) small molecules such as vanillin (which blocks tomato C8-HSL receptor binding).
Savirin inhibits AgrB to prevent AIP production in S. aureus and provides an alternative
approach for halting signal molecule production at its source. As a result of these different
inhibitors, QS is disrupted in a variety of ways, including signal degradation, receptor
binding interference, direct signal neutralization, and synthase inactivation.

Plants produce a variety of plant QS mimics that are structurally similar to bacterial
QS signals and interfere with the target QS system [120], including phenolic compounds
such as coumaric acid and caffeic acid. Mimicking compounds can bind competitively to
LuxR-type receptor proteins or induce conformational changes in the receptors, blocking
recognition of natural AHL signal molecules [121,122]. The halogenated furanones derived
from the red alga Delisea pulchra are among the earliest and best-characterized AHL mim-
ics. They promote the degradation of the AHL-LuxR complex and inhibit QS-regulated
behaviors in Serratia liquefaciens [123]. The mimics can also act as agonists that trigger
premature expression of QS genes, potentially reducing bacterial virulence by disrupting
QS-driven functions [124]. Although rosmarinic acid does not have the structural character-
istics of AHLs, it induces premature quorum sensing responses both in vitro and in vivo,
indicating its potential as an agricultural product [125]. Flavanone naringenin also demon-
strates plant-derived QS interference by suppressing virulence factors (e.g., pyocyanin
and proteases) in P. aeruginosa PAO1 [126]. Additionally, seed exudates from M. truncatula
contain approximately 20 compounds capable of interfering with LuxR-type QS biosensors,
demonstrating the diversity of plant strategies for rhizosphere microbiome regulation [123].
Beyond their pathogen-suppressing ability, these molecules may also enhance plant growth
and influence root architecture, highlighting their dual ecological significance. Some plant
metabolites, such as clove oil [127], exhibit concentration-dependent regulatory effects. At
low concentrations, they can partially activate the QS pathway but disrupt gene expression
(known as “pseudo-activation”), while at high concentrations they completely suppress QS
pathway activity [128].

Moreover, plants can systematically disturb bacterial cell-to-cell communication by
secreting QS signal-degrading enzymes or synthesizing potent inhibitors, ultimately im-
pairing coordinated virulence factor expression and biofilm formation. Specific examples
demonstrate this sophisticated interference: Medicago sativa (alfalfa) secretes l-canavanine,
an arginine analog that inhibits EPS production in S. meliloti [129], while Combretum albiflo-
rum releases the flavonoid flavan-3-ol catechin, which suppresses QS-regulated virulence
factors in P. aeruginosa PAO1 [130].

5.3. Quorum Quenching

Quorum quenching (QQ) is a crucial defense strategy in plant–microbe interactions,
where plants recruit symbiotic bacteria with QQ functions (such as B. subtilis and Microbac-
terium testaceum) to interfere with the QS system of pathogenic bacteria [131]. In these
symbiotic bacteria, various QS signal-degrading enzymes are secreted, including AiiA from
Bacillus spp., AttM from Agrobacterium tumefaciens, and AiiM from M. testaceum [132,133],
which inhibit pathogen virulence by degrading QSMs such as AHL. It has significant
practical value in agriculture, particularly in managing and controlling diseases such as
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Erwinia carotovora’s soft rot and Pectobacterium carotovorum’s potato rot [134]. Moreover, QQ
bacteria can enhance systemic resistance (ISR) in plants by activating jasmonic acid (JA)
and ethylene (ET) signaling pathways, thereby forming a broader defense network [135].
To date, several typical QQ proteins have been found in biocontrol bacteria, such as Bacillus
thuringiensis, which degrade AHL molecules produced by pathogenic bacteria. Researchers
have discovered that the enzyme-producing Lysobacter enzymogenes OH11 induces the type
IV secretion system (T4SS) to quench Pseudomonas fluorescens’ AHL-based communication
system [136].

6. QS Plant Immunity and Sustainable Solutions
6.1. Metabolic Responses

Plant immune priming induced by AHLs, referred to as AHL-priming, enhances
and accelerates defense responses without directly blocking pathogen invasion [137]. By
reprogramming the plant’s epigenetic system, the plant becomes “alert”, which induces
stronger resistance against subsequent pathogen attacks [138]. This denotes a physiological
state in which plants can activate their defense responses in a faster and stronger manner
in response to a triggering stimulus.

AHLs induce metabolic reprogramming through the activation of MAPK cascades
(mitogen-activated protein kinase signaling pathways), Ca2+ signaling, and WRKY/MYB
transcription factor networks. As a result, multilayered metabolic pathway rearrange-
ments occur [139], which produce a “defense metabolome” containing glucosinolates,
antimicrobial fatty acids, and so on [140]. Additionally, plant parasitic nematodes, such
as root-knot nematodes and cyst nematodes, may also influence plant immune signaling
by secreting NAMPs (nematode-associated molecular patterns). Evidence suggests that
certain ascarosides activate the plant MAPK signaling pathway, thereby triggering PTI
immunity [141,142].

6.2. Ecological Impacts

Physiological and ecological aspects of AHL-mediated metabolic regulation are com-
plex [143]. For example, Arabidopsis activates MAPK signaling through degrading C6-HSL,
while tobacco overexpressing lactonase AiiA exhibits enhanced resistance to soft rot dis-
ease [144]. A symbiotic relationship between legumes and nitrogen fixation genes allows
specific molecules such as C4-HSL to activate rhizobial nitrogen fixation genes while sup-
pressing the QS of pathogenic bacteria [91]. Further studies have revealed that flavonoids
from medicinal plants such as Scutellaria baicalensis inhibit QS by chelating AHLs. This
study provides insight into plant–microbe coevolution and suggests that plants can influ-
ence the rhizosphere microbiota through the regulation of metabolites [145]. Bacterial QSMs
may significantly influence plant systemic resistance by modulating SAR (salicylic acid
pathway) and ISR (jasmonate/ethylene pathway). By inducing JA/ET, pathogenic AHLs
can be recognized as molecular patterns that activate SAR, whereas beneficial bacterial
QSMs enhance ISR through JA/ET stimulation [146].

6.3. Agricultural Applications

An in-depth understanding of plant-mediated AHL regulation will enhance plant
immunity knowledge and facilitate the development of innovative QS-based precision agri-
culture, environmental restoration, and anti-infection therapies, leading to breakthroughs
in research and application. For example, engineered crops expressing AiiA enzymes
show potential in combating green diseases, plant-derived QSIs offer potential as novel
anti-infection drugs [147], and plant microbe synergistic metabolism has been shown to
degrade AHL pollutants in the environment [148].
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It is noteworthy that QS-mediated interactions are not only involved in pathogenic
relationships but also in cooperative symbioses between plants and beneficial microbes,
such as rhizobia and mycorrhizal fungi. For example, AHLs regulate nodulation factor
synthesis in rhizobia, while flavonoids facilitate rhizobial QS activity in plants, resulting
in a bidirectional regulatory effect [149]. Plant immunity and QQ play a central role in
ecological adaptation; this intricate, cross-species chemical dialogue provides a theoretical
basis for novel biocontrol agents or genetically modified crops based on QQ [150]. Future
research should focus on deciphering the interaction between QSMs and plant epigenetic
modifications (e.g., histone acetylation) as well as engineering high-efficiency QQ micro-
bial strains for precise disease management in agricultural ecosystems through synthetic
biology [151].

7. Conclusions
QS is an essential signaling mechanism in microbial communities, allowing bacteria

and fungi to coordinate behaviors such as virulence, symbiosis, and secondary metabolite
production. Plants have developed sophisticated strategies to recognize and respond to mi-
crobial QSMs, such as AHLs, through immune priming and epigenetic reprogramming. As
a result of this priming, MAPK cascades, Ca2+ signaling, and defense-related transcription
factors are activated, resulting in the accumulation of antimicrobial metabolites. Never-
theless, plants do not remain passive; they actively interfere with QS either by degrading
signaling molecules (e.g., through lactonases) or by producing QSIs (e.g., flavonoids and
strigolactones) to disrupt microbial communication. In the fields of agriculture, medicine,
and environmental remediation, the exploitation of these interactions has great potential.
Bioengineered crops that express QS-degrading enzymes (e.g., AiiA lactonase) could offer
provide sustainable disease control, while plant-based QSIs may serve as novel antimicro-
bial agents. Moreover, controlling beneficial microbial consortia through QS modulation
could enhance biocontrol, plant growth promotion, and soil remediation practices. Despite
the progress made so far, understanding fungal QS systems, identifying plant QS receptors,
and optimizing field applications remain significant challenges. A future research program
integrating synthetic biology, omics technologies, and smart farming strategies will be
necessary to translate these discoveries into practical, scalable solutions for the promotion
of sustainable agriculture and ecosystem resilience.
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Abbreviations

Term Definition
DSF Diffusible signaling factor
QS Quorum sensing
QSM Quorum sensing molecular
QSI Quorum sensing inhibitor
PTI Pattern-triggered immunity
MAPK Cascades Mitogen-activated protein kinase signaling pathways
WRKY/MYB Plant transcription factor families
AHL Acyl-homoserine lactone
MAMP Microbe-associated molecular pattern
PAMP Pathogen-associated molecular patterns
JA Jasmonic acid
SA Salicylic acid
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