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High-dimensional, single-cell cell technologies revolutionized the way to study biological systems, and
polychromatic flow cytometry (FC) and mass cytometry (MC) are two of the drivers of this revolution.
As up to 30–50 dimensions respectively can be measured per single-cell, they allow deep phenotyping
combined with cellular functions studies, like cytokine production or protein phosphorylation. In parallel,
the bioinformatics field develops algorithms that are able to process incoming data and extract the most
useful and meaningful biological information. However, the success of automated analysis tools depends
on the generation of high-quality data. In this review we present the most recent FC and MC computa-
tional approaches that are used to prepare, process and interpret high-content cytometry data. We also
underscore proper experimental design as a key step for obtaining good quality data.
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1. Introduction

High-throughput single-cell technologies are becoming com-
mon approaches in daily research. The impressive progression in
the number of different molecules that can be measured in a single
cell changed the way experiments are done and analyzed. Flow and
mass cytometry (FC and MC respectively) are great examples of
these changes. Starting from the first flow experiments that mea-
sured 2–4 markers which were manually gated, the multiplexing
capabilities are currently increasing to 30 [1] and 45 [2] parame-
ters in FC and MC respectively, and strong bioinformatics skills
are needed to extract meaningful information.

The general concepts of both technologies are similar; antibod-
ies or probes labeled with fluorochromes (FC) or high atomic mass
elements (MC) are used to target desired antigens or biomolecules
to characterize certain cell properties like cell phenotype, cell cycle
[3] or response to stimulation agents via cytokine production, pro-
tein phosphorylation [4] or RNA expression [5], among others.

Following the staining, cells are introduced in single-cell sus-
pension via capillary tubes into the flow cytometer for FC or alter-
natively into a Cytometry by Time-Of-Flight (CyTOF, Helios) device
for MC. The biological information with single cell resolution is
obtained via photons or time-of-flight ion’s mass-to-charge ratios
for FC and MC respectively, converted into digital values and stored
using the same file format called flow cytometry standard (.FCS).
Although both technologies are commonly used to measure cell
properties, the definition of event is different. In FC every event
that emits light and reach the user-defined threshold will be stored
in the FCS file. Both light scatters: FSC (forward-scatter), correlated
with cell size, and SSC (side-scattered), correlated with cell granu-
larity, together with fluorescence are used to differentiate single
cells from noise [6]. In MC the ion cloud that lasts for more than
10 and less than 150 pushes (spectrum scans) and exceeds the
lower convolution threshold is recorded in FCS file as an event.
MC lacks the power of light scatter, thus cell events are defined
using the metals associated with them in form of antibodies or
probes [7]. Nucleic acid intercalators like Iridium (Ir) or rhodium
(Ro) are used to define nucleated cells and for non-nucleated cells
antigen-specific markers must be used. In FC the light can excite
some cell components like flavins, folic acid, retinol, which emit
the so called autofluorescence, especially in the green spectrum
[8]. This does not use to be a problem in MC, since the high atomic
mass metals detected are not frequently found within the cells.
However, tissue metal contaminations due to environmental expo-
sures, medical procedures or experimental protocols were reported
[9,10,17] and should also be considered when deciding the most
suitable technology, FC or MC.

Both techniques benefit from the development of new probes
that increase the number of measured parameters. The high
dimensionality of the data changed the way to visualize the
results; from manually building two-dimensional gating hierar-
chies to applying automated clustering or dimensionality reduc-
tion methods. The automation process requires properly
preprocessed high-quality input data free of artifacts. Artifacts
may be introduced during sample collection, processing and acqui-
sition, and should be detected and removed. Although these alter-
ations come from different sources in FC and MC, they have similar
impact on data quality. In this review we present the most com-
mon artifacts and their sources during data preparation and acqui-
sition and show how to manage them (Table 1). Additionally, we
summarize the algorithms and workflows that can improve data
quality prior to feature extraction, as an update of previously pub-
lished reviews [11–13]. Furthermore, we introduce the state-of-
the-art clustering and visualization tools that can be applied to
the data and point out their strengths and limitations. Finally, we
present the main approaches to analyze the extracted features in
the context of biomarker discovery and trajectory interference
studies. An overview of the computational methods discussed is
presented in Table 2. In Fig. 1 we show a typical workflow for
the preparation and analysis of multi-parametric FC and MC data.
2. Obtaining reproducible and high-quality data

To obtain statistical power for both experimental studies and
evaluation cohorts sample size estimation is a key step in the
design of a cytometry project. This calculation prevents changes
in reagent batches, including antibody cocktail, and should be
planned upfront, avoiding the introduction of additional variabil-
ity. A Standard Operating Procedure (SOP) for sample collection
and processing is highly recommended, as it significantly improves
data reproducibility [14–16]. For MC the selection of reagents and
their storage is critical to avoid metal contamination events (see
Table 1 for possible contamination sources) [17]. It is essential to
consider if cells should be stained immediately upon collection
or preserved until recruitment is completed. If all the samples
are obtained at once, they can be stained and acquired immedi-
ately. However, in longitudinal studies, or if the cytometry unit is
far from the recruitment center, the sample preservation before
[19] or after staining [18] should be considered. The goal is to pro-
cess, stain and acquire as many samples as possible with the same
protocol, antibody cocktail, and instrument settings. Each preser-
vation protocol will affect the sample composition and antigen
expression [18,20,21]; hence benefits and drawbacks will depend
on the biological question and should be carefully considered
before performing the experiments.

Often, hundreds of samples are included in cytometry studies
and are split into multiple experimental groups. This can introduce
‘‘batch effects” defined as non-biological differences between them.
To minimize this effect, a careful experimental design should
ensure the even distribution of biological groups and confounding
factors across batches [22]. Packages like OSAT (Optimal Sample
Assignment Tool) [22] can be used to optimally distribute the sam-
ples into batches. The antibody labeling and sample staining
should be consistent across all the groups, as discrepancies can
introduce technical differences in mean intensity (MI) values that
can be hard to distinguish from biologically meaningful informa-
tion. This is why strict control of intra- and inter-group variations
should be introduced in the experimental design. To limit intra-
batch variation, barcoding (labeling of individual cell samples with
unique combinatorial barcodes) and sample pooling before anti-
body staining is used particularly in MC [23–25,64], and less often
in FC [26,27]. To minimize inter-batch variation, an experiment-
required stability master-mix of the staining cocktail is recom-
mended to be used along the project. Both lyophilized and desic-
cated antibody cocktails were reported [20,28,29] and freezing of
the MC cocktail aliquots was also shown to be successful [30].
Unfortunately, even well prepared SOP minimize, but do not
resolve the problems with day-to-day reproducibility. Thus, mea-
sures allowing estimation and correction of batch effects are
needed. The practice of including a reference sample in each bar-
coded batch is becoming a standard in MC [31] and was reported
in FC experiments as well [32]. The reference sample is an aliquot
of a bigger volume obtained from one donor at a particular time,
aliquoted, and preserved. It carries the information of the technical
variability introduced during sample preparation, staining and
acquisition, and therefore allows to measure run-to-run variation
[31].

In FC and MC the panel optimization is the most critical and dif-
ficult step. Both technologies require proper assignment of dim and
bright markers depending on the channel sensitivity and its perfor-



Table 1
Artifacts and their prevention in high-dimensional flow and mass cytometry data preparation and analysis.

Source Effect/Artifact Prevention

Experimental Change in reagent’s batches
e.g. a) Change in fixation reagent;
b) Change in antibody lot

General change in protocol performance that
can introduce batch effect. Not predicted
contaminations (important in MC study);a)
Affect the staining and cell recovery;b)
Different fluorochrome or metal conjugation
efficiency results in different antibody
background and staining intensity

Order enough quantity needed for the whole experiment if
product stability allows it;
Re-test new lot and confirm similar/good performance

Change in the protocol e.g. a) use
of fixed vs fresh blood;
b) Change in centrifugation steps;
c) Change in staining temperature
or time

a) Change in sample stability;
Change in antibody performance;
Change in sample background b)
Different cell recovery;c)
Different background of antibody due to
inefficient or different washing step;
Instability of fluorochrome-conjugated tandems
at RT in light

Decide staining approach before sample collection;
Optimize the protocol, prepare SOP;
Use exactly the same protocol as was used for antibody,
barcoding optimization, cocktail preparation, including cell
preparation, antibody staining (RT vs 4�C, dark vs light)

Change in cocktail preparation:
e.g. lack of one antibody, wrong
fluorochromes, different clone

Different staining intensity;
Different staining pattern;
Problems with population definition if one of
the markers is missing

Prepare one big cocktail of antibody, aliquot and store frozen
(in MC), lyophilized or desiccated (MC and FC)

Pipetting errors Variation in staining intensity, especially
problematic when MI will be compared;
variation in the number of collected events

Barcode the samples and process them in the batches
Create as few batches as possible
Include reference sample to track variation in each batch

Improper antibody titration Too little: problems with population definition;
no split between positive and negative values
Too much: Unspecific binding of the
antibodies;
Values out of or at the edge of dynamic range

Perform titration experiments
Use tools like AOF or calculate staining index to ensure correct
titration

Unspecific staining Unknown co-expression of markers,
High, ‘‘weird” signal in most of the channels

Block FC receptors,
Block hydrophobic biding using heparin
Use life/dead staining to exclude dead cells that have high
antibody binding properties

Incorrect panel design High spreading error that can mask dim
populations
Inability to define needed population due to the
lack of proper cell definition
Significant signal spillover especially in MC

Use tools like Guided Panel Solution or Maxpar panel designer
to design your panel;
Use databases like [20] to carefully select appropriate markers
for the needed cell populations;
Use published panels

*Metal contamination (*Only in
the case of MC)

Unspecific signal in .FCS file registered as
events;
Crosstalk of the contaminant with different
channels;
Stickiness of the contaminant to the capilar
causing clogging;
Shorter detector lifespan;
Cones contamination and loss of CyTOF
sensitivity

Troubleshooting will depends on the source of contamination:
Reagent contamination:
check all reagents by running them in the solution mode and
at proper concentration as stated in [134]; avoid using
autoclaved glass as it can contain barium contaminants; use
always filter tips; use previously tested references in MC
studies
Sample contamination:
Due to medical procedure [10,135], environmental exposure
[9] or experimental protocol [17]
Be aware of possible contamination; decide if MC can be used;
if contamination is possible screen small aliquots of samples as
shown in [139];
If contamination was discovered during acquisition dilution of
the sample can be considered

Acquisition a) Improper cytometer calibration;
b) Device decalibration upon
acquisition

a) Loss in antigen resolution;
Intensity changes across the runs;
Run-to-run variation;b)
Decrease in the signal intensity

Check your machine performance and get to know its
resolution;
Calibrate device;
Control for time changes in the machine calibration;
Use calibration beads to correct for signal drop and changes;
Include reference samples in every batch

Clogging of the device Signal instability affecting median expression of
the markers

Clean device when necessary to remove the clog

High speed of acquisition or
changing in acquisition speed

Change in doublets to singlets ratio;
Increase in coefficients of variation (CVs)
together with the sample speed

Keep the speed constant, and adequate to obtain good
singlets/doublets ratio

Different sample or panel labeling Errors when analyzing the files or inability to
read-in the files

Define labeling strategy, create a template and keep it constant
across all the project

Analysis Not enough statistical power Lack of significance Calculate statistical power
Consult statistician
Include more samples

Improper transformation Inability to distinguish positive and negative
events;
Improper clustering

Verify transformation method by visualizing markers e.g.
using flowJo

Optimize transformation
Batch effect Improper data interpretation;

Incorrect conclusions
Visualize batch effect e.g. using dimensionality reduction tools
like PCA or t-SNE;
Properly design the experiment e.g. include reference sample
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Table 1 (continued)

Source Effect/Artifact Prevention

Correct for batch effect when building the model
Improper normalization Changes in marker expression distribution;

Improper assignment to the clusters
Carefully verify the performance of normalization tools by
visualizing the markers

Uncleaned changes in signal
intensities

Improper assignment to the clusters Spot problematic files by applying tools like AOF, normalize or
discard them from the analysis

Uncleaned bad quality events Improper assignment to the cluster Verify the signal stability and clean if necessary using tools like
flowAI, flowClean, flowCut or manual gating
Remove doublets, debris, and dead cells

Presence of doublets/high
doublets to singlets ratio

Co-expression of the markers biologically
incorrect;
Improper assignment to the clusters

Gate out all the doublets

Improper Clustering or
dimensional reduction
performance

Unstable clusters or cell position, different
results with every run of cluster

Verify clustering settings by gating few example files and
calculating F1 score
Check for run-to-run stability
Check for sensitivity to subsampling
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mance in the context of staining index and spillover [1,33,34]. The
success of automated methods to resolve cell populations depends
more on well-selected markers than on the frequency of the cells,
thus the probes should be selected carefully [35]. To identify the
markers of interest, a recently published antibody staining data-
base could be useful, as it contains staining patterns for 350 anti-
bodies used in fresh and fixed peripheral blood mononuclear
cells (PBMC) [20]. Additionally, antibody titration, done at the
same conditions as the final experiment, is essential to ensure
proper signal intensity allowing population definition. It should
be stressed that if a population cannot be defined by manual
inspection due to a sub-optimal amount of added antibodies, it will
not be detected by most clustering algorithms [35].

In both techniques, signal spill from one channel to another is
observed. In FC it is caused by the overlapping emission spectra
of different fluorochromes. In MC it can be due to metal impurities
from the metal tags; metal oxidation affecting mainly light lan-
thanides and causing signal spillover to the heavier spectrum of
masses; or metal over-abundance when high antibody concentra-
tion is used inappropriately and the signal of this particular mass
cannot be resolved [36]. In FC the signal crosstalk can be severe
and cannot be avoided in multicolor experiments. In MC, maxi-
mum spillover does no exceed a few percent and proper panel
design can minimize these issues. Inadequate panel design or lack
of proper compensation controls, especially in FC, can create false
positive events [37]. Additionally, it can introduce spreading error,
an artifact produced by the error in photon counting [6], which can
mask low or dim fluorescence positive cells. As a higher number of
markers requires more sophisticated panel designing skills, tools
like Guided Panel Solution offered by BD [39], or Maxpar Panel
Designer by Fluidigm [40] can be helpful, but not sufficient, espe-
cially in FC where spreading error information is not provided.
Spreading errors depend on laser configuration, dye brightness
and quality of PMT (photomultiplier tubes). Thus, careful selection
of probes and deep understanding of cytometer configuration and
its performance are critical in FC [41,42]. For MC it is also impor-
tant to be familiar with the instrument performance, as variation
in the sensitivity and resolution was observed between different
CyTOF devices [43]. During the preparation of the SOP a pilot study
including a few samples is strongly recommended, as it can help to
fix the protocol limitations [28,43].

Evaluation of antibody staining, titration, and signal spillover is
an important but time-consuming process, especially in high
dimensional approaches. Fortunately, a recent study shows that
clustering algorithms like SPADE (Spanning Tree Progression with
Density Normalized Tree) [44] can be used to evaluate the titration
of a panel and track the spillover artifacts. Additionally, metrics
like Average Overlap Frequency (AOF) can be applied to verify anti-
body performance by calculating staining distances between the
positive and negative populations, reducing substantially time for
calculation and plotting of staining indices [45]. This shows that
even at the moment of panel optimization, computational
approaches can significantly accelerate bench work and improve
data quality. For more details about panel preparation and stan-
dardization, readers are directed to the following literature [46–
49].

The capillary introduction system in both FC and MC suffers
from cell clogging, altering the flow rate and signal quality over
time of acquisition. Sample clogs can be caused by specific biolog-
ical materials starting from ‘‘easily” acquired cell lines or PBMC to
whole blood or the most prone to clogging, the disaggregated tis-
sue. In both technologies the disturbances in the acquisition rate
affects signal quality. The higher the speed the more coincidence
events known as doublets are collected, and the more spread of
the signal is seen [6]. The maximum recommended acquisition
speed for FC is 25 000 cells/s, while for MC is up to 1000 cell/s
[50]. It should be noted that the maximum speed depends on the
type or cells that are acquired and on the experimental target. If
rare cells that constitute 0.01% frequency are of interest flow rate
should be lower and well optimized [6].

For more information about frequent errors and solutions in the
experimental part of the workflow, readers are directed to Table 1.
3. Prior to feature analysis: data preprocessing and quality
controls

3.1. Data compensation and transformation

As stated before, both FC and MC suffer from signal crosstalk
across detection channels. To obtain correct data, a compensation
matrix needs to be calculated using appropriate controls [1,51].
While proper MC panel design can minimize spillover issues [37],
it is almost inevitable in standard polychromatic FC above 15 col-
ors. However, as pointed out by Leipold [52], minimal spillover is
not equal to zero spillover, so MC data might also require correc-
tion. As mentioned before, the reason for signal crosstalk is differ-
ent for FC and MC, however in both technologies the spills can be
defined as a linear function of signal intensity, and can therefore be
corrected using spillover coefficients for each channel [51,53].
Although this method is working for standard FC, in MC this cor-
rection introduces negative values, which are normally almost



Table 2
Overview of bioinformatics tools for high-dimensional flow and mass cytometry data analysis.

Application Source

Panel design Guided Panel
Solution[39]

Panel design in Flow Cytometry BD Biosciences

Maxpar Panel Design
[40]

Panel design in Mass Cytometry Fluidigm

Quality control/
preprocessing

Average overlap
frequency (AOF) [45]

Antibody performance evaluation R package/Bioconductor package;
Astrolab

CATALYST [51] MC data preprocessing (bead-based normalization,
debrcoding; compensation: FlowSOM clustering)

R package/Bioconductor package;
interactive Shiny-based web application

flowAI [61] Signal Cleaning;
Flow rate cleaning;
Outliers cleaning

R package/Bioconductor package;
GUI;
Plugin FlowJo Exchange

flowClean [63] Signal Cleaning R package/Bioconductor package;
Plugin FlowJo Exchange

flowCore [65] Basic structures for flow cytometry data R package/Bioconductor package;
flowCut [62] Signal cleaning R package (github repository)
flowTrans [58] Data transformation R package/Bioconductor package
flowVS [59] Data transformation R package/Bioconductor package
flowWorkspace [70] Representation and interaction with gated and ungated

data in R
R package/Bioconductor package

Single-cell
deconvolution
algorithm [64]

Debarcoding CATALYST; Matlab; Fludigm stand-alone; Updated
Single-cell Debarcoder [140]; R package PREMESSA
(gihub repository)

Optimal Sample
Assignment Tool
(OSAT) [22]

Sample to batch allocation R package/Bioconductor package

Normalization and
batch effect
correction

gaussNorm [76] Normalization R package/Bioconductor package flowStat
fdaNorm [76,77] Normalization R package/Bioconductor package flowStat
CytoNorm [79] Normalization using reference sample R package/Bioconductor package; Plugin FlowJo

Exchange
CytofBatchAdjust
[80]

Normalization using reference sample R package/Bioconductor package

BatchEffectRemoval
[78]

Normalization using reference sample Python

Dimensionality
reduction

Diffusion Maps
[91,101,103]

Non-linear dimensionality reduction/Trajectory inference R package/Bioconductor package;

Isomap [89,90] Non-linear dimensionality reduction/Trajectory inference R package/CRAN package vegan
PCA [83] Linear dimensionality reduction R package stats
t-SNE [84] Non-linear dimensionality reduction R package/CRAN package;

Plugin FlowJo Exchange; Cytobank; Matlab; Python
BH-SNE (viSNE)
[92,97]

Non-linear dimensionality reduction Python; Cytobank; Matlab; R package/CRAN package
Rtsne

UMAP [88] Non-linear dimensionality reduction Python, R package/CRAN package uwot; Plugin FlowJo
Exchange;

One-SENSE [105] Non-linear dimensionality reduction R package/Bioconductor package
HSNE [85] Non-linear dimensionality reduction Cytosplore
FIt-SNE [86] Non-linear dimensionality reduction R package; Matlab; Python; Plugin FlowJo Exchange
EmbedSOM [112] Non-linear dimensionality reduction R package/CRAN package ; Plugin FlowJo Exchange
opt-tSNE [87] Non-linear dimensionality reduction Python; Cloud opt-SNE
Jensen-Shannon (JS)
divergence [92]

Dimensionality reduction comparison R package/Bioconductor package cytutils

Data clustering and
automated
gating

CytoCompare [110] Clustering comparison R package (github repository)
flowClust [136] Unsupervised Clustering R package/Bioconductor package;

GenePattern Platform [137]
flowDensity [73] Supervised clustering R package/Bioconductor package
flowLearn [71] Semi supervised Clustering R package (github repository)
FlowSOM [81] Unsupervised Clustering R package/Bioconductor package, Cytofkit [128]; Plu-

gin FlowJo Exchange
flowType [123] Unsupervised Clustering R package/Bioconductor package
PhenoGraph [114] Unsupervised Clustering Matlab; Python; R package Rphenograph (github

repository); Cytofkit [126]; Plugin FlowJo Exchange
SPADE [44] Unsupervised Clustering R package/Bioconductor package; Cytobank, Matlab
X-shift [115] Unsupervised Clustering Standalone application (VorteX); Plugin FlowJo

Exchange
DensVM [90] Unsupervised Clustering R package/Bioconductor package cytofkit
ACCSENSE [117] Unsupervised Clustering Standalone ACCENSE application

Useful pipelines
and approaches

CellCNN [126] Representation learning approach to detect rare cell
subsets associated with disease

Python

Citrus [125] Unsupervised clustering with regularized regression
model

R package with GUI; Cytobank

cydar [119] Unsupervised assignment to hyperspheres, control of the
spatial false discovery rate, changes in abundance
visualization

R package/Bioconductor package,
GUI with Shiny application

Cytofast [127] Visual and quantitative analysis of cytometry data to
discover immune signatures and correlations

R package/Bioconductor package
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Table 2 (continued)

Application Source

Cytosplore [129] Interactive visual analysis system contain t-SNE, HSNE,
SPADE

Interactive tool

Cytofkit [128] Preprocessing; cell subset detection (DensVM, FlowSOM
or Phenograph, ClusterX); data visualization (PCA, t-SNE,
Isomap)

R package/Bioconductor package,
GUI with Shiny application

diffcyt [56] Unsupervised clustering with FlowSOM, empirical Bayes
moderated tests for statistical analysis

R package/Bioconductor package

flowType/
RchyOptimyx [122]

Unsupervised clustering
Construction of cell hierarchy for maximization of an
external variable

R package/Bioconductor package

FloREMI [121] Preprocessing; feature extraction;
feature selection; survival time prediction

R scripts (github repository)

CyTOF workflow [54] Unsupervised clustering with FlowSOM, generalized linear
mixed models or linear mixed models

R package/Bioconductor package

DAMACY [96] Multivariate method based on PCA and multivariate
regression based on Partial Least Squares (PLS)

Matlab

OpenCyto [138] Facilitate the automated gating methods Bioconductor package/GUI with shinyCyto application

Trajectory
detection

pCreode [133] Trajectory inference with multiple branching Python
Wanderlust [131] Trajectory inference without branching Matlab based interactive tool cyt
Wishbone [132] Trajectory inference with two branches Python/Matlab based interactive tool cyt

Fig. 1. The flow and mass cytometry experimental and data analysis computational workflow. For more information about which tools to use and how to design well each
step to avoid artifacts refer to Tables 1 and 2.
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absent in MC data. As an alternative, non-negative least-squares
(NNLS) approach used in spectral cytometry, was applied to MC
data [51]. If proper, single stained controls and unstained samples
are provided, compensation can be automatically calculated using
platforms like Diva or FlowJo for FC and CATALYST package for MC
[51].

FC and MC raw data are often characterized by skewed distribu-
tion with varying ranges of expression. In consequence it can be
difficult to distinguish positive and negative populations [54]. As
visualization and clustering performance depends on the scale
and distribution, it is important to bring the expression peaks as
close to a normal distribution as possible [55]. To do so, the expres-
sion values are usually transformed using an inverse hyperbolic
sine (arcsinh) transformation with the cofactor 5 or 150 for MC
and FC, respectively [56]. The arcsinh conversion behaves similarly
to a log transformation at high values, but is approximately linear
near zero, and a cofactor controls the width of the linear region. FC
data contain more negative values due to the correction of back-
ground noise, autofluorescence, and compensation; conversely,
MC data contains zero values when no ions are detected and few
negative values are introduced due to background subtraction
and randomization [56,57]. The type of transformation can be sam-
ple and marker-specific, especially in FC data, as shown in [58,59],
and the choice of parameters can be automatically optimized by
tools like flowTrans and flowVS. It should be noted that some of
the visualization and clustering tools require transformation to
be done upfront, while others perform it as a default. It is impor-
tant to always check the transformation requirements, as this
might affect the downstream analysis.
3.2. Signal quality check and cleaning

As mentioned in Section 2, the capillary tubes used for sample
introduction in FC and MC can clog resulting in sudden changes
in the signal. Other issues such as unstable data acquisition can
cause signal shifts and change the mean intensity [60]. These signal
disturbances affecting downstream analysis should be identified
and removed from the data. Currently, three algorithms can be
used to do this: flowAI, [61] that uses change point analysis and
allows automatic or interactive analysis; flowCut, [62] that creates
summed density measures using mean, median, percentiles, varia-
tion, skewness, and removes events based on density curve analy-
sis; and flowClean, [63] that tracks the changes in the frequency of
artificially created populations, taking advantage of compositional
and change point analysis, flagging outliers with unusual ratio of
cell populations. The first two methods are fully automated while
flowClean represents a semi-automated approach. In all methods,
the signal check is performed for every channel across the time
of acquisition. The data are divided into equally sized bins of cell
events. For each bin, the models corresponding to each method
are calculated and every bin that differs from the rest is flagged
in flowClean, or alternatively flagged and removed in flowAI and
flowCut. Additionally flowAI can remove outliers from the flow
rate and dynamic range [61].

Due to their different implementations, the level of stringency
differs across methods. Thus the optimal performance will depend
on the data and on the parameter settings [60]. It should be noted
that all of the methods mentioned above were designed for FC
studies and to our knowledge were not applied to MC data. Due
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to differences in the FC and MC data, as different time resolution
(events in FC are acquired faster and at higher concentrations than
in MC), negative values in FC versus ‘‘0” values in MC, parameter
settings can be different, but up to now no data exists to support
this statement. This is an unexplored niche open for further
studies.

3.3. Data debarcoding and dead cells/debris gating

In order to obtain de-barcoded data, deconvolution of the raw
events needs to be performed. The most common way to debar-
code MC data is to use a single-cell deconvolution algorithm
[64]. For debarcoding user-friendly programs and R-based func-
tions that can be used are listed in Table 2. For FC data automated
deconvolution methods include rectangleGate from the flowCore
package [65] and flowClust clustering methods, when the number
of wanted clusters is equal to the number of barcoded samples
[32].

Doublets, debris, and dead cells introduce noise into the data
and should be removed prior to data analysis as these affect clus-
tering results. As mentioned before, the definition of event is quite
different for FC and MC and hence the gating strategy will differ. In
FC, usually FSC parameters height (H) and area (A) are plotted
against each other and used to eliminate doublets. The events that
are out of the diagonal are defined as doublets, as they are charac-
terized by the same height but different area of the signal curve [6].
However, debris and dead cells can overlap with the cell popula-
tions of interest, and scatter parameters can change depending
on the sample processing protocol [66]. Therefore, it is recom-
mended to stain live cells and populations of interest with specific
fluorescent probes. For MC, as data are usually acquired with cali-
bration beads [67], they need to be identified using bead specific
channels and removed manually, or automatically using e.g. the
CATALYST package [51]. The nucleated, intact cells are defined by
balanced intensity for Ir, which distinguishes them from Irlow deb-
ris and Irhi doublets. If red blood cells, or other non-nucleated par-
ticles, need to be defined, the use of specific probes is required.
Doublets are a real challenge in MC as FCS and SSC parameters can-
not be used. Instead, users define them based on balanced Ir stain-
ing and event length [11] or Gaussian parameters, such as residual,
offset, center, and width [68,69]. It is worth noting that barcoding
staining with 3 different isotopes per sample helps to identify and
remove doublets [64], thus increasing sample quality.

Among other platforms FlowJo and Cytobank can be used for
manual gating, or alternatively data can be imported in an R envi-
ronment using e.g. flowWorkspace package [70]. If gating is pro-
vided for some of the files, semi-supervised gating methods like
flowLearn could be used to reproduce the gating strategy for the
remaining data [71]. This algorithm employs the gating thresholds
provided as input and transfers them to the rest of the samples
using derivative-based density alignments. Packages like flowStats
[72], flowDensity [73] or OpenCyto [138] (a framework for con-
structing automated gating hierarchy) can be useful to build
user-defined gating strategies. Although manual inspection is
always advised, the automated approach should be considered
for projects generating a high number of files.

3.4. Staining irregularities, data normalization and removal of batch
effects

Inspection of marker expression levels across all files and
batches is an important step of sample quality control. Staining
irregularities, such as a loss of separation between positive and
negative values for a given marker, or significant changes in the
signal intensity, must be identified and removed, as they can affect
event classification into specific clusters [45]. Recently the AOF
algorithm, that uses cell frequencies to calculate the average of
overlapping cells per channel, was applied to more than 2000 files
in MC [20]. Based on calculated sample scores and user-defined
thresholds, AOF identified problematic marker expression and
affected files were discarded prior to analysis. This algorithmmight
be a good expansion of the quality control pipeline, however, it
should be used with caution, since the signal changes could be
due to biological or technical variation. Barcoding and reference
samples can help to distinguish between these two possibilities,
and the introduction of normalization and batch effect correction
can help in saving files instead of discarding them. The technical
variability can come from day-to-day differences in experimental
and instrumental performances. Instrument variation that cannot
be controlled by the users (e.g. differences in daily instrument cal-
ibration), are identified and removed by normalization. The varia-
tions in the experimental procedure (e.g. slight differences in
staining) are identified and removed via a batch effect correction
[74]. Both will be discussed below.

The acquisition time in FC and MC differs, from few minutes in
FC, up to a whole day in MC for barcoded samples, and therefore
requires different approaches for normalizing the data. In FC, the
use of single-stained capture beads and rainbow beads, just before
sample acquisition was reported [28,75] to optimize PMT voltages,
resulting in similar MIs for the markers. As FC experiments are
shorter in acquisition time, it is assumed that the MIs will be
equivalent for the samples acquired within the same day. On the
other hand, in MC a signal drop caused by progressing CyTOF
decalibration is frequently observed, especially when long, bar-
coded samples are run. In order to correct for it, bead-based nor-
malization was introduced in [67] and modified by Fluidigm. The
algorithm uses commercially available calibration beads, spiked
and acquired together with the sample. Hence, changes in the sig-
nal can be tracked through the acquisition time. Next, the beads
are identified and the median intensities of the beads are calcu-
lated in defined time intervals across all files. Based on the
obtained values, the global mean for each bead is calculated and
used as a target value. To obtain the transformation factor, a linear
model using the global means and interval-specific intensities is
calculated. This factor is then applied to all cell events and interpo-
lated to all markers in the corresponding intervals and files.
Although run-to-run machine variation can be optimized for both
MC and FC, the technical differences introduced upon sample
preparation will remain. Therefore the normalization and batch
effect correction play important roles in downstream analysis.

fdaNorm and gaussNorm algorithms were developed to correct
the files across the experiments [76]. They both perform density-
based normalization per single channel using ungated .FCS files.
The algorithms assumes that each marker has its characteristic
number of density peaks called landmarks, which are shared by
all samples and can be identified even with some changes in MI.
During normalization these density peaks are shifted to align the
samples. Although algorithms differ in their implementation, they
perform similarly in the context of resolution in binary markers
like CD3, CD4 or CD8. When using gaussNorm, the number of den-
sity peaks needs to be known upfront for each marker, while fda-
Norm estimates peaks automatically. The remarks and a
extended version of the fdaNorm algorithm can be found in [77].
In this version the reference file provides information about mar-
ker distributions together with gating template, and additionally
normalization is performed during the gating. The reason for these
changes is that the marker densities can differ across distinct pop-
ulations, affecting the normalization process, and the use of a ref-
erence sample with gating upon normalization improves the
automation process. These methods perform well for automated
gating, as the density peaks alignment facilitates implementation
of reproducible gating hierarchy, however it requires previous
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knowledge of the analyzed cells. This can be useful in clinical stud-
ies when known populations are quantified in a relatively short
time or for the extraction of cell frequencies identified using binary
markers. However, as the intensity of the peaks are shifted, com-
parison of the MI cannot be performed, and part of the biological
information is lost.

As mentioned before the inclusion of reference samples
becomes a useful tool to track batch effects introduced during sam-
ple preparation. Recently three methods that take advantage of it
became available to researchers, and will be discussed. Shaham
et al. [78] introduced a deep learning approach called BatchEffec-
tRemoval. This approach is based on Maximum Mean Discrepancy
(MMD) and Residual Nets, and corrects the distribution of one
sample to its corresponding pair, collected at a different time point.
Although it can be a good solution when time point experiments
are performed, its performance in MI-sensitive markers is still
questionable. CytoNorm [79] and CytofBatchAdjust [80] are two
alternatives that use reference samples aliquoted across the
batches to obtain batch-specific transformation factors. CytoNorm
starts with FlowSOM [81] clustering for each reference file. At the
cluster level, quantiles for each marker are computed and the
mean quantile distribution is calculated using values from all the
reference files. This information is used to learn the appropriate
transformations for each batch and to correct for it. One of the
CytoNorm assumptions is that the batch effects are small enough
to do not impact FlowSOM clustering results. In other words,
although samples differ at the cluster level, the metaclustering that
defines cell populations should be the same across all reference
samples. If not, some artifacts can be introduced to the data [80],
and therefore a careful and detailed investigation should be per-
formed before normalizing collected batches. On the other hand,
CytofBatchAdjust performs the normalization on ungated files,
where batches can be scaled to a user-defined percentile, mean,
medium or quantile normalization.

Both algorithms give the advantage of preserving the biological
information contained in MI. However, it is important to ensure
that the reference sample is prepared using the same protocol as
for the studied samples. Therefore upfront assumption of sample
composition should be taken into consideration.
4. Data analysis

4.1. Data visualization – dimensionality reduction methods

Manual gating not only aims at extracting the important fea-
tures, but also gives a good insight into data quality, variability,
structure or differences between groups of individuals. In high-
dimensional data, the same inspection should be performed using
dimensionality reduction or clustering-based approaches.

The goal of the dimensionality reduction methods is to preserve
the structure of high-dimensional data in the lower, easier to inter-
pret, 2 or 3 dimensional map. These methods can be divided into
linear and non-linear tools. Linear methods represented by PCA
(Principal Component Analysis) [82,83] focus on keeping the max-
imum variance of the points in the lower space, thus keeping the
dissimilar points far from each other [84]. On the other hand
non-linear algorithms like t-SNE (t-Stochastic Neighbor Embed-
ding) [84] and its derivatives [85–87,92,97] keep the similar cells
close to each other, therefore focusing on local relationship preser-
vation [84]. Some of the tools like t-SNE and UMAP (Uniform Man-
ifold Approximation and Projection) [88] separate well known
populations, giving a nice overview of existing cells. Other meth-
ods like Isomap (isometric feature mapping) [89,90] or Diffusion
Maps [91] visualize differentiation trajectories, as they are able
to preserve both local and global distances between cells.
PCA is designed to preserve the features with the highest vari-
ability in the principal components (PC). It assumes that the most
prominent variation will be explained by the first two to three PC,
making them easily interpretable. As shown by [92,93], due to the
linear assumption, PCA cannot separate well populations in the
first two PC, as immune panels are usually designed in the way that
each marker brings new and independent information. Neverthe-
less PCA as an easily scalable and not-stochastic technique,
remains a powerful tool and is widely used in biological and clin-
ical cytometry studies, as shown in [94–96].

t-SNE is a state-of-the-art visualization method that projects
high-dimensional information into easily interpretable 2D maps
[84]. t-SNE calculates two similarity matrices based on the distance
in the high- and low-dimensional space using pairwise comparison
across all the points. Next, in a iterative way the algorithm mini-
mizes the difference between two matrices, which results in the
optimized position of each cell in the 2D space [55]. t-SNE pairwise
comparison has its pros and cons, it is a robust and accurate algo-
rithm, and on the other hand the more cells are analyzed, the more
pairs need to be computed and the highest the computational cost.
This limits the use of t-SNE in FC/MC studies where thousands or
even millions of events are acquired. To overcome this issue ran-
dom downsampling (generation of a smaller subset of cells), is
often used, taking the risk of losing rare populations. Therefore,
new implementations were developed, aiming at limiting the com-
putational power required to obtain high-resolution data. Among
them BH-SNE (Barnes-Hut-SNE) [97] reduces the number of pair
comparisons by constructing a tree-like structure. This implemen-
tation is used in viSNE and published by Amir et al. [92]. HSNE
(Hierarchical Stochastic Neighbor Embedding) [85] is a combina-
tion of A-tSNE (t-SNE approximation) where, instead of computing
precise distances, approximated k-nearest neighborhood graph is
computed and embedded using BH-SNE. FIt-SNE (Fast
Interpolation-based t-SNE) [86] uses Fourier interpolation to speed
up the convolution step and opt-SNE [87] allows fine-tuning of t-
SNE parameters, like the number of iterations, to obtain high reso-
lution maps in a shorter time. It should be noted that t-SNE is
stochastic, which means that every new run will give slightly dif-
ferent visualization. Consequently, researchers should perform
multiple runs in order to obtain good data representation. Compar-
ison of multiple maps can be only done if the samples were run
simultaneously with the same settings. Jensen-Shannon diver-
gence, a statistical method that measures two probability distribu-
tions, can be useful to compare the projection from the same data
set as shown in [92,98].

Recently a new visualization tool called UMAP gained attention
in the cytometry field. This tool also preserves global distances
between cell types, while t-SNE conserves only close neighbor-
hoods [88,99]. For this reason UMAP was used to recapitulate
human hematopoiesis, and is useful for cell continuity visualiza-
tion [99]. Additionally both UMAP and FIt-SNE can analyze more
cells than t-SNE in a shorter time [99]. Isomap [89] and Diffusion
maps [91] also preserve global relatedness and continuity between
cells instead of calculating the pairwise Euclidian distance. Isomap
uses non-linear geodesic distance [89]. Diffusion map introduced
by [91], and adapted to the single cell study by [101], constructs
diffusion matrices based on random walk probabilities between
cells and generate diffusion components DC (known as eigenvec-
tors), that similarly to the PC correspond to the largest coefficients
of the data [102,103].

Even though some improvements were made on t-SNE imple-
mentation and faster algorithms like UMAP were built, the scala-
bility problem remains. Most of the embedding techniques were
first used on transcriptomic data where, in contrast to cytometry,
a relatively small amount of cells are described by a much larger
amount of markers. Although other dimensionality reduction and
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topology inference algorithms can be used, the lack of good imple-
mentations that enable handling of millions of cells prevents
researchers to apply them to big files as noted in [104].

Although non-linear dimensionality reduction methods are
powerful in projecting phenotypically similar cells, the under-
standing of the marker contribution to cell segregation can be dif-
ficult, as it requires plotting multiple markers in individual maps.
In such case, studying marker co-expression is even more challeng-
ing as was pointed out in [96,105]. One-SENSE (One-Dimensional
Soli-Expression by Non-Linear Stochastic Embedding) answers to
this limitation and propose 2D assignment of the markers to cate-
gories that can be then visualized using a combination of t-SNE
map and heatmaps [105]. This method was successfully applied
to study T cell and dendritic cell heterogeneity [100,105,106].

4.2. Data visualization – clustering methods

Clustering-based algorithms group similar cells and use visual-
ization tools to represent them in a lower dimensional space [13].
When choosing the best clustering method several requirements
should be considered, such as the need for downsampling, repro-
ducibility, rare cell detection, and running time. These variables
were measured byWeber et al., where several of the currently used
cytometry clustering algorithms were compared, identifying Flow-
SOM as a good trade-off between quality and time [107].

Since its publication, FlowSOM [81] became a widely used clus-
tering algorithm in the field of cytometry [54,108,109]. This algo-
rithm uses a two-step clustering process: a SOM (Self-Organizing
Map) and consensus hierarchical clustering. SOM, a type of artifi-
cial neural network, contains a grid of nodes where each node rep-
resents a point in a multidimensional space. SOM reproduces the
data topology by assigning the most similar cells to the same node
or its closest neighbors. Increasing the grid size increases the pos-
sibility of finding rare populations. However, as shown by Weber
et al., the reproducibility of the data can be compromised and addi-
tional splitting of the largest populations can be seen. In the second
step, node centers are grouped into metaclusters using a consensus
hierarchical clustering, and final cluster labels are obtained. The
data can be visualized using a minimal spanning tree, like in SPADE
[44], or in a heatmap [54]. Although similar results can be obtained
with both methods, the two-step clustering in FlowSOM acceler-
ates analysis and evades downsampling, making it a better choice.
Unfortunately, the stochasticity problem remains, and unless the
seed (starting analysis point) is pre-defined, the comparison
between different runs cannot be done. When comparing cluster-
ing performance, the F1 score measuring tests’ accuracy using pre-
cision and recall could be applied [107]. Alternatively the
algorithm CytoCompare which computes the distance between
the clusters using marker distribution [110], or the Jaccard coeffi-
cient [111] can also be applied.

Multiple tools and workflows implementing FlowSOM have
been recently published: EmbedSOM improves data visualization
[112]; diffcyt, a new computational framework for differential dis-
covery analyses [56] will be discussed below; Ek’Balam, a
hierarchy-based clustering in the Astrolab Cytometry Platform
[20]. All these applications emphasize the broad utility of Flow-
SOM. However as noticed in [113], one of the major drawbacks
of this algorithm is the user-defined number of clusters, which lim-
its the understanding of population diversity and introduces
researcher supervision. Other popular clustering approaches could
be used instead, like Phenograph, which uses k-nearest-
neighborhoods (KNN) to represent phenotypically similar cells as
highly interconnected nodes [114] or X-shift, that also applies
KNN with density estimation [115]. Both tools ranked high in
benchmark studies, especially for rare population detection
[107,116]. They have the ability to predict the number of clusters
in a given sample, although they perform poorly in scalability
requiring downsampling. Additionally the fusion of both dimen-
sionality reduction methods using t-SNE and density based cluster-
ing was also reported and successfully applied in the immune
diversity study of lymphoid compartment using ACCENSE (Auto-
matic Classification of Cellular Expression by Nonlinear Stochastic
Embedding), [117] and of the myeloid compartment using DensVM
(Density-based clustering aided by Support Vector Machine),
which combines density based algorithm with machine learning
techniques [90].

4.3. Looking for the meaning: analysis of cytometry data – biomarker
discovery

FC and MC are commonly used as biomarker discovery plat-
forms to improve diagnosis or allow the prediction of response to
therapies. Typically the cell abundances and their median marker
expressions are extracted using clustering or dimensionality
reduction. Then statistical tests are run to associate cell differential
abundance (DA) and states (DS) with specific phenotypes, while
correcting for different covariates [54]. This approach is presented
in various analysis pipelines [54,56,118,119] and the main ones
will be briefly discussed.

Nowicka et al. [54] analysis pipeline called CyTOF workflow
uses FlowSOM to cluster the data, followed by differential expres-
sion analysis to identify cell populations responding to the stimu-
lation. Two different models are applied depending on the type of
data: the General Linear Mixed Model (GLMM) and the Linear
Mixed Model (LMM) for DA and DS respectively. In both cases
the mixed model with random intercept is used to account for ran-
dom effects caused by variations across the individuals. The gen-
eral model is used for DA analysis to account for non-normal
distribution in cell proportions when samples with lower cell-
counts are present. cydar [119] detects diversely abundant cells
by assigning them to overlapping ‘hyperspheres’ in the high
dimensional space of markers. Cell counts and median marker
expression are calculated within each hypersphere for each sam-
ple. Finally, the negative binominal generalized linear model from
edgeR is used to test the differences between two groups. This
model, similarly to GLMM, improves the estimation of dispersion
parameters. Both pipelines provide flexibility in the adjustment
of experimental covariates like batch, age or sex. However, only
CyTOF workflow distinguishes between phenotypical and func-
tional (e.g. phosphorylation state) markers making the analysis
easier to interpret in the context of biological knowledge.

Besides regression models, different machine learning
approaches were successfully used to identify biomarkers. In the
‘‘ Flow Cytometry: Critical Assessment of Population Identification
Methods” (FlowCAP) challenge IV [120], two pipelines, FloReMi.1
[121] and flowType-RchyOptimyx [122], provided statistically sig-
nificant predictive values in the context of patient progression
from HIV+ to AIDS. Both methods use flowType [123] to detect cell
populations and apply random survival forest, using the ensemble
of decision tree in FloReMi or dynamic programming together with
graph theory in flowType-RchyOptimyx [124] to find the best gat-
ing hierarchy correlated with the clinical outcome. Citrus combines
the cell classification obtained by hierarchical clustering with the
automated selection of features based on a regularized classifica-
tion model to associate the obtained features (cell percentages
andmedian marker expressions) with the endpoint of interest. This
algorithm was successfully used to identify cell subsets associated
with AIDS-free survival [125]. However, as commented by Arvaniti
et al. [126], a high amount of irrelevant events used as clustering
input can result in either model overfitting or alternatively prevent
rare cell detection. To address this issue, the authors developed
CellCNN, an algorithm that applies convolutional neural networks
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in representation learning, making use of the sample classes during
population identification. CellCNN is designed to detect rare popu-
lations with a frequency lower than 0.01% and was able to identify
minor survival-associated cell populations in HIV-infected patients
or spiked-in rare leukemic blast populations of two AML subclasses
[126].

The use of regression or machine learning approaches are not
mutually exclusive and their combination was presented by Krieg
et al. [108]. They used FlowSOM together with GLMM to find rele-
vant cell populations that distinguish responders to anti-PD1 ther-
apy in metastatic melanoma patients. These features were further
characterized using CellCNN algorithm. The comparison between
different regression based methods was integrated in the package
diffcyt and compared to other machine learning algorithms [56].
According to this report diffcyt outperforms other tools in rare
population and differential state detection between two condi-
tions. However, it is crucial to ensure the proper selection of clus-
tering setting and regression method.

None of the presented approaches is perfect, and their perfor-
mance will depend on the biological question, type and volume
of the data. It is important to consider what type of analysis is
required [13]. Different approaches should be used when rare cell
populations or activation of a particular known cell population are
targeted. Results should be verified with at least two different algo-
rithms, incorporating also traditional methods when verifying the
outcome. Various ready-to-go R or python-coded analytical pipeli-
nes or user friendly interfaces are nowadays available, with no
need for strong programming skills [54,127–129]. Benchmarking
that incorporates the newest algorithms and both FC and MC data
should be organized in order to guide FC and MC users through dif-
ferent analytical approaches, pipelines, and algorithms.

4.4. Looking for the meaning: analysis of cytometry data – trajectory
interference

Besides being a biomarker discovery platform, FC and MC are
commonly used in the modeling of cell developmental stages with
trajectory inference (TI) methods. These methods estimate for each
cell a numeric value, called pseudotime, which orders the cells
within the dynamic process of interest. This allows to define and
study different transition stages [130]. The typical TI workflow
comprises a dimensional reduction followed by a trajectory model-
ing using the tools described below. Most of the earlier algorithms
were designed to model fixed topologies, such as one dimensional
path, while currently bifurcating points, or tree-like structures can
also be detected.

Wanderlust was applied to reconstruct human B cell lym-
phopoiesis [131]. It is an example of one-path trajectory modeling,
and was the first algorithm designed to study developmental
stages using MC data. It is a graph-based method where each cell
is represented as a node connected to its closest neighborhoods
by the edges. To eliminate noise and possibility of introducing
short circuits, multiple graphs and trajectories are built using ran-
dom waypoint cells and l-out-of-k-nearest neighbors (l-k-NNG).
The final position of the cell is the average over all graph trajecto-
ries. Two main assumptions are taken when using this tool: all
cells that represent the non-branching differentiation pathway
are present, and the changes in the marker expression are gradual.
Therefore a proper marker selection is crucial.

Wishbone [132] was used to track the development of T cells in
the mouse thymus. It is an algorithm designed to detect bifurcating
developmental trajectories. Similar to Wanderlust, Wishbone is
based on k-NNG, where the shortest path between two cells is used
as a distance metrics. However, as the bifurcating points are prone
to build short circuits due to insufficient marker differences,
instead of using subsampling subset of edges like in Wanderlust,
Wishbone takes advantage of diffusion maps. Because of this, the
major structure is kept in the first diffusion components, leaving
out the trend to short circuit noise. The embedded space is used
to construct k-NNG. In the case of Wishbone the waypoints have
a double role: first, they allow to robustly order the cells along
the trajectory, and secondly, together with spectral clustering, they
provide information about the placement of waypoints on the
same or on a different branch, thus giving the branching point
information.

The robustness of both Wanderlust and Wishbone depends on a
user-defined starting cell, whereas p-Creode [133] constructs tree-
like structure in an unsupervised manner. This algorithm intro-
duces density pre-analysis downsampling, and is also based on
graph theory using k-NNG construction with a density-based mod-
ification. After the construction of multiple trajectories a new met-
ric called p-Creode scores is used to select the most representative
trajectory.

All the above mentioned methods were recently benchmarked
using single cell RNA sequencing data [104]. This study provides
useful guidelines for choosing proper TI methods. However, due
to the different nature of cytometry and sequencing data, the out-
come can be different. Therefore, it would be helpful to provide
similar comparison using MC/FC data.
5. Conclusions

FC and MC are powerful high-dimensional technologies in
single-cell biology. They are becoming important tools in biomar-
ker discovery research, disease monitoring, and medical diagnos-
tics. The rapid increase in dimensionality gives an opportunity to
understand cell diversity in detail, narrow the research to fine cell
populations, and by doing so, enable precision in the development
of new therapies and biomarkers. However, dimensionality reduc-
tion and automated analysis require high-quality data, analytical
skills, and powerful algorithms to meaningfully process the multi-
dimensional space. As previously discussed, the design and execu-
tion of a good cytometry-based study is not a trivial process. Small
details like changes in stocks, pipetting errors, shifts in machine
performance, and improper data preprocessing can significantly
contribute to data variation. Controlling for batch effects, although
well adopted in transcriptomic data, is still inefficient and not
often applied in MC and FC due to different data structures. It
should be noted that inclusion of covariants like ‘‘batch effect” in
the statistical model does not eliminate the bias introduced upon
the clustering, and therefore batch effects should be corrected
before data analysis, and ideally prevented when preparing the
SOP. Many dimensionality reduction and clustering methods are
available and they should be combined to verify and confirm
results. To make an analysis accessible to non-programming
researchers many packages bringing together various preprocess-
ing and analysis tools that can be used in user-friendly interfaces
Table 2. Hence, high-dimensional analysis can be available to both
biologist and bioinformaticians. Since the single-cell high-
dimensional era is just starting, it is important to take care when
interpreting the data. Careful validation with multiple methods
and standard approaches like traditional manual gating should
be implemented in the analysis pipelines.
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