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Objective: This study explored the value of different radiomic models based on
multiphase computed tomography in differentiating parotid pleomorphic adenoma (PA)
and basal cell tumor (BCA) concerning the predominant phase and the optimal radiomic
model.

Methods: This study enrolled 173 patients with pathologically confirmed parotid tumors
(training cohort: n=121; testing cohort: n=52). Radiomic features were extracted from the
nonenhanced, arterial, venous, and delayed phases CT images. After dimensionality
reduction and screening, logistic regression (LR), K-nearest neighbor (KNN) and support
vector machine (SVM) were applied to develop radiomic models. The optimal radiomic
model was selected by using ROC curve analysis. Univariate and multivariable logistic
regression was performed to analyze clinical-radiological characteristics and to identify
variables for developing a clinical model. A combined model was constructed by
integrating clinical and radiomic features. Model performances were assessed by ROC
curve analysis.

Results: A total of 1036 radiomic features were extracted from each phase of CT images.
Sixteen radiomic features were considered valuable by dimensionality reduction and
screening. Among radiomic models, the SVM model of the arterial and delayed phases
showed superior predictive efficiency and robustness (AUC, training cohort: 0.822, 0.838;
testing cohort: 0.752, 0.751). The discriminatory capability of the combined model was
the best (AUC, training cohort: 0.885; testing cohort: 0.834).
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Conclusions: The diagnostic performance of the arterial and delayed phases contributed
more than other phases. However, the combined model demonstrated excellent ability to
distinguish BCA from PA, which may provide a non-invasive and efficient method for
clinical decision-making.
Keywords: radiomic analysis, machine learning, computed tomography, parotid pleomorphic adenoma, basal
cell adenoma
INTRODUCTION

Parotid gland tumors are the predominant salivary gland tumors,
more than 80% of which are benign (1). According to the 5th
Edition of the World Health Organization (WHO) classification
of Head and Neck Tumors, there were 15 histological types of
benign parotid tumors, of which the most common type was
pleomorphic adenoma (PA), followed by Warthin tumor (WT)
and basal cell adenoma (BCA) (2, 3). Most patients with benign
parotid tumors present as a painless mass, frequently
asymptomatic and incidentally detected (4). While BCA is a
rare benign tumor, the incidence rises each year (5). Due to
physicians’ lack of a more detailed awareness, it is commonly
mistaken for a similar PA. Although both are benign tumors, the
biology and surgical procedures are entirely different, such as PA
has a higher recurrence and malignancy rate and a more
comprehensive surgical range than BCA (6–8). To optimize
the individualized surgical approach, reduce the incidence of
postoperative complications, and inform preoperative patient
counseling it is essential to distinguish preoperatively between
PA and BCA (8, 9).

Fine needle aspiration biopsy (FNAB) is commonly utilized in
the preoperative qualitative diagnosis of parotid tumors, but its
effectiveness is controversial (10, 11). Therefore, preoperative
imaging, especially CT and MRI, has a crucial role in assessing
the location, nature, and relationship to surrounding structures
of parotid tumors (12, 13). While MRI has high contrast soft-
tissue resolution, its drawbacks are high cost, prolonged image
acquisition time, and susceptibility to motion artifacts (14). In
contrast, multiphase enhanced CT has the advantages of being
convenient to operate, cheaper, and widely available for
identifying parotid tumors (6, 15). The radiological features of
BCA and PA overlap, thus accurately differentiating the two
remains a challenge for most physicians, and their diagnostic
accuracy depends strongly on observer expertise and
experience (16).

Radiomics, an emerging and rapidly developing field,
integrates radiology, oncology, and machine learning to
perform an essential role in precision diagnosis, tumor
treatment, and prognosis through high-throughput extraction
and mining of a large number of image features (17). In recent
years, with the advancement of artificial intelligence, the
application of radiomics to identify parotid tumors has made
significant progress (18–20). The high accuracy, effectiveness,
and reliability of prediction models are critical factors in
facilitating the success of radiomics; thus, it is essential to
compare different machine learning models based on
2

radiomics (21). To our knowledge, nevertheless, no studies
have investigated the different radiomic models applied to
distinguish BCA from PA.

This study first investigated the performance of different
radiomic models and the dominant scan phase from
multiphasic CT in differentiating BCA from PA. In particular,
clinical-radiological features and radiomics were combined to
differentiate BCA from PA.
MATERIALS AND METHODS

The Patient Cohort and CT Image
Acquisition
This retrospective analysis included eligible patients in our
hospital from January 2018 to October 2021, was approved by
the Ethics Review Committee of our institution (approval
number 2022-K34), and exempted from informed consent
requirements. In this study, the patient selection and exclusion
criteria were illustrated in Figure 1. Overall, 173 eligible patients
FIGURE 1 | Workflow for patient enrollment.
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were enrolled, including 121 cases of PA (50 males and 71
females; age 45.3 ± 15.9 years) and 52 cases of BCA (20 males
and 32 females; age 54.4 ± 11.8 years). These patients were
randomized in a 7:3 ratio into a training and testing cohort.

CT scans were conducted with two 64 multidetector CT
scanners (Discovery 750, GE Healthcare, Milwaukee, WI, USA;
Somatom Sensation 64, Siemens Healthcare, Erlangen,
Germany) with the following parameters: 120 kV; tube current
modulation (150–240mAs); matrix, 512 × 512; section thickness,
5 mm; section interval, 5 mm. Non-ionic iodinated contrast
medium (Ultravist 350 mg/ml, Bayer Schering Pharma, Berlin,
Germany) was injected into the anterior cubital vein (dose 1.5
ml/kg) at a flow rate of 3.5 ml/s for all contrast-enhanced scans.
All images were acquired from the skull base to the thorax inlet.
Multiphase scans were collected for each patient: non-enhanced
scan, arterial phase scan (40 seconds after intravenous contrast
injection), venous phase scan (after 100 seconds), and delayed
phase scan (after 4 or 5 minutes).

Image Segmentation, Radiomic Features
Extraction and Selection
Multiphase CT images were stored in Digital Imaging and
Communications in Medicine (DICOM) format and imported
into ITK-SNAP software (version 3.8.0; http://www.itksnap.org/)
for three-dimensional manual segmentation of regions of interest
(ROIs). The ROIs were sketched along boundaries layer-by-layer
on axial images by a radiologist with 5 years of experience and
reviewed by another radiologist with 12 years of experience,
blinded to the clinical information.

To extract robust features and assure model reproducibility,
intra-observer intraclass correlation coefficients (ICC) were
assessed. Fifty-two patients (36 PA and 16 BCA) were
randomly selected for ROI segmentation again 1 month later
by the same radiologist, and an ICC greater than 0.75 suggested
good consistency (20). Image preprocessing was performed on
the images and ROIs to counteract the potential effects of
different imaging parameters on the extracted features,
including resampling, normalizing, and discretizing the gray
level of images (18). The package py-radiomics 3.0 in python
software (version 3.7.6; https://www.python.org/) was employed
for feature extraction. For each phase of CT images, 1036
radiomic features were extracted, including the shape,
histogram, gray-level co-occurrence matrix (GLCM), gray-level
dependence matrix (GLDM), gray-level run-length matrix
(GLRLM), gray-level size zone matrix (GLSZM), and filter
features (Laplacian of Gaussian and wavelet filters).

The feature dimensionality reduction and selection in the
training cohort were as follows: first, the student’s t-test was used
to select features that differed significantly between groups.
Second, correlation analysis was applied to eliminate
redundant parameters from advancement to model
construction. If there was a high correlation (>0.8), the
parameter with the high area under the receiver operating
curve (ROC) was selected. Third, a least absolute shrinkage
and selection operator (LASSO) regression model with 10-fold
cross-validation was performed to select radiomic features with
Frontiers in Oncology | www.frontiersin.org 3
nonzero coefficients (Figure 2). All feature selection processes
were performed on the training cohort and executed on the
testing cohort. The final selected features were utilized
for modeling.

Different Radiomic Models Developing and
Validation
In machine learning, classifiers were considered supervised
learning tasks that deduced functions from training data and
analyzed the training data to predict unobserved groups (21). To
select a classifier model with the higher capability to identify
tumor data, our study chose three mainstream classifier models,
including logistic regression (LR), K-nearest neighbors (KNN),
and support vector machine (SVM) (22). The diagnostic
performance of the three models was estimated by the area
under the curve (AUC) of the receiver operating characteristic
(ROC) curve, accuracy, sensitivity, and specificity. Then, the
dominant phase and radiomic model were screened based on our
study data.

Clinical and Radiological Data Analysis
Patients’ images and clinical data were taken from our
institution’s routine clinical records and picture archiving and
communication systems (PACS). We retrospectively analyzed
the clinical parameters of age, disease duration, symptoms,
gender, smoking/drinking status, inpatient number, and
postoperative biopsy results. All CT images were assessed and
deliberated upon separately by two radiologists with 5 and 34
years of head and neck experience, who were blinded to clinical
results. The following parameters were evaluated: maximum
diameter, tumor number, distribution, shape, boundary, tumor
location, density, calcification, cystic degeneration, enhanced
peak phase, enhancement degree, enhanced uniformity, and
lymph node enlargement. Some radiological features were
explained in the Supplementary Material. If there were
multiple lesions in the parotid gland, the largest biopsy-
confirmed lesion was chosen for analysis.

Clinical and Combined Models
Construction and Validation
Univariate logistic regression analysis was conducted for each
predictor variable in the training cohort, including clinical and
radiological features, followed by multivariate logistic regression
on statistically significant features to obtain final predictors for
model development. Calculate the odds ratio (OR) and 95%
confidence interval (CI) for each feature. We selected the optimal
radiomic model to construct a combined model integrating
clinical-radiological and four-phasic radiomic features for
differentiating BCA from PA. The performances of different
models were assessed and validated by training and testing
cohorts, including AUC, accuracy, sensitivity, and specificity. A
complete schematic was shown in Figure 3.

Statistical Analysis
Statistical analysis was performed with SPSS 26.0 software (IBM,
Chicago, IL, USA) and R software (version 3.6.3; https://www.r-
July 2022 | Volume 12 | Article 889833
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project.org/). Normally distributed continuous variables were
expressed as mean value ± standard deviation using the student
t-test. Categorical variables, presented as ratios, were applied to
the chi-square or likelihood ratio test. The LASSO, LR, KNN, and
SVMmodels were conducted based on ‘glmnet’, ‘glmnet’, ‘kknn’,
and ‘e1071’ for R software packages or sklearn package for
python software, respectively (23). All models were fitted with
the caret R package (24). Statistical comparisons of AUCs among
different classifiers with the DeLong test were used. A two-tailed
p < 0.05 considered statistical significance.
RESULTS

Radiomic Features, Different Radiomic
Models Construction and Validation
A total of 4144 radiomic features were extracted from the four-
phase CT image radiomic features. To ensure extraction stability,
we eliminated features with ICC values below 0.75 and retained
841, 893, 908, and 859 radiomic features in non-enhanced,
arterial, venous, and delayed phases, respectively. Then, 527,
Frontiers in Oncology | www.frontiersin.org 4
379, 475, and 391 features were removed by t-test and correlation
analysis from each phase, respectively. LASSO was applied to the
rest features, and16 features with non-zero coefficients were kept
after feature dimensionality reduction and selection (see Table 1
for details). These features were applied to construct three
models of LR, KNN, and SVM in the training cohort. The
performance of three models in distinguishing BCA from PA
was evaluated in the testing cohort.

The diagnostic performances of the three radiomic models
(including LR, KNN, and SVM) are summarized in Table 2. In
the training and testing cohorts, the preoperative predictive
performances of the arterial phase and the delayed phase were
the highest, followed by the other two phases. The AUCs of
arterial and delayed phases in the training cohorts were
respectively 0.822 (95% CI 0.674-0.935) and 0.838 (95% CI
0.724-0.943) with the SVM model, 0.703 (95% CI 0.597-0.855)
and 0.711 (95% CI 0.627-0.854) with the KNNmodel, and finally
0.751 (95% CI 0.642-0.889) and 0.742 (95% CI 0.645-0.857) with
the LR model. Based on our study data, Table 2 demonstrates
that the SVMmodel attained the best performance. The AUCs of
ROC curves of three models in the training and testing cohorts
FIGURE 3 | Flowchart of the present research protocol.
A B

FIGURE 2 | Feature selection with the least absolute shrinkage and selection operator (LASSO) regression method. (A) Variation of tuning parameter (l) for LASSO
model, using 10-fold cross-validation. The vertical dotted lines indicate the best l=0.028 was selected with a least binomial deviation. (B) The LASSO coefficient
profiles with radiomic features of different log (l). The vertical dotted line was the best l with 10 radiomic features with non-zero coefficients.
July 2022 | Volume 12 | Article 889833
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are presented in Figure 4. The Delong test showed no statistical
difference between the arterial phase and the delayed phase, and
between the venous phase and the plain scan (p=0.471, 0.685),
but there were statistical differences between the arterial and
delayed phases and the other two phases (p=0.017-0.047).

Clinical Features
A total of 173 patients (70 men and 103 women) were recruited for
our study, including 121 patients in the training cohort and 52
patients in the testing cohort. Table 3 provides detailed
information on the clinical and radiological characteristics of the
patients. Figure 5 presents a case analysis of the radiological
characteristics of PA and BCA, respectively. As shown in Table 3
and Table 4, univariate and multivariate logistic regression
analyses indicated that age and enhanced-peak phase were
independent predictors that differentiated PA from BCA. These
clinical features were employed to construct a clinical model.

Combined Model Construction and
Validation
By integrating clinical predictors (age, enhanced-peak phase)
with 16 radiomic features, we developed a combined model.
Frontiers in Oncology | www.frontiersin.org 5
Table 2 and Table 5 demonstrate that the combined model of the
SVM classifier had the best predictive performance through
comprehensively comparing the AUCs, specificity, and
sensitivity of different models. The combined model had the
greatest AUCs (0.885 and 0.834), accuracy (0.847 and 0.813),
sensitivity (0.797 and 0.755), and specificity (0.953 and 0.904) in
both the training and testing cohorts. Figure 6 depicts the ROC
curves of the different models in the training and testing cohorts.
DISCUSSION

This study provided a detailed analysis of the advantageous scan
phases and different radiomic models that differentiate PA and
BCA. Our results revealed that the arterial and delayed phases
were superior for differentiating parotid PA and BCA, and
radiomics might help distinguish PA from BCA. In particular,
the combined model, including clinical predictors and radiomic
features, showed the best diagnostic performance in this study.

There were numerous parallels between PA and BCA. For
instance, both were more common in females, were painless
masses, were located in the parotid superficial lobe, were mostly
TABLE 2 | ROC curve analysis of different machine models in the training and testing cohorts.

Parameter AUC (95% CI) Accuracy Sensitivity Specificity

SVM KNN LR SVM KNN LR SVM KNN LR SVM KNN LR

NP Train 0.787 (0.658-0.899) 0.688 (0.579-0.812) 0.723 (0.607-0.844) 0.701 0.649 0.665 0.694 0.603 0.647 0.832 0.761 0.767
Test 0.691 (0.618-0.836) 0.612 (0.497-0.748) 0.652 (0.513-0.763) 0.659 0.582 0.601 0.613 0.582 0.654 0.766 0.621 0.585

AP Train 0.822 (0.674-0.935) 0.703 (0.597-0.855) 0.751 (0.642-0.889) 0.788 0.655 0.736 0.786 0.647 0.736 0.849 0.733 0.797
Test 0.752 (0.619-0.875) 0.611 (0.452-0.707) 0.623 (0.495-0.758) 0.736 0.601 0.666 0.726 0.609 0.724 0.784 0.676 0.677

VP Train 0.795 (0.697-0.912) 0.659 (0.531-0.814) 0.677 (0.561-0.794) 0.745 0.647 0.681 0.727 0.618 0.746 0.809 0.734 0.729
Test 0.719 (0.613-0.817) 0.641 (0.526-0.775) 0.637 (0.513-0.751) 0.692 0.604 0.589 0.644 0.559 0.587 0.731 0.678 0.657

DP Train 0.838 (0.724-0.943) 0.711 (0.627-0.854) 0.742 (0.645-0.857) 0.783 0.676 0.726 0.752 0.606 0.612 0.834 0.718 0.753
Test 0.751 (0.647-0.847) 0.631 (0.532-0.762) 0.639 (0.527-0.763) 0.715 0.628 0.638 0.715 0.581 0.607 0.755 0.622 0.662
July 2022 | Vol
ume 12 |
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SVM, support vector machine; KNN, k-nearest neighbors; LR, logistic regression; AUC, area under the curve; CI, confidence interval; NP, Non-enhanced phase; AP, Arterial phase; VP,
Venous phase; DP, Delayed phase.
TABLE 1 | Radiomic features selection results.

CT scanning phase ID Radiomic features name

Non-enhanced phase 1 wavelet-LHH_ GLCM _ClusterShade
2 log-sigma-5-0-mm-3D_GLDM_LargeDependenceLowGrayLevelEmphasis

3 wavelet-HHL_ GLSZM _SmallAreaLowGrayLevelEmphasis
4 wavelet-LLL_ first order _Mean

Arterial phase 1 log-sigma-5-0-mm-3D_ GLRLM _HighGrayLevelRunEmphasis
2 wavelet-HLH_ GLCM _ClusterShade
3 wavelet-HHL_ first order _Median
4 log-sigma-5-0-mm-3D_ GLCM _Id

Venous phase 1 original_ GLCM _Correlation
2 log-sigma-5-0-mm-3D_ GLSZM _SmallAreaLowGrayLevelEmphasis
3 log-sigma-5-0-mm-3D_ GLDM _DependenceVariance
4 wavelet-HLL_ GLCM _Autocorrelation

Delayed phase 1 wavelet-HLL_ GLRLM _LongRunHighGrayLevelEmphasis
2 wavelet-LHL_ GLCM _JointAverage
3 log-sigma-5-0-mm-3D_ GLCM _Idmn
4 wavelet-HLL_ GLCM _Autocorrelation
8983
GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLSZM, gray-level size zone matrix; GLRLM, gray-level run length matrix.
3
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TABLE 3 | Clinical and radiological characteristics in the training and testing cohorts.

Variables Training cohort (n = 121) Testing cohort(n = 52)

PA (n = 85) BCA (n = 36) P-value PA (n = 36) BCA (n = 16) P-value

Age(years) 45.39 ± 16.89 52.11 ± 10.18 0.008*a 44.94 ± 13.91 59.63 ± 14.25 0.001*a

Duration(months) 5.40 ± 14.75 15.89 ± 43.32 0.164a 14.78 ± 27.81 43.23 ± 90.26 0.234a

Max-diameter(cm) 3.09 ± 1.17 2.40 ± 0.95 0.002*a 2.58 ± 0.91 2.28 ± 0.82 0.275a

Symptoms With 1(1.2%) 1(2.8%) 0.546b 1(2.8%) 1(6.3%) 0.563b

Without 84(98.8%) 35(97.2%) 35(97.2%) 15(93.8%)
Sex Female 49(57.6%) 21(58.3%) 0.944 22(61.1%) 11(68.8%) 0.598

Male 36(42.4%) 15(41.7%) 14(38.9%) 5(31.3%)
Smoking Yes 19(22.4%) 9(25.0%) 0.752 10(27.8%) 4(25.0%) 0.834b

No 66(77.6%) 27(75.0%) 26(72.2%) 12(27.8%)
Drinking Yes 18(21.2%) 11(30.6%) 0.269 8(22.2%) 3(18.8%) 0.775b

No 67(78.8%) 25(69.4%) 28(77.8%) 13(81.3%)
Number Single 84(98.8%) 35(97.2%) 0.546b 36(100.0%) 16(100.0%) –

Multiple 1(1.2%) 1(2.8%) 0 0
Distribution Left-sided 43(50.6%) 20(55.6%) 0.617 12(33.3%) 4(25.0%) 0.187

Right- 42(49.4%) 16(44.4%) 24(66.7%) 12(75.0%)
Shape Round 74(87.1%) 31(86.2%) 0.889b 32(88.9%) 14(87.5%) 0.886b

Non-round 11(12.9%) 5(13.9%) 4(11.1%) 2(12.5%)
Boundary Clear 82(96.5%) 34(94.4%) 0.618b 36(100.0%) 16(100.0%) –

Unclear 3(3.5%) 2(5.6%) 0 0
Location Superficial 51(60.0%) 25(69.4%) 0.521 27(75.0%) 13(81.3%) 0.617b

Deep 18(21.2%) 7(19.4%) 8(22.2%) 2(12.5%)
Both 16(18.8%) 4(11.1%) 1(2.8%) 1(6.3%)

Density Solid 63(74.1%) 30(83.3%) 0.305b 27(75.0%) 12(75.0%) 1.000b

Cystic 3(3.5%) 2(5.6%) 0 0
Mixed 19(22.4%) 4(11.1%) 9(25.0%) 4(25.0%)

Calcification With 5(5.9%) 1(2.8%) 0.448b 1(2.8%) 1(6.3%) 0.563b

Without 80(94.1%) 35(97.2%) 35(97.2%) 15(93.8%)
Cystic areas With 13(15.3%) 9(25.0%) 0.206 5(13.9%) 5(31.3%) 0.143

Without 72(84.7%) 27(75.0%) 31(86.1%) 11(68.8%)
Enhanced-peak phase Arterial 1(1.2%) 11(30.6%) <0.001*b 2(5.6%) 11(68.8%) <0.001*b

Venous 7(8.2%) 14(38.9%) 5(13.9%) 4(25.0%)
Delayed 77(90.6%) 11(30.6%) 29(80.6%) 1(6.3%)

Enhancement degree Slight 21(24.7%) 3(8.3%) 0.007* 8(22.2%) 1(6.3%) 0.003*b

Moderate 35(41.2%) 10(27.8%) 14(38.9%) 1(6.3%)
Obvious 29(34.1%) 23(63.9%) 14(38.9%) 14(87.5%)

Enhanced uniformity Yes 49(57.6%) 23(63.9%) 0.523 21(58.3%) 11(68.8%) 0.476
No 36(42.4%) 13(36.1%) 15(41.7%) 5(31.3%)

Enlarged lymph nodes With 7(8.2%) 2(5.6%) 0.598b 1(2.8%) 0 0.388b

Without 78(91.8%) 34(94.4%) 35(97.2%) 16(100.0%)
Frontiers in Oncology | www.frontiersin.org
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*Represents P < 0.05. PA, pleomorphic adenoma; BCA, basal cell adenoma; Numerical data are presented as mean ± standard deviation, Categorical data as numbers (n%); a
represented using student t-test, b indicated using likelihood ratio, and others using chi-square test.
A B

FIGURE 4 | The area under the curves (AUCs) of receiver operating characteristics (ROC) curve analysis for three models of LR, KNN, SVM in the training (A) and
testing (B) cohorts. LR, logistic regression; KNN, K-nearest neighbor; SVM, support vector machine. NP, non-enhanced phase; AP, arterial phase; VP, venous
phase; DP, delayed phase.
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FIGURE 5 | Example images of four-phase CT scans of PA and BCA. (A-D) Axial CT images of a 68-year-old female patient with a right-sided painless neck mass
in the plain, arterial, venous, and delayed phases, separately. After CT examination, surgical pathology confirmed that the mass was BCA. (E-H) Axial CT images of a
23-year-old female patient with a right-sided painless neck mass in the order of plain, arterial, venous, and delayed phases. It was confirmed as PA by surgical
pathology.
TABLE 4 | Univariate and Multivariable logistic regression analysis for selecting clinical features of model development.

Variable Univariate analysis Multivariate analysis

OR (95% CI) P-value OR (95% CI) P-value

Age(years) 1.043(1.018-1.068) 0.001* 1.034(1.002-1.066) 0.035*

Duration(months) 1.004(0.999-1.009) 0.113

Max-diameter(cm) 0.549(0.376-0.800) 0.002* 0.617(0.375-1.013) 0.056

Symptom 2.380(0.326-17.369) 0.393

Sex 0.888(0.456-1.727) 0.725

Smoking 1.057(0.498-2.247) 0.884

Drinking 1.346(0.635-2.852) 0.438

Number 1.167(0.103-13.157) 0.901

Distribution 0.972(0.506-1.866) 0.933

Shape 1.099(0.420-2.878) 0.847

Margin 1.573(0.255-9.706) 0.625

Location Superficial 0.530

Deep 0.711(0.303-1.665) 0.431
Both 0.604(0.207-1.760) 0.355

Density Solid 0.482

Cystic 1.429(0.230-8.873) 0.702

Mixed 0.612(0.257-1.457) 0.267

Calcification 0.767(0.150-3.930) 0.750

Cystic areas 2.108(0.956-4.651) 0.065

Enhanced-peak phase Arterial <0.001* <0.001*

Venous 0.205(0.050-0.838) 0.027* 0.200(0.046-0.863) 0.031*

Delayed 0.015(0.004-0.059) <0.001* 0.013(0.002-0.070) <0.001*

Enhancement degree Slight <0.001* 0.144

Moderate 1.628(0.474-5.585) 0.439 4.464(0.874-22.802) 0.072

Obvious 6.238(2.007-19.390) 0.002* 1.601(0.314-8.160) 0.571

Enhanced uniformity 0.727(0.370-1.428) 0.354

Enlarged lymph nodes 0.565(0.116-2.756) 0.480
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unilateral, round or oval, with clear boundaries, and possible
malignant transformations (6, 7, 25). Some studies indicated that
the average age of BCA was about 10 years older than PA (6, 26).
In our study, PA and BCA patients’ mean age was 45.3 ± 15.9
years and 54.4 ± 11.8 years, which was similar to the results of
previous studies. In previous reports (6, 13), the average diameter
of BCA was generally smaller than that of PA. This trend was
also present in the current study, but there was no statistical
difference, which might correlate with the uneven samples.
Mukai et al. (25) reported that cystic components were
observed more frequently in BCA than in PA, and were
comparatively larger in BCA. In this study, 14 of 52 BCAs
(26.9%) had cystic components, while 18 of 121 PAs (14.9%)
had, although the difference was not statistically significant.
Nevertheless, the overlapping features of BCA and PA may
make preoperative diagnosis challenging, and there is no
consensus to date to distinguish between the two. Therefore, a
new, non-invasive, objective method is urgently required to
differentiate BCA from PA.

Radiomics is a non-invasive, promising field that provides
valuable information on diagnosis, prognosis, and individualized
therapy through objective, quantitative assessments based on
tumor heterogeneity (27). Our results indicated that several
GLCM features were robust among radiomic signatures and
participated in constructing predictive models. GLCM features
capture comprehensive information about the direction, adjacent
interval, and change amplitude of the image gray level, analyze
the local patterns of the image and the basis of their arrangement
rules; and reflect the relevant intra-tumor heterogeneity (28).
This may be related to the tumor pathology types. PA contains
Frontiers in Oncology | www.frontiersin.org 8
mixed components such as mucus, parotid gland, and cartilage-
like tissue, while BCA consists of basaloid cells, with a large
number of vascular networks (capillaries and veins) arranged
along the endothelium (7).

Several studies demonstrated that multiphase CT offered
valuable information for tumor characterization, such as
enhancement patterns, vascular structures, and tumor
relationships to surrounding structures (29, 30). There were
four histological subtypes of BCA, including solid, trabecular,
tubular, and membranous, of which the solid subtype was the
most common, while the membranous subtype had a high
recurrence rate and malignant transformation (25, 26).
Enhancement patterns vary by BCA histological type, with
solid types displaying substantial early enhancement and a
washout pattern like WT, while other types exhibit weaker
early enhancement and the gradual enhancement pattern
observed in PA (31). Consistent with the results of this study,
we found that the diagnostic efficacy of differentiating BCA from
PA in CT plain and three-phase CT-enhanced scans was best in
the arterial and delayed phases. We speculated that it might be
related to the different tissue components in PA and BCA.

It is crucial to develop robust predictive models to select valid
indicators and appropriate modeling approaches (32). In this
study, we investigated three frequently utilized machine learning
classifiers, including linear LR, nonlinear KNN, and SVM. KNN
primarily relied on the limited adjacent samples around the
undetermined samples to determine the samples, which applied
to handling the pending sample sets with class domain
crossovers or more overlaps, but when the sample numbers
were uneven, it would cause biased judgment results (33). With
TABLE 5 | ROC curve analysis of the clinical model and the combined model with support vector machine in the training and testing cohorts.

Models AUC (95% CI) Accuracy Sensitivity Specificity

Combined Training 0.885 (0.762-0.993) 0.847 0.797 0.953
Testing 0.834 (0.707-0.954) 0.813 0.755 0.904

Clinical Training 0.697 (0.524-0.809) 0.597 0.688 0.585
Testing 0.602 (0.496-0.758) 0.543 0.669 0.543
July 2022 | Volume 12 | Art
AUC, area under the curve; CI, confidence interval.
A B

FIGURE 6 | The receiver operating characteristics (ROC) curve analysis of clinical, radiomics and combined models with support vector machine in training (A) and
testing (B) cohorts.
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satisfactory robustness and effectiveness, SVM achieved almost
the same performance as a large number of training samples with
small training samples (34, 35). The combined model integrating
clinical and radiomic features, with AUC and accuracy of 0.873
and 0.856 in the training cohort and 0.819 and 0.802 in the test
cohort, exhibited the optimal discrimination performance
among all predictive models. It suggested that although
radiomic features of parotid tumors provide better
discrimination than radiological features, clinic-radiological
information was also valuable; only when combined with these
features could the model accurately assess the entire tumor and
facilitate precision medicine.

This study still had several limitations. First, it was a
retrospective single-center study with potential selection bias.
Second, several controversies connected with subjectivity in
delineating the boundaries of manual segmentation (36)
required further investigation of semiautomatic or completely
automatic methods for tumor segmentation. Third, with an
uneven ratio of patients between PA and BCA in this study, it
was unclear whether this affected the modeling, and further
large-sample, multicenter, and prospective studies would
be required.
CONCLUSION

The present study demonstrated that the SVM model of the
arterial and delayed phases contributed to distinguishing BCA
from PA. Significantly, the combined model integrating clinical
and radiomic features exhibited the best diagnostic performance.
Before actual clinical application, multicenter and prospective
studies with larger datasets should be conducted to validate the
combined model.
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