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Abstract
The first CT scanners in the early 1970s already used iterative reconstruction algorithms; however, lack of computational power
prevented their clinical use. In fact, it took until 2009 for the first iterative reconstruction algorithms to come commercially
available and replace conventional filtered back projection. Since then, this technique has caused a true hype in the field of
radiology. Within a few years, all major CT vendors introduced iterative reconstruction algorithms for clinical routine, which
evolved rapidly into increasingly advanced reconstruction algorithms. The complexity of algorithms ranges from hybrid-, model-
based to fully iterative algorithms. As a result, the number of scientific publications on this topic has skyrocketed over the last
decade. But what exactly has this technology brought us so far? Andwhat can we expect from future hardware as well as software
developments, such as photon-counting CT and artificial intelligence? This paper will try answer those questions by taking a
concise look at the overall evolution of CT image reconstruction and its clinical implementations. Subsequently, we will give a
prospect towards future developments in this domain.
Key Points
• Advanced CT reconstruction methods are indispensable in the current clinical setting.
• IR is essential for photon-counting CT, phase-contrast CT, and dark-field CT.
• Artificial intelligence will potentially further increase the performance of reconstruction methods.
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Abbreviations
ADMIRE Advanced modeled iterative reconstruction
AI Artificial intelligence
AIDR3D Adaptive iterative dose reduction 3D
ART Algebraic reconstruction technique
ASIR Adaptive statistical iterative reconstruction
BMD Bone mineral density
CAD Computer-aided design

CT Computed tomography
DECT Dual energy CT
FIRST Forward projected model-based iterative

reconstruction solution
GPU Graphics processing unit
IMR Iterative model reconstruction
IR Iterative reconstruction
IRIS Iterative reconstruction in image space
PCCT Photon-counting CT
SAFIRE Sinogram-affirmed iterative reconstruction
VMI Virtual monoenergetic images

Since its introduction in 1972 [1, 2], computed tomography
(CT) has evolved into a highly successful and indispensable
diagnostic tool. The success story of CT is reflected by the
number of annual CT exams, which increased yearly with
6.5% over the last decade resulting in a total of 80 million
CT scans in 2015 in the USA [3]. After this first tomographic
imaging modality was introduced, its technological develop-
ments advanced rapidly. The first clinical CT scan took about
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5 min, and image reconstruction took approximately the same
time [2]. Despite long reconstruction times, image resolution
was poor with only 80 × 80 pixels [2]. Nowadays, rotation
speeds are accelerated to approximately a quarter of a second
per rotation, and detector coverage, along the patient axis,
increased up to 16 cm in high-end systems, allowing for im-
aging the whole heart in a single heartbeat [4]. Resolution of
cross-sectional images increased to 512 × 512 pixels for most
clinical applications and to 1024 × 1024 pixels or more for
state-of-the-art CT scanners [5, 6].

The increasing number of CT exams, however, has a major
drawback. Radiation exposure to society has significantly in-
creased since the introduction of CT imaging, which is espe-
cially problematic for younger patients. The combination of
growing community awareness about exposure-associated
health risks [7] and CT communities’ efforts to tackle them
has already led to significant reduction in CT dose. The most
important way to reduce CT-radiation exposure is clearly to
use this technique only when benefits outweigh the risks as
well as costs [8]. However, dose-reduction techniques are nec-
essary in case a CT scan is clinically indicated. Multiple dose-
reduction methods were introduced, including tube current
modulation [9], organ-specific care [10], beam-shaping filters
[11], and most importantly optimization of CT parameters.
Essential parameters of every CT protocol include tube cur-
rent (mA), tube voltage (kV), pitch, voxel size, slice thickness,
reconstruction filters, and the number of rotations. It is essen-
tial to realize that a different combination of parameters en-
ables significantly different image qualities while delivering
the same radiation dose to the patient. For example, the com-
bination of large pixels with a smooth filter can provide diag-
nostic quality for specific indications, while the same acquisi-
tion reconstructed with smaller pixels and a sharper filter
would provide non-diagnostic quality through a higher level
of noise and artifacts. In the clinical routine, radiation expo-
sure is frequently controlled by adjusting the tube current.
When decreasing the tube current, one can observe a propor-
tional increase in image noise. Thus, another dose-reduction
technique concerns the proper treatment of image noise and
artifacts within the reconstruction of three-dimensional data
from raw projection data. Originally, CT images were recon-
structed with an iterative method called algebraic reconstruc-
tion technique (ART) [12]. Due to lack of computational pow-
er, this technique was quickly replaced by simple analytic
methods such as filtered back projection (FBP). FBP was the
method of choice for decades, until the first iterative recon-
struction (IR) technique was clinically introduced in 2009.
This caused a true hype in the CT-imaging domain. Within a
few years, all major CT vendors introduced IR algorithms for
clinical use, which evolved rapidly into increasingly advanced
reconstruction algorithms. In this paper, we will take a concise
look at the overall evolution of CT image reconstruction and
its clinical implementations. Subsequently, we will give a

prospect towards future developments in sparse-sampling
CT [13], photon-counting CT [14], phase-contrast/dark-field
CT [15, 16], and artificial intelligence [17].

From concept to clinical necessity

In December 1970, Gordon et al presented initial work on
ART [18], which is a method belonging to a class of IR algo-
rithms that was initially applied to reconstruct cross-sectional
images. However, due to a lack of computation power, ART
was not clinically applicable, and a simpler algorithm, namely
FBP was standard for decades. With FBP, CTslices are recon-
structed from projection data (sinograms) by applying a high-
pass filter followed by a backward projection step (Fig. 1A).
With the fast progress in CT technology, FBP-based algo-
rithms got improved and extended to keep up with hardware
progress, such as Feldkamp et al’s 1984 solution for recon-
struction of data from large area detectors [19]. In most cir-
cumstances, FBP works well and results in images with high
diagnostic quality. However, due to the increasing concerns of
exposing (younger) patients with ionizing radiation, more CT
scans were being acquired at a lower radiation dose.
Unfortunately, this resulted in significantly reduced image
quality, because there is a direct proportional relation between
image noise and radiation exposure. Also, with the growing
prevalence rates of obesity [20], image quality of CT scans
reconstructed with FBP deteriorated. With a larger body size,
the x-ray photon attenuation increases which leads to less
photons reaching the CT detector, finally resulting in signifi-
cantly reduced image quality. The benefit of FBP is the short
reconstruction time, but the major disadvantage is that it in-
puts raw data into a Bblack box^ where only very limited
model and prior information can be applied, for example to
properly model image noise when a small number of photons
reach the CT detector.

While clinical scanners operated with FBP, the CT research
community spent a significant effort into the development of
advanced IR algorithms, with the goal to enable low-dose CT
with high diagnostic quality. These developments fall loosely
into three basic approaches: (i) sinogram-based [21–23], (ii)
image domain-based [24–26], and (iii) fully iterative algo-
rithms [18, 27–30]. A parallel progress was an increasing
availability of cost-efficient computational tools, such as pro-
grammable graphics processing units (GPUs) for accelerated
CT reconstruction [31, 32]. This combination of developments
has triggered the medical device industry to develop advanced
reconstruction algorithms. In 2009, the first IR algorithm
called IRIS (iterative reconstruction in image space, Siemens
Healthineers) received FDA clearance [33]. This was a simple
method that—similar to FBP—only applied a single backward
projection step to create a cross-sectional image from raw data.
Image noise was iteratively reduced in image space [34].
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Within 2 years, four more advanced IR algorithms received
FDA clearance: ASIR (adaptive statistical iterative reconstruc-
tion, GE Healthcare), SAFIRE (sinogram-affirmed iterative
reconstruction, Siemens Healthineers), iDose4 (Philips
Healthcare), and Veo (GE Healthcare) [35–38]. The first three
methods are so-called hybrid IR algorithms. Similar to FBP
and IRIS, a single backward projection step is used. However,
hybrid IR methods are more advanced since they iteratively
filter the raw data to reduce artifacts, and after the backward
projection, the image data are iteratively filtered to reduce
image noise (Fig. 1B). Veo was the first clinical fully iterative
IR algorithm, which was one of the most advanced algorithms
so far [39]. In fully IR, raw data are backward projected into
the cross-sectional image space. Subsequently, image space
data are forward projected to calculate artificial raw data.
The forward projection step is a core module of IR algorithms,
since it enables the physically correct modulation of the data
acquisition process (including system geometry and noise
models). The artificial raw data are compared to the true raw
data to thereupon update the cross-sectional image. In parallel,
image noise is removed via a regularization step (Fig. 1, right
column). The process of backward and forward projection is

repeated until the difference between true and artificial raw
data is minimized. One can imagine that fully IR is computa-
tionally more demanding than hybrid IR resulting in longer
reconstruction times of fully IR. Due to these long reconstruc-
tion times, the vendor decided to develop a different advanced
algorithm called ASIR-V (GE Healthcare), which received
FDA clearance in 2014. In the meantime, other hybrid and
model-based IR algorithms were introduced by other vendors,
including AIDR3D (adaptive iterative dose reduction 3D,
Canon Healthcare), ADMIRE (advanced modeled iterative
reconstruction, Siemens Healthineers), and IMR (iterative
model reconstruction, Philips Healthcare) (Table 1). Most re-
cently, in 2016, themodel-based IR algorithm FIRST (forward
projected model-based iterative reconstruction solution,
Canon Healthcare) received FDA-clearance. The introduction
of IR for clinical CT imaging resulted in a substantial number
of studies evaluating the possibilities of thesemethods (Fig. 2).
Overall, these studies showed improved image quality and
diagnostic value with IR compared to FBP. Radiation dose
can be reduced with IR by 23 to 76% without compromising
on image quality [40]. Some studies compared the different
approaches of multiple vendors, and in general, these studies

Fig. 1 Filtered back projection (FBP), hybrid iterative reconstruction
(IR), and model-based IR. With FBP, images are reconstructed from
projection data (sinograms) by applying a high-pass filter followed by a
backward projection step (left column). In hybrid IR, the projection data
is iteratively filtered to reduce artifacts, and after the backward projection
step, the image data are iteratively filtered to reduce image noise (middle

column). In model-based IR, the projection data are backward projected
into the cross-sectional image space. Subsequently, image space data are
forward projected to calculate artificial projection data. The artificial
projection data are compared to the true projection data to thereupon
update the cross-sectional image. In parallel, image noise is removed
via a regularization step

Eur Radiol (2019) 29:2185–2195 2187



found that radiation dose can be reduced further with model-
based IR compared to hybrid IR and FBP [39, 41] (Fig. 3).
Multiple studies evaluated the effect of IR on image quality of
specific body parts. Relatively low hanging fruit is the CT
examination of high-contrast body regions such as the lungs.
Due to the low attenuation of x-rays passing through the air in
the lungs, and due to the high natural contrast between air and
the lung tissue, the radiation dose of chest CT examinations
was already relatively low to begin with. In a systematic re-
view of 24 studies, Den Harder et al [42] found that the aver-
age radiation dose of 2.6 (1.5–21.8) mSv for chest CT scans
reconstructed with FBP could be reduced to 1.4 (0.7–7.8) mSv
by applying IR. Similarly, the radiation dose in another high-
contrast body region, CT angiography of the heart, could be
reduced substantially. With FBP, the average radiation dose of
ten coronary CT angiography studies was 4.2 (3.5–5.0) mSv,
which could be reduced to 2.2 (1.3–3.1)mSv by using IR, with
preserved objective and subjective image quality [43].
Reducing the CT radiation dose of body regions with low
contrast such as the abdomen is, however, more problematic
[44]. Detectability of low-contrast lesions cannot always be
improved with IR at lower radiation doses [45]. However,
most studies found that IR does allow for radiation dose

reduction of abdominal CT exams without compromising on
image quality [46, 47].

Current and future developments

While the number of clinical IR-related publications and the
speed of introducing novel clinical algorithms have slowed
down, the challenge of reducing radiation exposure remains
a topic of high interest. So far, most dose-reduction strategies
remained in the domain of decreasing tube current or tube
voltage while IR algorithms insure an acceptable diagnostic
image quality. A fundamentally different way to reduce radi-
ation exposure is to acquire less projection images, e.g., ac-
quire only every second, fourth, or so projection. This
compressed-sensing [48, 49] inspired strategy is widely
known as sparse-sampling CT. This approach allows acquiring
a reduced number of projections, while the radiation exposure
remains high for each individual projection image. The clear
benefit of sparse-sampling acquisitions is an improved quality
for each individual projection (e.g., increased signal-to-noise
ratio) while circumventing the influence of electronic readout
noise. Those benefits allow for an additional dose reduction by

Table 1 Different iterative reconstruction algorithms from the major vendors

Vendor Algorithm name Type of
algorithm

Reconstruction
speed

Artifact
reduction

Noise
reduction

GE Healthcare ASIR (Adaptive Statistical Iterative Reconstruction) Hybrid + + ++

Veo (MBIR) Model-based – ++ +++

ASIR-V Hybrid + + ++

Philips Healthcare iDose4 Hybrid + + ++

IMR (iterative model reconstruction) Model-based – ++ +++

Siemens Healthineers IRIS (iterative reconstruction in image space) Image domain ++ – +

SAFIRE (sinogram-affirmed iterative reconstruction) Hybrid + + ++

ADMIRE (advanced modeled iterative reconstruction) Model-based – ++ +++

Canon Healthcare AIDR3D (adaptive iterative dose reduction 3D) Hybrid + + ++

FIRST (forward projected model-based iterative re-
construction solution)

Model-based – ++ +++

− minimal; + average; ++ fast/strong; +++ very strong

Fig. 2 Number of publications on
iterative reconstruction for
computed tomography. Results
based on Pubmed search
(Biterative reconstruction^ AND
(Bcomputed tomography^ OR
BCT^))
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a factor of two or more when comparing to dose levels
achieved with current technology. However, to reconstruct a
cross-sectional image from those highly under-sampled data, a
fully IR algorithm is imperative. Over the last decade, several
investigators have presented IR solutions [50–55], which have
the potential to be clinically introduced in the future.
Translation into the clinical routine is highly depending on
when sparse-sampling capable hardware, e.g., novel x-ray
tubes, will become available. However, first evaluations of
the clinical potential have been published [56]. One example
is the possibility to quantitatively determine bone mineral den-
sity (BMD) from the combination of ultra-low-dose sparse-
sampling acquisitions and a fully IR algorithm [57].

The integration of advanced prior knowledge into IR algo-
rithms has been a parallel development over the last years.
Compared to conventional FBP, IR allows integrating prior
knowledge into the reconstruction process. One idea is to uti-
lize previous examination as part of the image formation pro-
cess. For example, during an oncological follow-up, many
patients undergo sequential studies of the same anatomical
region. Through the fact that there is shared anatomical infor-
mation in between the scans, one can utilize this fact in an IR
algorithm to significantly improve diagnostic image quality
while reducing radiation exposure [58–61]. A different exam-
ple for prior knowledge is to integrate information concerning
orthopedic implants into the reconstruction process. Metal

Fig. 3 One ex vivo human heart, scanned at 4 mGy and 1 mGy (75%
dose-reduction) with high-end CT scanners from four vendors. Images
are reconstructed with filtered back projection (FBP), hybrid iterative

reconstruction, and model-based iterative reconstruction. Numbers
represent noise levels (standard deviations) in air. Images derived from
a study published before by Willemink et al [39]
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artifact, which can introduce extensive noise and streaks, is
caused by implants consisting of materials with high z values.
However, if the shape and material composition of the implant
is known a priori (e.g., from a computer-aided design (CAD)
model or a spectral analysis), it has been illustrated that inte-
grating this information into the image formation eliminates
artifacts and improves diagnostic image quality [62, 63].

Another technology that has found its way into the clinical
environment is dual energy CT (DECT). DECT enables ma-
terial decomposition, which is the quantification of an object
composition by exploiting measurements of the material- and
energy-dependent x-ray attenuation of various materials using
a low- and high-energy spectrum (Fig. 4) [64–66]. This tech-
nology has the potential to improve contrast and reduce arti-
facts as compared to conventional CT. While those advances
are becoming clinically available, the issue related to radiation
exposure remains, especially for this CT modality. The mate-
rial decomposition step can significantly intensify image noise
when data are acquired with a low radiation exposure. Further,
the direct implementation of model-based or fully IR requires
several modifications to account for the statistical dependen-
cies between the material-decomposed data. This dependency
includes anti-correlated noise, which plays a significant role in
the overall image quality in material images. IR-algorithms
allow to model anti-correlated noise with a result of signifi-
cantly improved diagnostic image quality [67–69]. Over the
last years, this class of IR specific for DECT has been

introduced into the clinical routine. The results can be ob-
served when considering the contrast-to-noise ratio in virtual
monoenergetic images (VMI). In theory, a strong increase in
noise should be observed towards lowVMI (keV) settings and
a moderate increase in high VMIs [66, 70]. In DECT scanners
with latest IR, one can observe almost no increase in noise for
low or highVMI settings [71, 72]. Different DECTacquisition
approaches are available including two x-ray tubes with dif-
ferent voltages, one x-ray tube switching between voltages,
one x-ray tube with a partly filtered beam, and detector-based
spectral separation. Dedicated IR algorithms, accounting for
differences in CT design, become necessary for each of these
DECT schemes. Further improvements for DECT-specific IR
can be expected, for example with the integration of learning
algorithms, such as dictionaries [73–75].

An upcoming spectral CT technology, which is gaining
clinical interest, is photon-counting CT (PCCT). This unique
technology is capable of counting individual x-ray photons
while rejecting noise, rather than simply integrating the elec-
trical signal in each pixel. Also, these detectors can perform
Bcolor^ x-ray detection; they can discriminate the energy of
individual photons and divide them into several pre-defined
but selectable energy bins, thereby providing a spectral anal-
ysis of the transmitted x-ray beam [76–79]. First clinical eval-
uations illustrated promising performance with respect to
quantitative imaging, material specific (K-edge) imaging,
high-resolution imaging, and a new level of diagnostic image

Fig. 4 Reconstructions in dual-energy and photon-counting computed
tomography. Differentiation of energy levels of x-ray photons allows
for the reconstruction of energy-selective images. Material-selective

images are reconstructed based on interaction of materials at varying
energy levels. Finally, a combined image with different colors per mate-
rial is reconstructed
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quality in combination with significant reduction in radiation
exposure [80–86]. While first results render the potential ben-
efits of this technology, challenges concerning hardware and
software remain. IR plays a central role to overcome those
challenges. However, IR algorithms that are used in conven-
tional CTare not optimal for PCCT, because of reasons similar
to the statistical dependencies in DECT. For example, PCCT
data are more complex than conventional CT data since addi-
tional multi-energetic information is present, and additional
detector elements can be employed to achieve high spatial
resolution images, depending on detector configuration and
hardware and software settings. These variations in image
acquisition as well as differences in the noise model of
PCCT data need to be integrated into the model of the forward
projector to fully utilize the power of IR algorithms. One of
the reconstruction challenges in PCCT is that the step of ma-
terial decomposition and image reconstruction are performed
separately. This separation implies a loss of information, for
which the second step cannot compensate. To adapt IR for this
higher level of complexity, image reconstruction and material
decomposition can be performed jointly [87]. This can be
accomplished by a forward model, which directly connects
the (expected) spectral projection measurements and the
material-selective images [88–92]. First results illustrated the
possibility to overcome challenges related to PCCT, but cur-
rent IR algorithms are still too computationally intensive, and
therefore reconstruction times are too long for clinical use.
Further development towards IR solutions with clinical feasi-
ble reconstruction times is imperative.

Besides spectral CT, other fundamental CT developments
are currently being investigated, namely phase-contrast and
dark-field CT. Image contrast in current CT imaging is based
on a particle model describing the physical interaction of pho-
toelectric absorption and Compton scattering. Phase-contrast
and dark-field CTare based on an electromagnetic wave mod-
el, and thus image contrast represents wave-optical interac-
tions such as phase-shift or small-angle scattering. These nov-
el imaging methods make use of these wave optical character-
istics of x-rays, by applying for example a grating interferom-
eter to x-ray imaging [93–98]. Compared to conventional CT,
additional and complementary information become available.
Phase-contrast CT offers significantly higher soft-tissue con-
trast [99–101], and dark-field CToffers structural information
below the spatial resolution of the imaging system [102–104].
When considering a translation, clinical standards, for exam-
ple with respect to radiation dose and acquisition time, need to
be maintained. To ensure those clinical standards, one path is
to reconstruct raw data with tailored IR algorithms. Initial
investigations have illustrated the high potential of IR algo-
rithms to enhance the image quality in phase-contrast as well
as dark-field CT [105–108]. One challenge was the fact that a
CT with continuous rotations seems to be not feasible; how-
ever, latest developments in fully IR algorithms have enabled

the possibility of a continuously rotating gantry [16, 109,
110]. This is a significant step towards clinical translation of
phase-contrast and dark-field CT.

Another emerging technique is artificial intelligence (AI).
Besides classification of images, detection of objects and
playing games [111, 112], AI has gained substantial interest
for its potential to improve reconstruction of CT images [17].
AI, and more specifically machine learning, is a group of
methods that is able to produce a mapping from raw inputs,
such as intensities of individual pixels, to specific outputs, such
as classification of a disease [113]. With machine learning, the
input is based on hand-engineered features, while unsupervised
deep learning is able to learn these features itself directly from
data. Multiple research groups are working on applying AI to
improve the reconstruction of CT images. One application is
image-space-based reconstructions in which convolutional
neural networks are trained with low-dose CT images to recon-
struct routine-dose CT images [17, 114, 115]. Another ap-
proach is to optimize IR algorithms [116]. Generally, IR algo-
rithms are based on manually designed prior functions
resulting in low-noise images without loss of structures [117].
Deep learning methods allow for implementing more complex
functions, which have the potential to enable lower-dose CT
[117–120] and sparse-sampling CT [121]. These AI techniques
have the potential to reduce CT radiation doses while speeding
up reconstruction times. Also, deep learning can be used to
optimize image quality without reducing the radiation dose,
e.g., by more advanced DECT monochromatic image recon-
struction [122] and metal artifact reduction [123, 124]. These
methods are not yet ready for clinical implementation; howev-
er, it is expected that AI will play, in the near future, a major
role in CT image reconstruction and restoration.We expect that
AI will fit in current clinical CT imaging workflow by enhanc-
ing current reconstruction methods, for example by significant-
ly accelerating the reconstruction process since application of a
trained network can be instantaneously.

In conclusion, IR is a powerful technique that has arrived in
clinical practice, and even more exciting advances can be
expected from IR in the near future.
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