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Background: V(D)J recombination takes place during
lymphocyte development to generate a large repertoire of
T- and B-cell receptors. Mutations in recombination-activating
gene 1 (RAG1) and RAG2 result in loss or reduction of V(D)
J recombination. It is known that different mutations in
RAG genes vary in residual recombinase activity and give rise
to a broad spectrum of clinical phenotypes.
Objective: We sought to study the immunologic mechanisms
causing the clinical spectrum of RAG deficiency.
Methods: We included 22 patients with similar RAG1 mutations
(c.519delT or c.368_369delAA) resulting in N-terminal
truncated RAG1 protein with residual recombination activity
but presenting with different clinical phenotypes. We studied
precursor B-cell development, immunoglobulin and T-cell
receptor repertoire formation, receptor editing, and B- and
T-cell numbers.
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Results: Clinically, patients were divided into 3 main categories:
T2B2 severe combined immunodeficiency, Omenn syndrome,
and combined immunodeficiency. All patients showed a block in
the precursor B-cell development, low B- and T-cell numbers,
normal immunoglobulin gene use, limited B- and T-cell
repertoires, and slightly impaired receptor editing.
Conclusion: This study demonstrates that similar RAG
mutations can result in similar immunobiological effects but
different clinical phenotypes, indicating that the level of residual
recombinase activity is not the only determinant for clinical
outcome. We postulate a model in which the type and moment
of antigenic pressure affect the clinical phenotypes of these
patients. (J Allergy Clin Immunol 2014;133:1124-33.)

Key words: RAG deficiency, V(D)J recombination, B- and T-cell
receptor repertoire, receptor editing, autoimmunity, next generation
sequencing, immune repertoire analysis

Defects in V(D)J recombination result in a block in B- and
T-cell differentiation because formation of immunoglobulin and
T-cell receptors (TRs) is perturbed.1 This results in a combined
immunodeficiency (CID) of B and T cells. V(D)J recombination
is initiated by the recombination-activating gene (RAG) 1 and
RAG2 proteins by creating double-stranded breaks in the
immunoglobulin and TR loci. Subsequently, these breaks are
processed and repaired by proteins involved in nonhomologous
end joining. Thus far, genetic defects have been identified in the
RAG1, RAG2, Artemis, ligase IV (LIG4), XLF (Cernunnos), and
DNA-PKcs genes.2-8 The immunologic phenotypes and clinical
presentations of these mutations are different, depending on the
type of genetic defect (ie, null mutations or hypomorphic
mutations with residual V[D]J recombination activity). Espe-
cially for the RAG genes, many different mutations have been
described that give rise to residual activity of the mutated
RAG protein.9 Different RAG mutations can result in a broad
spectrum of clinical phenotypes, including severe combined
immunodeficiency (SCID), RAG deficiency (RAGD) with skin
inflammation and ab T-cell expansion (classical Omenn
syndrome [OS]), RAGD with skin inflammation but without
T-cell expansion (incomplete OS), RAGD with maternofetal
transfusion, RAGD with gd T-cell expansion, late-onset SCID,
RAGD with granulomas, and RAGD with CD4 cytopenia
and thymus hypoplasia.9,10 This broad spectrum of clinical
phenotypes impedes timely recognition of RAGD and might
thus delay treatment (hematopoietic stem cell transplantation).
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omplementary determining region 3
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ombined immunodeficiency
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ecombination-activating gene
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ecombination-activating gene deficiency
SCID: S
evere combined immunodeficiency
TR: T
-cell receptor
TRB: T
-cell receptor b
TREC: T
-cell receptor excision circle
In this study we selected 22 patients with RAGD with similar
N-terminal truncating RAG1 mutations to study the effect of a
similar mutation on the clinical phenotype. These patients could
be divided into 3 main clinical phenotypes (ie, SCID, OS, and
CID, which includes the other phenotypes). We studied whether
key immunologic parameters (eg, precursor B-cell development,
B- and T-cell numbers, and B- and T-cell repertoire) might
explain the differences in clinical phenotypes.

METHODS

Cell samples and flow cytometric

immunophenotyping
Peripheral blood (PB), bone marrow (BM), and clinical data were obtained

according to the guidelines of the Medical Ethics Committee of the Erasmus

MC Rotterdam. Flow cytometric analysis was performed, as previously

described.8,11,12

RAG analysis and in vitro V(D)J recombination

assay
The RAG1 and RAG2 genes were amplified by means of PCR and

sequenced, as previously described.13 The level of recombination activity of

the RAG1 expression constructs was determined by using the recombination

plasmid pDVG93, as described previously.10,13 A TaqMan-based realtime

quantitative (RQ)-PCR was used to measure RAG1 and RAG2 transcription

levels in BM mononuclear cells, as described previously.14

T-cell receptor b analysis
T-cell receptor b (TRB) gene rearrangements were studied, as described

previously.15

Sequence analysis of Vk and Jk genes
Vk-Ck junctions were amplified in a multiplex PCR by using primers specific

for Vk1-5 families (VkI: 59-GTAGGAGACAGAGTCACCATCACT-39, VkII:
59-TGGAGAGCCGGCCTCCA-TCTC-39, VkIII: 59-GGGAAAGAGCCACC
CTCTCCTG-39, and VkIV: 59-GGCGAGAGGGCC-ACCATCAAC-39) and a

Ck primer (59-ACTTTGGCCTCTCTGGATA-39). PCR products were cloned in

the pGEM-Teasyvector (Promega,Madison,Wis) andprepared for sequencingon

the ABI Prism 3130 XL fluorescent sequencer (Applied Biosystems, Foster City,

Calif). Obtained sequences were analyzed with the IMGT database (http://imgt.

cines.fr/) to assign theVkand Jk genes.16,17 The productive and unique sequences

were used to determine the frequency of the Vk and Jk genes.

Repertoire analysis with next-generation

sequencing
The VH-JH junctions were amplified from post-Ficoll PBMCs in a

multiplex PCR by using the VH1-6 FR1 and JH consensus BIOMED-2
primers.15 The primers were adapted for 454 sequencing by adding the

forward A or reverse B adaptor, the ‘‘TCAG’’ key, and the multiplex identifier

adaptor. PCR products were purified by using gel extraction (Qiagen,

Valencia, Calif) and Agencourt AMPure XP beads (Beckman Coulter,

Fullerton, Calif). Subsequently, the PCR concentration was measured with

the Quant-it Picogreen dsDNA assay (Invitrogen, Carlsbad, Calif). The

purified PCR products were sequenced on the 454 GS junior instrument

according to the manufacturer’s recommendations by using the GS junior

Titanium emPCR kit (Lib-A), sequencing kit, and PicoTiterPlate kit

(454 Life Sciences; Roche, Branford, Conn). By using the CLC genomic

workbench software, the samples were separated based on their multiplex

identifier sequence and trimmed, and reads with a quality score of less than

0.05 and less than 250 bp were discarded. The reads were uploaded to

IMGT HighV-Quest software.18 Subsequently, these output files were

uploaded to the custom Galaxy platform.19-21 Further processing was done

in the R programming language22 to generate the tabular and graphic outputs.

The complementary determining region 3 (CDR3) amino acid patterns were

visualized with WebLogo (http://weblogo.berkeley.edu/).23,24
Statistics
Differences in absolute numbers of lymphocyte subsets were analyzed by

using the 2-tailed t test for independent samples (P < .05 was considered

significant) in GraphPad Prism software (GraphPad Software, La Jolla, Calif).
RESULTS

Residual RAG1 activity in patients with N-terminal

truncating RAG1 mutations
Over the past 10 years, we identified one of the 2 mutations

resulting in N-terminal truncating RAG1mutations in 22 patients
(Tables I and II). These c.519delT (hereafter abbreviated as delT)
and c.368_369delAA (hereafter abbreviated as delAA) mutations
have been described before in several patients.13,25-29 They were
found to be hypomorphic13,27 because translation can be
reinitiated from the alternative start site methionine 202 (M202)
or M183, resulting in an N-terminal truncated RAG1 protein13

with the same (comparable) residual RAG1 activity (<5%
compared with wild type; Fig 1, A).13 Sixteen patients were
homozygous for the delAA or delT mutation, and 6 patients
were compound heterozygous (Table I). Three RAG1 mutations
found on the second allele were also analyzed in the in vitro
recombination assay, showing no residual RAG1 activity
(Fig 1, A). In addition, we determined the presence of poly-
morphisms in the RAG1 gene because these might influence the
recombination activity of RAG1. The only polymorphism found
was p.Arg249His, which was shown not to affect recombination
activity.2
N-terminal truncating RAG1 mutations result in a

spectrum of clinical phenotypes
Although all patients had similar RAG1mutations, resulting in

the same N-terminal truncation of the RAG1 protein, the clinical
phenotypes varied substantially. The patients could be
divided into 3 main clinical phenotypes: ‘‘classical’’ T2B2

SCID (n 5 4), OS (n 5 9), and CID (n 5 9, Tables I and II).
The patients with ‘‘classical’’ SCID were defined as having low
B- and T-cell numbers and age at diagnosis before the first year
of life. The patients with OS all had generalized and pronounced
erythroderma. The patients with CID were given a diagnosis after
the first year of life and had greater than 14% gd T cells or normal
levels of T cells (P17 and P22). Despite the same N-terminal

http://imgt.cines.fr/
http://imgt.cines.fr/
http://weblogo.berkeley.edu/


TABLE I. Clinical data of patients with RAGD

Onset of

infections

(mo)

Age at

diagnosis

(mo) Infections

Respiratory tract

infections

Autoimmunity/

erythroderma Hepatomegaly Splenomegaly Lymphadenopathy

SCID

P1 3

P2 6 6 BCG No ITP No No No

P3 8 8 Pneumonia and upper

airway infections

P4 6 8 BCG Mild

OS

P5 0 0.5 Erythroderma Yes Yes Yes

P6a 0 0.5 Recurrent pneumonia Erythroderma Yes No Yes

P7a 0 0.5 CMV No Erythroderma Yes Yes Yes

P8 0 3.5 CMV, Candida

species, MRSE

Severe pneumonia Erythroderma

P9 0 4 Erythroderma Yes No Yes

P10 1 1 Erythroderma Yes

P11 1.5 2 Erythroderma Yes

P12 1 8 BCG Recurrent pneumonia Erythroderma Yes Yes Yes

P13 3 6 Candida species,

Mycobacterium bovis,

coronavirus, rhinovirus

Recurrent upper and

lower airway infections

Erythroderma,

AIHA, ITP

Yes No No

CID

P14b 9 30 CMV, Candida species Recurrent

bronchopneumonia

Yes Yes No

P15b 9 18 CMV Recurrent

bronchopneumonia

Yes Yes No

P16c 1 11 CMV Chronic rhinitis No No No

P17 4 6 CMV, BCG Pneumonia Yes Yes Yes

P18 18 60 CMV, BCG, rhinovirus Yes AIHA, ITP No No No

P19 3 13 Candida species Chronic rhinitis and

bronchitis

AIHA No No No

P20 24 48 AIHA

P21 13 60 Candida species,

aspergillosis

Recurrent pneumonias,

bronchitis

AIHA No No No

P22c 0 17 Recurrent pneumonias,

bronchitis

No No No

Footnote symbols ‘‘a,’’ ‘‘b,’’ and ‘‘c’’ indicate relatives.

AIHA, Autoimmune hemolytic anemia; CMV, cytomegalovirus; ITP, idiopathic thrombocytopenic purpura; MRSE, methicillin-resistant staphylococcus epidermis.
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truncation of RAG1 in the 22 patients, the range of clinical
phenotypes strongly suggests that factors other than residual
RAG1 activity contribute to the clinical phenotype.
All clinical phenotypes show a block in precursor

B-cell development
RAGD results in a block in the precursor B-cell differentiation

in BM at the B-cell stages during which V(D)J recombination of
the immunoglobulin genes takes place.11 The relative distribution
of pro-B, pre-BI, pre-BII, and immature B cells was assessed
in BM from 11 of 22 patients to investigate precursor B-cell
differentiation. In healthy children pro-B and pre-BI cells
constitute 20% to 25% of the precursor B cells (Fig 1, B). All
patients with ‘‘classical’’ SCID and OS, except P13, showed a
complete block before the pre–BII-cell stage (Fig 1, B), whereas
most of the patients with CID had a leaky block with greater than
10% pre-BII and immature B cells (Fig 1, B). RAG1 and RAG2
transcription levels were determined in the BMmononuclear cells
to exclude that differences in RAG1 transcription levels caused
these difference in precursor B-cell composition. It is known
that RAG1 and RAG2 transcription levels are correlated, and
that RAG1 and RAG2 levels in BM mononuclear cells depend
on the number of cells expressing RAG (pre-BI and pre-BII
cells).30 In all 11 studied patients, the RAG1 transcription level
was correlated to RAG2 (Fig 1, C), indicating that the differences
in severity of the precursor B-cell block were not caused by
differences in expression of RAG1. B-cell numbers in PB were
undetectable or very low in most patients, except P15, who had
normal levels (Table II). Correlating the percentage of pre-BII
and immature cells in BM with the number of peripheral B cells
showed that only patients with greater than 10% pre-BII and
immature B cells in BM (P13, P14, P15, P16, and P17) had
detectable B cells in PB. Collectively, these data indicate that
most patients with CID have a milder block in the precursor
B-cell composition and that only patients with a leaky block
have detectable B cells in the PB.
Immunoglobulin heavy chain combinatorial

repertoire
In those patients with detectable peripheral B cells, we

studied the IGH V(D)J recombination repertoire. IGH gene
rearrangements were amplified from mononuclear cells derived



TABLE II. Immunologic data of patients with RAGD

delT delAA Other

CD31 T cells,

absolute

(3 10E9/L)

CD41 T cells,

absolute

(3 10E9/L)

CD81 cells,

absolute

CD45RA

(%)

gdT

cells (%)

CD191 cells,

absolute

(3 10E9/L)

NK cells,

absolute

(3 10E9/L)

SCID

P1 Homozygous 0.06 (1.4-8.0) 0.04 (0.9-5.5) 0.01 (0.4-2.3) 21.8 0.03 (0.6-3.1) 0.08 (0.1-1.4)

P2 Heterozygous p.P874GfsX82 0.1 (2.4-6.9) 0.06 (1.4-5.1) 0.01 (0.6-2.2) 32.1 24.4 0.01 (0.7-2.5) 0.4 (0.1-1.0)

P3 Homozygous 0.3 (1.6-6.7) 0.06 (1.0-4.6) 0.3 (0.4-2.1) 0 (0.6-2.7) 0.5 (0.2-1.2)

P4 Heterozygous p.R559S 0.3 (1.6-6.7) 0.2 (1.0-4.6) 0.04 (0.4-2.1) 7.7 10 0 (0.6-2.7) 0.1 (0.2-1.2)

OS

P5 Homozygous 20.1 (2.3-7.0) 7.56 (1.7-5.3) 12.75 (0.4-1.7) 4 0 (0.6-1.9) 2.59 (0.2-1.4)

P6a Homozygous 3.7 (2.3-6.5) 3.1 (1.5-5.0) 0.4 (0.5-1.6) 7.2 5.2 0.03 (0.6-3.0) 0.8 (0.1-1.3)

P7a Homozygous 36 (2.3-6.5) 10.7 (1.5-5.0) 24.9 (0.5-1.6) 3.1 1 0.03 (0.6-3.0) 0.4 (0.1-1.3)

P8 Homozygous 3.93 (2.3-6.5) 1.45 (1.5-5.0) 2.19 (0.5-1.6) 21.4 24.4 0.02 (0.6-3.0) 0.88 (0.1-1.3)

P9 Homozygous 1.84 (2.3-6.5) 1.48 (1.5-5.0) 0.3 (0.5-1.6) 4.6 3 0.004 (0.6-3.0) 1.64 (0.1-1.3)

P10 Heterozygous p.R737H 3.3 (2.3-7.0) 0.32 (1.7-5.3) 2.97 (0.4-1.7) 0.3 0.1 0 (0.6-1.9) 0.34 (0.2-1.4)

P11 Heterozygous p.R559S 4.33 (1.6-6.7) 4 (1.0-4.6) 0.27 (0.4-2.1) 0.01 (0.6-2.7) 0.93 (0.2-1.2)

P12 Homozygous 2.21 (2.3-6.5) 1.34 (1.5-5.0) 0.61 (0.5-1.6) 0.07 (0.6-3.0) 0.56 (0.1-1.3)

P13 Homozygous 0.6 (2.4-6.9) 0.6 (1.4-5.1) 0.01 (0.6-2.2) 4.8 2.9 0.07 (0.7-2.5) 0.2 (0.1-1.0)

CID

P14b Homozygous 0.3 (0.9-4.5) 0.1 (0.5-2.4) 0.07 (0.3-1.6) 35 49.5 0.4 (0.2-2.1) 0.8 (0.1-1.0)

P15b Homozygous 0.5 (1.4-8.0) 0.1 (0.9-5.5) 0.2 (0.4-2.3) 38.9 64.1 0.4 (0.6-3.1) 2.9 (0.1-1.4)

P16c Homozygous 0.16 (1.6-6.7) 0.07 (1.0-4.6) 0.02 (0.4-2.1) 26.9 46.3 0.09 (0.6-2.7) 0.32 (0.2-1.2)

P17 Homozygous 2.7 (1.6-6.7) 0.2 (1.0-4.6) 1.5 (0.4-2.1) 90.7 90.2 0.06 (0.6-2.7) 0.7 (0.2-1.2)

P18 Heterozygous p.R759C 0.53 (0.9-4.5) 0.07 (0.5-2.4) 0.12 (0.3-1.6) 57.2 0.12 (0.2-2.1) 1.32 (0.1-1.0)

P19 Homozygous 0.10 (1.6-6.7) 0.01 (1.0-4.6) 0.10 (0.4-2.1) 97.5 0.04 (0.6-2.7) 0.23 (0.2-1.2)

P20 Homozygous 0.77 (0.9-4.5) 0.25 (0.5-2.4) 0.24 (0.3-1.6) 41.7 0.02* (0.2-2.1) 0.18 (0.1-1.0)

P21 Heterozygous p.A444V 0.12 (0.9-4.5) 0.10 (0.5-2.4) 0.06 (0.3-1.6) 14.4 0.001 (0.2-2.1) 0.25 (0.1-1.0)

P22c Homozygous 1.97 (1.6-6.7) 0.42 (1.0-4.6) 1.50 (0.4-2.1) 42 0.29 (0.6-2.7) 0.72 (0.2-1.2)

Numbers in parentheses indicate normal values. Footnote symbols ‘‘a,’’ ‘‘b,’’ and ‘‘c’’ indicate relatives.

NK, Natural killer.

*Under rituximab treatment.

A

B

C

FIG 1. RAG expression and precursor B-cell compartment.A, Recombination activity of the c.519delT (delT),

c.delA368/A369 (delAA), p.P874GX82, p.R559S, and p.R759C RAG1mutations was compared with wild-type

(WT) RAG1. Only the delT and the delAA RAG1 mutations result in low levels of residual recombination

activity. B, Composition of the precursor B-cell compartment in control subjects (n 5 9), 3 patients with

the ‘‘classical’’ SCID phenotype, 2 patients with OS, and 6 patients with CID. C, Relative RAG1 expression

levels correlated to RAG2 expression in all the analyzed RAG patients, as determined by using RQ-PCR.
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from PB, BM, or both and subsequently sequenced by using next-
generation sequencing in healthy control subjects (PB and BM)
and 3 patients with CID (P15, P16, and P18). The frequency of
unique sequences in IGH genes was significantly lower in
patients with RAGD than in control subjects (Table III), which
is a reflection of the low numbers of B cells present in PB.



TABLE III. Number of IGH sequences

All

sequences

Unique

sequences Unproductive Productive

Control BM 35,472 18,241 (51.4) 8,633 (24.3) 26,839 (75.7)

P16 BM 12,195 3,325 (27.3) 1,629 (13.3) 10,566 (86.7)

Control PB 19,294 9,185 (61.2) 4,030 (20.9) 15,003 (77.8)

P15 PB 16,826 7,706 (45.8) 1,047 (6.2) 15,779 (93.8)

P16 PB 14,572 3,763 (25.8) 896 (6.1) 13,676 (93.9)

P18 PB 25,100 3,730 (14.9) 1,488 (5.9) 23,612 (94.1)

Numbers in parentheses indicate percentages. ‘‘Unproductive’’ refers to out-of-frame

rearrangements or rearrangements containing a stop codon in the CDR3 region.
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Despite the low recombination activity, IGHV, IGHD, and IGHJ
gene use was not restricted (Fig 2 and see Fig E1 in this article’s
Online Repository at www.jacionline.org). Forty-eight of the 57
IGHV genes used in control subjects were identified in the
patients with RAGD because were the 25 IGHD genes and all 6
IGHJ genes. IGHV, IGHD, and IGHJ gene uses were similar to
those seen in control subjects, although some genes were used
with different frequencies (Fig 2 and see Fig E1). Most strikingly,
JH6 use was lower whereas JH4 use was higher compared with
that seen in control subjects. The patients with RAGD had a
significantly lower frequency (5.9% to 6.2% vs 20.9% to 24.3%
in control subjects) of unproductive rearrangements (Table III),
as reported previously.31 Unproductive rearrangements were
defined as out-of-frame rearrangements or rearrangements with
a stop codon. Therefore even though the patients with RAGD
had reduced V(D)J recombination, leading to a limited TR and
immunoglobulin repertoire, the IGH gene use was similar to
that seen in control subjects without preferential use of the
proximal or distal genes.
Selection of B cells is slightly impaired
OS is characterized by autoimmune-like clinical features,

including severe erythroderma, hepatosplenomegaly, and
lymphadenopathy.32,33 The immune dysregulation in patients
with OS might be caused by the severe abnormalities of thymic
architecture and impaired expression of autoimmune regulator
and tissue-specific antigens.34,35 In addition, hypomorphic Rag
mouse models have shown a disturbance in B-cell tolerance.36,37

In addition, patients with OS and also 1 patient with ‘‘classical’’
SCID and 4 patients with CID had autoimmunity, and all
displayed idiopathic thrombocytopenic purpura, autoimmune
hemolytic anemia, or both (Table I). Unfortunately, the thymic
architecture and autoimmune regulator and tissue-specific
antigen expression could not be studied in our patients, but we
were able to evaluate 3 parameters in the IGH sequences that
are associated with autoimmunity. These are characterized by
long CDR3s, and the frequency of IGHV4-34, which is known
to encode intrinsically self-reactive cold agglutinin antibodies
that recognize carbohydrate antigens on erythrocytes.38,39 The
distribution of the CDR3 length of the unique junctions in BM
and PB was similar to that seen in control subjects (Fig 3, A),
except patient 18, who seemed to have increased numbers of
junctions with a CDR3 of 16 and 22 amino acids. These junctions
with a CDR3 length of 22 amino acids displayed high similarity
(Fig 3, B). No sequence similarity was found when all
16-amino-acid CDR3s were compared (Fig 3, B), but 18.3% of
these junctions used IGHV6-1, and all these junctions had a highly
similar CDR3 sequence (Fig 3, B), which suggests that theymight
recognize a common antigenic determinant. The frequency of
long CDR3s (>_15 amino acids) was significantly lower in P15
and P16 (P < .0001) but not in P18 (Fig 3, C). The frequency of
IGHV4-34 use was significantly higher in P16 (P < .0001) and
P18 (P < .0001; Fig 3, D). From the 3 patients we analyzed,
P18 had autoimmunity, which was reflected by the high frequency
of IGHV4-34 use.

In addition to selection against long CDR3s, B-cell tolerance is
also generated by receptor editing of self-reactive B cells. These
self-reactive B cells are induced to express the RAG proteins and
edit their receptor light chains through available upstream Vkand
downstream Jk genes to change the affinity of their receptors.
Therefore the Vk-Jk junctions were amplified from 5 patients
with OS and 4 patients with CID. The IGKV gene use was
not significantly different from that seen in control subjects
(Fig 3, E), but less IGKJ5 genes were used in the patients with
RAGD (Fig 3, F). Therefore receptor editing seems partly
affected, as deduced from the very low IGKJ5 use.
Difference between clinical phenotypes in absolute

numbers of T cells but not in T-cell repertoire
The hallmark of classical OS is an expansion of autologous

T cells with an HLA-DR1CD45RO1 phenotype and an oligoclo-
nal ab T-cell repertoire.40 Consistent with this, most of the
patients with OS had normal or increased CD31 T-cell numbers;
in addition, 2 patients with CID had normal numbers (P17 and
P22), whereas all other patients had low absolute numbers of
CD31 T cells (Table II). Remarkably, many patients had high
percentages (>14%) of gd T cells, including 2 patients with
‘‘classical’’ SCID, 1 patient with OS, and 8 patients with CID
(Table II). In addition, we determined the T-cell proliferation by
determining the dREC-cJa T-cell receptor excision circle
(TREC)41 content per 50 ng of DNA in 3 patients with ‘‘classical’’
SCID, 7 patients with OS, and 5 patients with CID. In 11 patients
TRECs were not detectable, and in the other 4 patients (P2, P5,
P7, and P18), the number of TRECs/50 ng of DNA was less
than 1 compared with 1346 75 TRECs/50 ng of DNA in control
subjects (n 5 7; age, 8 months to 11 years; data not shown),
meaning that the T cells that were present in these patients showed
extensive proliferation. Furthermore, the T-cell repertoire was
determined by testing the TRB gene rearrangements in 2 patients
with ‘‘classical’’ SCID, 3 patients with OS, and 2 patients with
CID. In all patients the TRB repertoire was clearly restricted
(Fig 4). Taken together, the T cells that were present in the
patients with RAGD showed extensive proliferation and had a
restricted TR repertoire.
DISCUSSION
Many different RAG1 mutations have been reported to the

RAG mutation database.42 Although most are null mutations,
several have been described to result in residual recombinase
activity.11,13,25,27,43 Previously, it was hypothesized that null
mutations in RAG1 would result in ‘‘classical’’ T2B2 SCID and
that partial reduction of RAG activity would result in OS or an
intermediate late-onset SCID or OS phenotype.28 Over the last
few years, the spectrum of reported clinical phenotypes of
RAGDhas broadened and nowalso includesRAGDwithgdT-cell
expansion, RAGD with skin inflammation but without T-cell
expansion (incomplete OS), RAGD with granulomas, RAGD

http://www.jacionline.org


A

B

FIG 2. Heat maps of the different combinations of immunoglobulin DH-JH (A) and VH-JH (B), as determined

in the unique junctions (defined by the unique combination of VH, DH, JH, and nucleotide sequences of

CDR3).
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FIG 3. Functional characteristics of IGH junctions. A, Functional characteristics of the IGH junctions were

determined in 3 patients with RAGD in PB or BM. Distribution of CDR3 length frequencies in BM and PB

was similar in control subjects and patients with RAGD; however, P18 had increased numbers of junctions,

with a CDR3 length of 16 and 23 amino acids. B, Sequence logo showed no similarity of the 16-amino-acid

CDR3s of P23 but high similarity of CDR3s of 16 amino acids using the IGHV6-1 gene and the 22-amino-acid

CDR3s. C, The frequency of long CDR3s (>_15 amino acids) was decreased in P15 and P16. D, IGHV4-34 use

was increased in P16 and P18. E and F, The percentage of IGKV and IGKJ genes was determined in 6 control

subjects, 5 patients with OS, and 4 patients with CID. IGKV use was normal (Fig 3, E), but hardly any IGKJ5
gene was used (Fig 3, F).
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with maternofetal transfusion, and RAGD with CD4 cytopenia
and thymus hypoplasia.9,10 A few case reports have shown
that the same RAG mutation can result in a different clinical
phenotype.25,29,44,45 This study is the first to report an in-depth
immunobiological evaluation of 22 patients with RAGD with
similar RAG1 mutations, resulting in the same N-terminal
truncation of the RAG1 protein. These similar mutations result
in 3 different clinical phenotypes, which indicates that a specific
mutation does not predict a patient’s clinical phenotype.

Because all patients had similar mutations, the residual RAG1
protein activity was expected to be comparable among all
patients. The N-terminally truncated RAG1 protein is produced
through translation starting from an alternative start site (M183 or
M202), and hence the amount of protein is dependent on
how efficiently these start sites are used. Because the RAG1
transcription level correlated with that of RAG2, we assume that
all patients had similar expression of the mutant RAG1 protein
(Fig 1,C). We cannot exclude that epigenetics and modifier genes
accounted for small differences in RAG1 protein expression.
Although a previous attempt to identify such modifier genes in
human subjects was not successful,46 studies in mouse models
could shed more light on the contribution of epigenetics and
modifier genes.

In our cohort V(D)J recombination was not completely
abolished but was strongly reduced because of the low residual
activity of the RAG1 protein. Reduced V(D)J recombination was
characterized by normal IGHV, IGHD, and IGHJ gene use,
without preferential use of proximal or distal genes. However,
as shown previously,31 the frequency of unproductive sequences
was significantly lower than in healthy control subjects,



FIG 4. TRB repertoire. TR spectratyping profiles of TRB gene rearrange-

ments using the BIOMED-2 TRB tube B. The upper 2 panels show the

monoclonal and the polyclonal controls. The patient panels SCID (P2

and P4), OS (P8), and CID (P21) show a restricted TRB repertoire.

J ALLERGY CLIN IMMUNOL

VOLUME 133, NUMBER 4

IJSPEERT ET AL 1131
indicating that the B cells in the patients with RAGD did not
correct unproductive rearrangements by means of recombination
of the second IGH allele.

As a consequence of the reduced V(D)J recombination, fewer
B and T cells with a functional receptor can be produced. The
proliferation of the lymphocytes is increased to compensate for
low circulating B- and T-cell numbers. This idea is corroborated
by the low numbers of TRECs in patients with RAGD. The
increased proliferation of T cells might result in normal or
increased T-cell counts, especially in the patients with OS;
however, the corresponding TR repertoire in all the patients
with RAGD remains restricted.
Most patients with RAGD showed clinical signs of
immune dysregulation, such as erythroderma, lymphadenopathy,
hepatosplenomegaly, idiopathic thrombocytopenic purpura, and
autoimmune hemolytic anemia. B cells have been shown to
contribute to the immune dysregulation seen in Rag mouse
models.36,37 Sera from these mice contained high-affinity
anti–double-stranded DNA and tissue-specific autoantibodies,
and B cells displayed impaired receptor editing. In addition, these
mice had increased serum B cell–activating factor levels, which
might rescue autoreactive B-cell clones. This increase in serum
B cell–activating factor levels was also seen in patients with
RAG-, Artemis-, and X-linked SCID.37 Similar to observations
in mice, most patients with RAGD did not use the IGKJ5 gene,
whereas IGKV gene use was normal. This suggests that receptor
editing in this group of patients with RAGD was slightly
impaired, which can either be a result of reduced recombination
activity caused by the RAG1 mutation or by low B-cell numbers
leading to reduced selection against autoreactive B cells.
The IGH repertoire was investigated for long CDR3s and
increased IGHV4-34 use, which are associated with autoreactive
antibodies.47,48 From the 3 patients with RAGD we analyzed,
only P18 had autoimmunity, which was reflected by an increased
VH4-34 gene use.

The patients divided into the 3 main clinical RAGD groups
hardly differed in their immunobiological parameters, and
consequently, we could not find any specific pattern that could
explain the different clinical phenotypes. On the basis of our
results and earlier reported data, we propose an explanatory
model for the development of different clinical phenotypes in
patients with RAGD with similar mutations (Fig 5). If RAGD
results in reduced V(D)J recombination, low B- and T-cell
numbers are produced with some (compensatory) clonal expan-
sion. This expansion might increase the B- and T-cell numbers
to even normal levels but does not change the limited repertoire.
In such limited repertoire the selection against autoreactive cells
is impaired. Provided the deficient immune system is not
activated, patients with RAGD are asymptomatic. However,
when the immune system will be activated by potentially a
wide range of different (auto)antigens, the type of antigen and
activated effector lymphocyte will have important consequences
for the clinical phenotype. In addition, the impaired negative
and positive selection of thymic lymphocytes and reduced
number of regulatory T cells might result in autoimmunity
when patients are exposed to autoantigens. This phenomenon
can occur at any early stage, even in utero, as shown by the fact
that patients with OS can have severe erythroderma already
at birth, which is unlikely to be triggered by infections. Addition-
ally, directly after birth, the skin and gastrointestinal tract become
colonized by commensal bacteria, which can trigger the chronic
diarrhea seen in most patients with RAGD. Key steps in the
development of a certain clinical phenotype will be the B- and
T-cell repertoire, the type of (auto)antigen exposure, the
specificity of the antigen receptors and timing, the cell type
involved in the immune activation, and the potential influence
of genetic variations in modifier genes. Variability in any of these
factors might eventually lead to different clinical phenotypes,
despite a similar genetic defect.

In conclusion, this study clearly shows that the type of RAG1
mutation and the level of residual RAG1 recombinase activity
are not the only determinants predicting the clinical phenotype,
as previously assumed. The clinical outcome of an individual



FIG 5. Model for development of clinical phenotype in patients with RAGD. RAGD results in reduced V(D)J

recombination, leading to fewer B and T cells with a limited repertoire. In an attempt to compensate for low

numbers, B and T cells start to proliferate, but the repertoire remains limited and imbalanced, so that

selection and immune regulation are impaired. Most likely the type of antigenic stimulation together with

the incomplete and imbalanced repertoire that has been developed will affect the eventual clinical

phenotype with immune dysregulation problems.
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patient with RAGD depends on a complex interplay between the
(limited) immune receptor repertoire, (auto)antigen exposure, the
specificity of antigen receptors, and the timing and cell type
involved in immune activation. Therefore the clinical outcome
of patients with RAGD with similar mutations is extremely
difficult to predict.

We thank B. H. Barendregt and I. Pico-Knijnenburg for technical

assistance, S. de Bruin-Versteeg for making the figures, D. Zessen for help

with the repertoire analysis, and ProfessorA. J. Cant for discussion and advice.

Clinical implications: RAGD can result in a broad spectrum of
clinical presentations, but the level of residual RAG activity is
not always predictive for the clinical outcome.
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J ALLERGY CLIN IMMUNOL

APRIL 2014

1133.e1 IJSPEERT ET AL


	Similar recombination-activating gene (RAG) mutations result in similar immunobiological effects but in different clinical  ...
	Methods
	Cell samples and flow cytometric immunophenotyping
	RAG analysis and in vitro V(D)J recombination assay
	T-cell receptor β analysis
	Sequence analysis of Vκ and Jκ genes
	Repertoire analysis with next-generation sequencing
	Statistics

	Results
	Residual RAG1 activity in patients with N-terminal truncating RAG1 mutations
	N-terminal truncating RAG1 mutations result in a spectrum of clinical phenotypes
	All clinical phenotypes show a block in precursor B-cell development
	Immunoglobulin heavy chain combinatorial repertoire
	Selection of B cells is slightly impaired
	Difference between clinical phenotypes in absolute numbers of T cells but not in T-cell repertoire

	Discussion
	References


