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Abstract: The survival of cells depends on their ability to replicate correctly genetic material. Cells
exposed to replication stress can experience a number of problems that may lead to deregulated
proliferation, the development of cancer, and/or programmed cell death. In this article, we have in-
duced prolonged replication arrest via hydroxyurea (HU) treatment and also premature chromosome
condensation (PCC) by co-treatment with HU and caffeine (CF) in the root meristem cells of Vicia
faba. We have analyzed the changes in the activities of retinoblastoma-like protein (RbS807/811ph).
Results obtained from the immunocytochemical detection of RbS807/811ph allowed us to distinguish
five unique activity profiles of pRb. We have also performed detailed 3D modeling using Blender
2.9.1., based on the original data and some final conclusions. 3D models helped us to visualize better
the events occurring within the nuclei and acted as a high-resolution aid for presenting the results.
We have found that, despite the decrease in pRb activity, its activity profiles were mostly intact and
clearly recognizable, with some local alterations that may correspond to the increased demand in
transcriptional activity. Our findings suggest that Vicia faba’s ability to withstand harsh environments
may come from its well-developed and highly effective response to replication stress.

Keywords: caffeine; cell cycle; chromatin architecture; 3D modeling; heterochromatin; hydroxyurea;
plant; premature chromosome condensation; replication stress; retinoblastoma protein

1. Introduction

Vicia faba is a crop plant widely cultivated all over the world. It is used as: (i) cover
crop (for managing soil quality, fertility, erosion, water levels, weeds, pests, and overall
biodiversity in an agroecosystem), (ii) a culinary ingredient, (iii) animal fodder, and (iv)
a natural source of L-DOPA (a precursor of dopamine) used for curing patients with
Parkinson’s disease [1]. Interestingly, it is also one of the easiest plants to grow. Vicia faba
can withstand cold and harsh climates as well as grow in very dry or highly salinized soils.
The ability to survive in demanding conditions and still provide value to humans (either
culinary, agricultural, or medical) may soon become very valuable amid climate change
and the increasing pollution of the planet.

Former studies performed by Rybaczek et al. [2–4] have shown that even under
extremely stressful conditions, V. faba can manage stress well considering the induction
of premature chromosome condensation (PCC)—an aberrant event well-known for its
frequent initiation of genome chaos [5,6]. Under the conditions of replication stress caused
by hydroxyurea (HU), which arrests replication by inhibiting the enzyme ribonucleotide
reductase [7], the root meristem cells of the plant have shown incredible resistance to
prolonged stressful conditions [4] and were able to recover fairly quickly once released into
water [8]. Although PCC induction causes some chaotic aberrations in a fraction of cells, V.
faba is mostly capable of directing the fraction of highly damaged cells to the apoptotic-like
programmed cell death pathway (AL-PCD). The plant cells also recovered during the next
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cell cycle following PCC induction [4,8]. We believe that the high survivability rates of the
V. faba family stem from the highly effective stress response mechanisms that are activated
during replication and/or mitotic division. The identity of the cell must be maintained
throughout the cell cycle in order to ensure the survival and growth of the organism. For
this to occur, the nucleosomal organization and genetic information must be replicated
into the daughter cells. With this in consideration, we suppose that the replication process
and the mechanisms guarding its integrity and progress play a pivotal role in V. faba’s
environmental resilience.

The most essential process for the reproduction and growth of eukaryotic organisms
is the cell cycle [9], and many of the pathways that regulate the transitions between the
consecutive subphases are conserved between eukaryotic species [10,11]. The transition
from the G1 to the S phase is one of the most crucial steps during cell life as it determines the
cell’s readiness for division [12]. Retinoblastoma protein (pRb) acts as the main regulator
of the progression from the G1 to the S phase [13,14] in both animals and plants [15,16].
Hypophosphorylated pRb, through its binding with the E2F protein family, acts as a
negative regulator of G1/S progression [17]. It retains the closed conformation structure of
the chromatin in the regions where E2F-regulated genes are located [16,17]. The E2F family
consists of transcriptional factors that either promote transcription (i.e., E2F1, E2F2, or
E2F3a) or repress it (like E2F3b for instance). Some of them can act as both repressors and
activators [18]. Retinoblastoma protein is phosphorylated by the complexes of cyclin and
cyclin-dependent kinases (for instance, CYCD/E with CDK4/2 in humans), which changes
its structure and results in the release of E2F [19–23]. In general, pRb phosphorylation
leads to the expression of E2F-related genes as well as alterations in the recruitment of
chromatin remodeling factors [13,24], allowing for the start of the S-phase and replication.

Studies show that RB-related regulatory pathways are highly conserved among eu-
karyotic organisms [13–16,25,26], and the retinoblastoma-related (RBR) plant ortholog
follows the same regulatory pathway as pRb in humans [20,27,28]. The deregulation
of the pRb-related pathway leads to the alteration of the cell cycle [29] and may result
in many disturbances such as DNA damage, mitotic errors, or alterations in chromatin
condensation [30–33]. The deregulation of pRb phosphorylation (especially its hyperphos-
phorylation) usually leads to excessive proliferation and is a common trait in many types
of cancer [13,17,34,35]. For this reason, many studies suggest the pRb pathway as a target
in alternative cancer treatments [35].

Retinoblastoma protein generally regulates the cell cycle by modifying chromatin
structure [31,36,37]. Chromatin constitution controls its accessibility, and various remodel-
ing factors have been demonstrated to interact with pRb [31]. For instance, the SWI/SNF
complex remodels chromatin in an ATP-dependent manner by exchanging or removing
histones from DNA (this pathway controls the general chromatin constitution). ATP-
dependent histone exchange/removal complex (SWI/SNF) has also been reported to
interact with pRb [38]. Retinoblastoma protein may also use the ATPase activity of Brm or
BRG1 [39]. It frequently regulates local chromatin structures by modulating the balance of
histone acetylation levels via recruitment of HDAC1 [13,40]. Histone acetylation opens the
structure of the chromatin and facilitates transcription. Apart from local nucleosome struc-
ture regulation, pRb also plays a vital role in heterochromatin formation and segregation
of mitotic chromosomes [31]. It binds to Suv39h and some members of the HP1 protein
family as well as to methyltransferases that trimethylate histone H4k20 [41]. Retinoblas-
toma protein has been reported to regulate the pericentromeric heterochromatin [42] and
telomeres [43] via histone methylation. Its inactivation thus leads to an aberrant chromatin
structure [30,32,44,45] and is associated with chromosomal instability [46].

Changes in chromatin structure, both local and global, generally accumulate in cancer
cells. As mentioned previously, deregulation of pRb leads to the overexpression of S-phase
genes and significant changes in the heterochromatin constitution. Additionally, replication
stress may challenge histone recycling and has been reported to accumulate ssDNA at
replication sites, disrupting the nucleosomes in the process [47–49]. Hydroxyurea- (HU-)
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induced replication arrest causes severe under-replication in heterochromatin areas. This
event is especially dangerous due to the fact that stalled replication forks within hete-
rochromatin require ATRX factor for additional protection [50]. As well as this, the degree
of chromatin condensation has a significant impact on the DNA damage response in the
nucleus [51], but the mechanisms responsible for the reorganization and their implications
are yet to be studied.

In this research, we focused on the changes in the activity of RbS807/811ph (diphos-
phorylated form of Rb-like protein present in plants) in Vicia faba root meristem cells
subjected to prolonged replication stress (caused by hydroxyurea-induced replication ar-
rest) as well as with the induction of premature chromosome condensation (PCC)—an
event usually leading to genome chaos. We have performed an extended quantitative
image analysis together with 3D modeling in order to analyze the impact of HU and PCC
on the activity and behavior of pRb. We were able to distinguish five different activity
patterns in interphase cells related to different transcriptional activity demands. We have
shown an active response of cells subjected to replication stress and, particularly, PCC
occurring in the perinucleolar area of chromatin, which most probably impacts the future
well-being of the cells. We have also found that, despite the loss in the overall activity of
pRb, its activity profiles are mostly undisturbed and still clearly recognizable after HU and
PCC treatment, which shows that the response to the stressors is still properly ordered
in analyzed cells. In our opinion, the mechanisms that respond to replication stress and,
among other things, reorganize heterochromatin, play a pivotal role in cell survival and
maintaining its integrity.

2. Results
2.1. The Effects of Prolonged HU and HU/CF Incubation on Heterochromatin Areas, Replication,
and the Activity of CycD1 and RbS807/811

The results obtained by the cell cycle analysis revealed a significant decrease in the
number of cells undergoing mitotic division after incubation with HU (2.4% of HU-treated
cells as compared to 8.18% of control cells; Figure 1a1,a2, respectively) and an increased pop-
ulation of S-phase cells (41.06% after HU as compared to 26.17% in control; Figure 1a1,a2,
respectively). The induction of PCC (co-treatment with HU and CF; Figure 1a3) triggered a
vivid response in treated cells, leveling up both M- and S-phase indices to values higher
than the control (11.25% of M-phase cells and 38.51% of S-phase cells after PCC). Hete-
rochromatin areas were also notably altered after HU treatment, as seen in Figure 1B. The
thresholded images (Figure 1b1, lower row) revealed that despite no noteworthy change
in the quantity, heterochromatin (HC) clusters were visibly smaller when compared to
the control cells and thus occupied less space in the nucleus (Figure 1b2). Additionally,
HU treatment caused the chromatin to expand, which resulted in a larger nucleus area
(compare with Figure 1b3). The induction of PCC, however, seems to reverse these changes
back to a state that is very similar to the control as there were no statistically significant
changes between the percentage of nucleus area occupied by HC clusters or the area of the
nucleus itself as compared to control.
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Figure 1. (A)The results of cell cycle analysis conducted using flow cytometry. The number of S-
phase (IS-phase) cells increases significantly after HU treatment (a2), which is an effect of HU inhibi-
tion of the replication itself (cell cycle synchronization; S-phase arrest; cell cycle checkpoint activa-
tion). At the same time, the percentage of actively dividing cells (IM-phase) is visibly lowered com-
pared to control cells. Co-treatment with HU and CF (PCC, as shown at a3) increases both the S-
phase and the mitosis percentage, which occurs due to the cell cycle checkpoint overriding caused 
by caffeine. (B)The effects of HU and HU/CF treatment on the heterochromatin regions of nucleus. 

Figure 1. (A) The results of cell cycle analysis conducted using flow cytometry. The number of S-phase
(IS-phase) cells increases significantly after HU treatment (a2), which is an effect of HU inhibition of the
replication itself (cell cycle synchronization; S-phase arrest; cell cycle checkpoint activation). At the
same time, the percentage of actively dividing cells (IM-phase) is visibly lowered compared to control
cells. Co-treatment with HU and CF (PCC, as shown at a3) increases both the S-phase and the mitosis
percentage, which occurs due to the cell cycle checkpoint overriding caused by caffeine. (B) The
effects of HU and HU/CF treatment on the heterochromatin regions of nucleus. The DAPI-stained
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images at b1 (upper images) were thresholded (lower images) to show only the heterochromatin
(white spots). The light blue lines mark the areas of the nucleus (outer lines) and nucleolus (inner
lines). After induction of replication stress (b1, HU), large parts of heterochromatin are left un-
replicated. It is well-visible as the significantly lower percent of heterochromatin area compared
to the area of a nucleus. Additionally, nucleus area becomes visibly larger (compare with b3, HU).
Induction of PCC restores the percentage of heterochromatin in the nucleus as well as nucleus area
to the levels similar to control samples (b2, PCC and b3, PCC). (C) The results of Western blotting
for CycD1 (c1), Rb (c2) and RbS807/811ph (c2) proteins, the β-tubulin was used as an loading con-
trol. Values for modified Rb protein (RbS807/811ph) were normalized to the internal control, the
global Rb (c2). The activity of both CycD1 and Rb-like protein (RbS807/811ph) was significantly
diminished after HU and PCC treatments compared to control. Induction of PCC, however restored
some of the activity. The charts show the relative density of blot bars, where the C (control) bar
is presented as the benchmark, the units are arbitrary. (D) Tissue printing (d1, d4 and d7; control,
HU and PCC, respectively) of V. faba roots showing the accumulation of CycD1. The arrows mark
the root meristem areas that were subjected to protein density measurements. Images d2, d5, and
d8 show the immunocytochemical detection of CycD1 in control, HU and PCC series, respectively.
Images d3, d6, and d9 are closeup images relative to the preceding photos in terms of experimental
series. The white arrows visible on the closeups mark cytoplasm areas of the cell, the empty black
arrows mark the nucleus areas and the black arrows mark the nucleoli. The cells were stained with
AlexaFluor 488. The d10 chart displays the general mean activity of CycD1 within the cells and its
changes after HU and PCC induction, while the d11 chart shows the mean activity within specific
cellular compartments—cytoplasm (gray bars), nucleus (white bars), and nucleolus (stripe bars). The
activity is shown as the mean direct luminescence of the protein, ranging from 0 (no activity) to 255
(maximum activity). The d12 chart displays the results of CycD1 density as measured by the tissue
printing-acquired images. Significant changes in CycD1 activity are consistent with the results of
Western blotting. The differences were assessed by one-way ANOVA followed by post-hoc (Tukey’s)
test at the significance level of p = 0.05 (asterisk).The scale bar is approx. 10 µm.

Western blot labeling confirmed both CycD1 and Rb, as well as RbS807/811ph present
in V. faba’s root meristem interphase cells (Figure 1C). Densitometric analysis showed that
the levels of both proteins were lowered after HU and PCC induction with the lowest being
caused by hydroxyurea. Co-treatment with caffeine restored some protein activity, but the
final measurements were still far from close to the control. Lower levels of CycD1 activity
caused by HU were also validated by tissue printing (Figure 1d12) and by immunocyto-
chemical detection (Figure 1d10). The changes observed in a specific cell compartment
(i.e., cytoplasm, nucleus, nucleolus) occurred in a similar way. The biggest drop in CycD1
activity was observed for HU. However, CycD1 labeling remained consistently equalized.
On the other hand, the pRb activity profile can be described as unequal with a large number
of usually small foci (compare with Figure 2 Control).

The levels of pRb activity were also altered by HU and PCC, but in a slightly different
manner. The loss of activity after incubation with hydroxyurea included the whole nucleus
area, but the patterns of most active foci seem to be maintained (compare Figure 2 HU and
Supplementary Figure S1a1). Induction of PCC, again, did not cause a partial reactivation
of Rb-like phosphorylation, on the contrary, pRb levels after PCC were even lower than
after HU treatment (Supplementary Figure S1a1,a3). Even though there were a small
number of cells unaffected by HU or PCC, the overall intensity of general nuclear activity
and the activity of singular foci visibly lessened in HU and were even lower in PCC cells
(Supplementary Figure S1B,C).

Retinoblastoma protein activity was the most prominent interphase and diminished
during mitotic division (compare with Figure 2B). As explained earlier, the forthcoming
results focus on interphase cells exclusively, especially on the changes in the patterns of
foci localization (compare with Supplementary Figure S1C).
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Figure 2. (A) The visible changes in activity of RbS807/811ph in interphase cells from control (a1–a4), HU-treated (a5–a8), 
and PCC-treated (a9–a12) series. The protein foci are significantly less visible after incubation with HU, but the pRb’s 
activity is moderately increased in PCC-type cells, which suggests the reactivation of Rb phosphorylation. LI stands for 
Labeling Index. (B)Representative images of cell cycle progression: b1—G1-phase; b2—early S-phase; b3—late S-phase; 
b4—G2-phase; b5—prophase; b6—metaphase; b7—anaphase; b8—telophase. Large images are the joined photographs of 
nuclei, the blue and green channels were added to each other. (C) The closeup images of HU-treated cells (c1, S-phase) 
and HU/CF-treated cells (c2, S/G2-phase), showing the differences in the number, localization, and luminescence of sin-
gular foci. The cells were stained with AlexaFluor 488 (green fluorescence) and DAPI (blue fluorescence). The scale bar is 
approx. 10 µm. 

The levels of pRb activity were also altered by HU and PCC, but in a slightly different 
manner. The loss of activity after incubation with hydroxyurea included the whole nu-
cleus area, but the patterns of most active foci seem to be maintained (compare Figure 2 
HU and Supplementary Figure S1 a1). Induction of PCC, again, did not cause a partial 
reactivation of Rb-like phosphorylation, on the contrary, pRb levels after PCC were even 
lower than after HU treatment (Supplementary Figure S1a1,a3). Even though there were 
a small number of cells unaffected by HU or PCC, the overall intensity of general nuclear 
activity and the activity of singular foci visibly lessened in HU and were even lower in 
PCC cells (Supplementary Figure S1B,C). 

Figure 2. (A) The visible changes in activity of RbS807/811ph in interphase cells from control (a1–a4),
HU-treated (a5–a8), and PCC-treated (a9–a12) series. The protein foci are significantly less visible after
incubation with HU, but the pRb’s activity is moderately increased in PCC-type cells, which suggests
the reactivation of Rb phosphorylation. LI stands for Labeling Index. (B)Representative images of cell
cycle progression: b1—G1-phase; b2—early S-phase; b3—late S-phase; b4—G2-phase; b5—prophase;
b6—metaphase; b7—anaphase; b8—telophase. Large images are the joined photographs of nuclei,
the blue and green channels were added to each other. (C) The closeup images of HU-treated cells
(c1, S-phase) and HU/CF-treated cells (c2, S/G2-phase), showing the differences in the number,
localization, and luminescence of singular foci. The cells were stained with AlexaFluor 488 (green
fluorescence) and DAPI (blue fluorescence). The scale bar is approx. 10 µm.

2.2. Nucleus and Foci Analysis Leading to the Identification of Marking Types

General foci localization can be characterized with respect to the fluorescent intensity
of the nucleolus (either non-fluorescent or displaying visible fluorescence), as pictured in
Figure 3.
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ders, the green stars show the peaks corresponding to an active foci. The binary images (a3, b3, c3, 
d3, e3, and f3) display only the most active areas of pRb within the nucleus. Images a7, b7, c7, d7, 
e7, and f7 are linear heightmaps generated in ImageJ based on the activity of the protein, where 
higher activity is shown as a peak or rise in height. The fourth column shows the 3D models based 
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height-based mesh of the nucleus and the binary images were used to show only the active pRb 
foci. The last column shows the 3D models displaying the general luminescence of the analyzed 
nuclei in the form of heatmap, which uses the flame—like gradient to show the levels of lightness. 
The gradient ranges from black (no luminescence) through blue, purple, red, orange (increasing 
luminescence) ending at yellow and white (maximum luminescence). Both models allow to easily 
compare the general level of activity (5th column) with the localization of specific pRb foci (4th 
column). 3D models are shown as a top view (images 4 and 5 in each part from A to F) and rotated 

Figure 3. The descriptive analysis of different pRb foci localization depending on the visual morphology of nucleolus. The
pRb activity within nuclei containing ‘dark’ nucleolus (A,C,E) is focused mostly in the other chromatin areas outside the
nucleolus while the cells with ‘light’ nucleoli (B,D,F) show the activity of pRb also within the nucleoli itself or on the very
border between the nucleolus and the rest of the nucleus (the perinucleolar heterochromatin). The green dashed lines at
the grayscale images (a2, b2, c2, d2, e2, and f2) mark the pathway used to prepare the line plots (a6, b6, c6, d6, e6, and f6)
that show the intensity (activity) of pRb at any given point along the line. The activity is shown in the same manner as
described in Figure 1 (from 0 to 255), though the measurements are direct and not mean. The black arrows point to the
nucleolus/nucleus borders, the green stars show the peaks corresponding to an active foci. The binary images (a3, b3, c3,
d3, e3, and f3) display only the most active areas of pRb within the nucleus. Images a7, b7, c7, d7, e7, and f7 are linear
heightmaps generated in ImageJ based on the activity of the protein, where higher activity is shown as a peak or rise in
height. The fourth column shows the 3D models based on the original images of analyzed nuclei. The grayscale activity
images were used to generate the height-based mesh of the nucleus and the binary images were used to show only the
active pRb foci. The last column shows the 3D models displaying the general luminescence of the analyzed nuclei in the
form of heatmap, which uses the flame—like gradient to show the levels of lightness. The gradient ranges from black
(no luminescence) through blue, purple, red, orange (increasing luminescence) ending at yellow and white (maximum
luminescence). Both models allow to easily compare the general level of activity (5th column) with the localization of
specific pRb foci (4th column). 3D models are shown as a top view (images 4 and 5 in each part from A to F) and rotated
by 45◦ along X axis (according to the software’s coordinates). 3D models were generated in Blender 2.9.1. and based on
original, unedited data. The scale bar is approx. 10 µm.

On average, cells with nuclei that have ‘dark’ nucleoli (Figure 3A,C,E) tend to have a
majority of their active areas outside of the nucleoli, with a small (or null) number of foci
located near the perinucleolar border. “Light”-nucleoli nuclei, on the other hand, either
only have a number of pRb foci within the nucleolus area or scattered evenly across the
nucleus, including the nucleolus (Figure 3B,D,F). Under normal conditions, general pRb
activity in nuclei with light nucleoli is visibly lower than for those which are dark—as is
clearly shown by the line plots (compare Figure 3a6,b6). The y axis range (intensity) is the
same for every sample analyzed in Figure 3. The higher-lower nucleus activity with regard
to the nucleolus is preserved in PCC-induced cells (Figure 3E,F), but vanishes after HU
treatment (Figure 3C,D), resulting in nuclei characterized by similar ranges of pRb activity.
This relationship was visible in 3D heatmap models presented in Figure 3 (last column,
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images with the numbers 5 and 9). The blue color indicates that a marginal amount of green
fluorescence was detected, which is basically the auto-fluorescence of the nucleus and thus
does not represent the activity of pRb-like protein. Retinoblastoma protein activity was
visible in the areas with colors ranging from red, through orange, to yellow and white
(with activity levels ascending, respectively). The most active pRb foci can sometimes be
found in the nuclei that show a low overall activity—an example of this is Figure 3B—the
control cell with a light nucleolus and dark nucleus. The most active foci were distributed
regardless of general activity, as one can see by comparing the 3D heatmap with the 3D foci
activity model (Figure 3. 4th column, pictures with the numbers 4 and 8). 3D heatmaps also
confirm previous data that there was a vast drop in pRb activity after HU and a moderate
restoration after PCC. Interestingly, however, the light nucleolus cells after HU treatment
have the most active nucleolus area, even when compared to the control.

Some visible differences in pRb activity can also be observed with regards to the
euchromatin and heterochromatin regions, as presented in Figure 4. Retinoblastoma
protein activity within the EC regions (Figure 4A–C) tends to follow the pattern of small,
singular foci while HC-related pRb forms larger clusters (Figure 4D,E,F), which are well-
visible in binary images (Figure 4. Images with the number 2) as well as in the 3D foci
activity models (Figure 4. 4th column, images with the numbers 4 and 9). Hydroxyurea
treatment lowers the number of active foci in euchromatin (EC) regions (Figure 4B) as
well as their size (compare with Supplementary Figure S2a1,a2). Although PCC induction
also lowers the quantity of pRb foci (Figure 4C), their average size seems to revert back
to values close to control (Supplementary Figure S2a1,a2). This is true to some extent for
both EC and HC regions, however, our team also observed a very large diversification of
foci size after PCC, which was shown in the form of surprisingly high values of standard
deviation (Supplementary Figure S2a2). Heterochromatin- (HC-) related clusters of pRb in
control cells seem to “flow” into each other (Figure 4D). Induction of replication arrest or
PCC tends to accentuate singular clusters (HU) or singular foci that were grouped together,
usually without the “flowing” effect (PCC). This partial loss in the clustering effect was
consistent in every observed nucleus.

The repeat occurrence of pRb foci at the border between nucleus and nucleolus
showing up in PCC-type cells was also noticeable (Figure 2c2; Figure 3E; Figure 4C,F). This
feature was observed within each experimental series and will be discussed further in
this article.

The positive correlation between the number of active foci and their total area (Sup-
plementary Figure S2B) was anticipated. According to our findings, cells treated with HU
still display similar correlation coefficients, despite lower pRb activity. Co-treatment with
caffeine, on the other hand, introduces a new fraction of nuclei with very few but larger
than normal foci (Supplementary Figure S2b3,c3, marked with a red dash rectangle). We
have found similar dependencies between the number of foci and their average size (Sup-
plementary Figure S2C), percent of nucleus area covered (Supplementary Figure S2D), and
between the average foci size and percentage of nucleus area (Supplementary Figure S2E).
Each time, the degree of correlation in the HU series was close to the control. Cells with
PCC symptoms, however, always displayed some anomalies. This lead to the conclusion
that even under replication arrest, nuclear stress response mechanisms still work properly
as opposed to PCC. The scatterplots shown in Supplementary Figure S2B–E are composed
of raw data, lower numbers of HU inputs result from a very low pRb labeling index in
the cells treated with hydroxyurea (35.2% in HU, 89.5% in control; one should refer to
Figure 2A).
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Figure 4. The differences between the pRb activity in euchromatic (A–C) and heterochromatic (D–F)
regions of the nuclei were compared between the control, HU, and PCC series. Images with number
1 are original images acquired via fluorescence microscope (AlexaFluor 488). Images with number
2 are binary images, thresholded to show only the most active pRb foci. Images with number 3
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are the drawings representing the localization of pRb foci with regard to the nucleus/nucleolus
regions. Images with the number 6 are grayscale images obtained directly from the originals.
Images with number 7 are heatmaps displaying the levels of luminescence, prepared as described
in Supplementary Figure S1. Images with numbers 4,5,9, and 10 (4th and 5th column) are 3D
models prepared also as described in Supplementary Figure S1. Euchromatin regions are usually
characterized mostly by a large number of relatively small foci of pRb, while foci located at HC
regions are clustered and thus form larger areas of pRb activity. The most characteristic change
occurs in HC areas after PCC induction (F), where singular pRb foci remain clearly distinguishable,
even though they are still clustered, resulting in an in-between visual pattern. The most active areas
are the perinucleolar regions (shown at f3 with white hollow arrows) where the pRb foci form a
clearly recognizable ring. The white arrows show the most active regions outside of the perinucleolar
chromatin. The scale bar is approx. 10 µm.

2.3. Retinoblastoma ProteinHas Five Labeling Profiles in Interphase Cells

We were able to distinguish five pRb labeling profiles based on the size and localization
of foci within the nucleus. The schematics describing each profile and the percentage of cells
showing the specific Type are shown in Figure 5I. The criteria that determined the following
Types were as follow: (i) Type 1—small pRb foci located only within the nucleolus (no)
area; (ii) Type 2—small foci distributed evenly outside of the nucleolus (no is not labeled);
(iii) Type 2a—the same as Type 2 plus a number of highly active pRb foci forming a ring
on the perimeter of the nucleus/nucleolus; (iv) Type 2b—small foci distributed across the
entire nucleus (including nucleolus) and (v) Type 3—large clusters of pRb covering the
entire nucleus (including nucleolus).

The in-depth visual analysis of particular labeling types in control cells is presented in
Figure 5II. The general 3D models (Figure 5II images with numbers 7 and 8) were used for
high-res visualizations of activity. The ranges in the x and y axes were equalized where
possible in Supplementary Figure S3 for easier comparison of particular variables between
Types and series.

All nuclei displaying the Type 1 profile have a light nucleolus region (clearly visible
in Figure 5IIa1,a3,a4,a6). Retinoblastoma protein activity, however, was visibly lower
compared to other Types (compared with Supplementary Figure S3a1). The number of
active foci was also understandably lower (Supplementary Figure S3a2,a4,a5), but they
were slightly larger than the foci of Types 2, 2a (only in those furthest from the perinucleolar
ring), and 2b. There was a moderate correlation between the size of particular foci and
the level of pRb activity in this region (Supplementary Figure S3b1), although size did not
appear to be correlated with quantity (Supplementary Figure S3d1). Type 1 labeling is least
commonly observed.

The most common Type 2 labeling was composed of a rather large number of small-
sized foci. Clustering may occur, but this feature is not really prominent. The most
characteristic feature was a usually dark nucleolus with no pRb activity visible (compare
with Figure 5IIB). The foci size was almost uncorrelated with pRb activity (Supplementary
Figure S3B,b2), which means that the general activity within the nucleus depends on the
sole number of active spots rather than the brightness of a specific foci.

The most characteristic feature of Type 2a was the perinucleolar ring of highly active
pRb foci that appears to be “added” to Type 2 labeling (Figure 5IIC, marked with arrows
on c7 and c8). The ring shows much more pRb activity than the rest of the nucleus as seen
on the heatmap models (Figure 5IIc3,c6), and has the strongest fluorescence intensity when
compared to other Types (Supplementary Figure S3a1). This Type is also characterized by
the largest number of active foci (Supplementary Figure S3a2). Interestingly, the increasing
number of foci in Type 2a nuclei correlates with an increase in their size (Supplementary
Figure S3d3), which seems to be quite uncommon in comparison to other types.
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terized by relatively small pRb foci, while Type 3 is specified by foci clustered into larger com-
pounds. Type 1 displays a small number of pRb foci located only within the area of the nucleolus. 
Type 2 includes small active foci in the area of the nucleus, without the activity in the nucleolus. 

Figure 5. (I)The schematic characterization and percentage of observed cells displaying five different
types of pRb activity patterns in normal conditions. Types 1, 2, 2a, and 2b are generally characterized
by relatively small pRb foci, while Type 3 is specified by foci clustered into larger compounds. Type 1
displays a small number of pRb foci located only within the area of the nucleolus. Type 2 includes
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small active foci in the area of the nucleus, without the activity in the nucleolus. Type 2a is very similar
to Type 2 with the addition of a higher number of active pRb foci (often formed into little clusters) in
the perinucleolar heterochromatin regions thus forming a very unique ring around nucleolus. Type
2b shows pRb activity scattered evenly on the whole nucleus area, including the nucleolus. Type 3
shares the characteristics of Type 2b with the difference in the size of the foci, which here form visibly
large clusters. (II)The original images and their modifications represent all five types of pRb activity
profiles as described earlier in Figure 5I. Images with number 1 show the unedited photographs
obtained from fluorescence microscope, stained with AlexaFluor 488. The images with number 4
show the intensity of fluorescence displayed as a heatmap (as explained in Figure 3). Images with
numbers 2 and 5 show the 3D models based on the original images with only the most active foci
marked as green glowing parts, and images with numbers 3 and 6 display the 3D models with the
general nucleus activity showed as a heatmap (as also explained earlier in Figure 3). The images with
numbers 7 and 8 are the general 3D models developed according to the conclusions derived after
analyzing individual types of pRb activity. The white arrows mark the nucleolus, the white-framed
black arrows mark the regions of intensified pRb activity in heterochromatin areas (heterochromatin
areas are presented as light blue shapes), and the gray arrows mark the euchromatin. The scale bar is
approx. 10 µm.

The Type 2b activity profile is also composed of a large number of small pRb foci
(Figure 5IID), however this time, both nucleus and nucleolus regions are labeled. The nu-
cleolus is either dark and not visible after immunocytochemical staining (as in Figure 5IId1)
or light and clearly recognizable (as in Figure 3B). Foci number, size, and nucleus coverage
are comparable with the characteristics of Type 2 (Supplementary Figure 3a2–a5), but
the overall pRb fluorescence is statistically lower, mostly because of the “light nucleo-
lus” nuclei’s low activity (as explained earlier). This type also shares the same lack of
correlation between the size and intensity of the foci as Type 2 (compare Supplementary
Figure S3b2,b4).

The Type 3 profile stands out from others because of the size of pRb active areas, which
group together and often merge into clusters (Figure 5IIE). Small-size foci (as in other types)
are also present, but their population is relatively small. Though the clusters usually appear
as if they have melded together, there are still some extremely active singular foci visible
within the clusters (Figure 5IIe3). The nucleolus here is “dark” and not distinguishable
after immunocytochemical staining. This type has the largest area coverage of the nucleus
by pRb activity (Supplementary Figure S3a4,a5). Interestingly, the number of foci is also the
highest (Supplementary Figure S3a2) and this Type shows very little correlation between
foci number and size (Supplementary Figure S3d5).

2.4. Retinoblastoma Protein Patterns Alterations Caused by HU and PCC

Although pRb activity is significantly altered in response to replication arrest caused
by HU or cell cycle override caused by PCC, the patterns of labeling are still clearly
identifiable. Observed differences occur mostly in terms of (i) the number of observed cells
and (ii) some specific areas of higher/lower local activity, but the patterns themselves are
not really disturbed. Due to the loss of pRb activity and thus the lower number of foci
within the nuclei, the patterns are also less “dense”.

The most visible alteration is related to the changes in the populations of cells display-
ing a particular labeling pattern. Type 2 is the most common Type in every series, but the
number of Type 2 cells is visibly lower after PCC induction (Figure 5I). At the same time,
the number of observations of Type 1 cells is the same for control and HU, but increases
sharply after PCC meaning there are more cells with activity within the nucleolus. Type
2b follows changes similar to Type 1 (Figure 5I). The most striking difference occurs with
Type 2a cells whose numbers change from under 10% in control through to 15% in HU and
at over 20% in PCC series. The population of Type 3 cells is lower after HU treatment and
lowest after PCC induction (Figure 5I). A common factor that one should note is that after
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the induction of replication stress and, to a larger extent, PCC, the fraction of cells with
nucleolus-related pRb activity rises.

Another interesting observation comes from the analysis of the changes in pRb activity
with regards to the specific pattern (Supplementary Figure S3E) and percentage of nucleus
covered by pRb (Supplementary Figure S3F). The mean amount of foci activity in all exper-
imental series (not divided into labeling types) was presented earlier, at Supplementary
Figure S1a3, and showed a significant loss in fluorescence after HU treatment and an even
higher loss after PCC induction. At first glance, there is not much of a difference between
changes in the activity of labeled types. A closer look, however, reveals some subtle details.
Type 1 does not actually show any significant alterations in its activity under stressful
conditions (Supplementary Figure S3e1). Type 2a, despite being significantly different from
control, has levels of activity similar to HU. Type 3 does not exhibit any visible changes
after HU treatment compared to control. The percentage of the nucleus area covered by
pRb foci for whole-cell populations is presented in Supplementary Figure S2a4. According
to this general analysis, replication arrest causes a massive drop in the area of the nucleus
labeled by pRb. The induction of PCC restores some of the active sites, yet the percentage
is still significantly low. Type 1, again, shows no real changes of this variable between the
experimental series (Supplementary Figure S3f1). Type 3 shows a change in its pattern
similar to earlier results (in Supplementary Figure S3e5) there is no real difference between
HU and control cells, but after PCC induction, the percentage of nucleus area is greatly
diminished (Supplementary Figure S3f5).

Some of the peculiar, local pRb foci formations that are present in control are also
usually slightly altered after HU or PCC. The perinucleolar rings, unique to Type 2a labeling
(Figure 6A) are far less visible after HU treatment, largely due to the loss in the quantity
of foci. There are usually a couple of single foci (two or three), and the clustering effect is
generally nonexistent (Figure 6a5,a6). On occasion, the “rings” seem to wander further
from the nucleolus border into the nucleus but still retain the ring shape (Figure 6a7,a8).
Induction of PCC restores some of the foci quantity, resulting in more prominent rings
(Figure 6a9,a10), but the clustering effect is still minimal as the foci are quite small and
rather condensed (Figure 6a11,a12).

The EC/HC perimeter (Figure 6B) is usually the area with the highest activity of
pRb, which is quite characteristic for Type 3 labeling (Figure 6b1). It usually follows the
same silencing pattern as HU and PCC, but after co-treatment with caffeine, the areas
of high/low activity are much more visible, unlike for HU (compare Figure 6b7,b11, for
instance). Overall, the dark areas of pRb-inactive chromatin (Figure 6C) tend to have
depleted levels of fluorescence (Figure 6c5–c12).

On the other hand, some high-activity regions (Figure 6D), although less prominent
after HU (Figure 6d5,d6), are still clearly visible, and the cells that were only slightly
affected by replication arrest display these regions similarly to control. PCC induction,
again, causes an increase in the contrast between the high-activity regions and the rest of
the labeled nucleus (Figure 6d9–d12).

The condensed clusters (Figure 6E) should not be mistaken with the clusters which
are characteristic of the Type 3 activity profile. The clusters presented here are rather small
and composed of a number of singular foci, grouped together yet not “merged” into one
big drop. The clustering effect occurs, but it is minor, and every unique foci are still visible.
These elements tend to still be quite active (although the general activity is lower) after HU
and PCC induction, which is clearly visible in Figure 6e5–e12.

The smallest and most unique are the rare, linear foci formations (Figure 6F) composed
of 2–5 singular foci, lined up almost perfectly and exhibiting a slight clustering effect. These
structures are more prominent in HU and PCC series. PCC-induced linear formations tend
to be bigger (Figure 6f9) and more frequent.
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large number of small foci that tend to form into minor clusters. Due to the lowered number of 

Figure 6. The differences between various characteristic pRb activity details (all marked with white
arrows) under normal conditions, after induction of replication stress and PCC. (A) The perinucleolar
rings that are very easily recognizable in control cells are usually composed of a large number of
small foci that tend to form into minor clusters. Due to the lowered number of active foci in HU and
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PCC series, the clustering effect is not visible. (B) The perimeters of EC/HC regions tend to have the
second strongest (after the perinucleolar rings) grouping of pRb foci, resulting in cluster formations.
(C) The heterochromatin areas that lack pRb activity are much more prominent after HU or PCC
induction as compared to the control. (D) The high-activity factories are composed of a high number
of small and grouped together, yet not clustered pRb foci. They are less visible after incubation
with HU, but their levels of activity return close to normal after PCC induction. Due to the fact
that the rest of nuclear activity after PCC is still lower than control, they are much more distinctive.
(E) Highly condensed clusters are relatively small areas containing a large number of very active
foci. Even though HU treatment induces a decrease in general pRb activity, those clusters are still
significantly active even under replication stress or after PCC. (F) Linear foci formations are very
peculiar arrangements of a small number of pRb foci, forming nearly straight lines and displaying the
tendency to be clustered (visible as a light ‘halo’ connecting all lined up foci). They seem to appear
mostly outside of the nucleolus in control and HU cells (f1–f8), but induction of PCC displays their
occurrence also within nucleoli (f9 and f11). The cells were stained with AlexaFluor 488. The scale
bar is approx. 10 µm.

2.5. Histones

A comparison of the activity of histones H4K8Ac and H3K18Ac was performed as
an aid to determine the role of pRb activity in V. faba’s cells during replication arrest and
after cell cycle checkpoint bypass. Western blotting analysis showed a significant decrease
in the amount of both histones (Figure 7A) with a pattern indicative of the changes in
pRb (compare with Figure 1c2). The table in Figure 7B is a summarized conclusion of
the possible relation between pRb activity, replication and/or transcription in HU and
PCC induced cells. Our team concluded that most of pRb activity was actually related
to DNA replication. There was, however, a subpopulation of pRb foci in the nucleus
that were most probably transcription-related (which will be discussed in the next part
of the article). After analysis of the activity based on immunocytochemical detection, we
observed some similarities in chromatin labeling between pRb, H3, and H4 histones, as
shown in Figure 7C,D, marked with white arrows.
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Figure 7. (A) The results of Western blotting for H4K8Ac (a1) and H3K18Ac (a2). β-actin was used 
as the labeling control for both histones. The density of bars is presented on the charts in arbitrary 
units, the control group is used as a benchmark. Stars show the significant differences between 
control cells and the given analyzed group. (B) The table summarizing the conclusions between 

Figure 7. (A) The results of Western blotting for H4K8Ac (a1) and H3K18Ac (a2). β-actin was
used as the labeling control for both histones. The density of bars is presented on the charts in
arbitrary units, the control group is used as a benchmark. Stars show the significant differences
between control cells and the given analyzed group. (B) The table summarizing the conclusions
between this research (represented by black letters) and the research conducted by Jasencakova [52]
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(represented by blue letters). R stands for replication, T stands for transcription. The bigger the
letter is, the more the protein modification (phosphorylation for Rb-like or acetylation for histones) is
connected with a given mechanism (replication or transcription). Semi-transparent and crossed-out
letters indicate that the connection was not analyzed. R* and T** mean that phosphorylation of
Rb-like protein appears to be linked mostly with the replication (R*), but some small fraction of
its active foci could possibly be related to the transcription (T**) because of the high colocalization
of pRb foci on the perinucleolar regions in some instances. (C) Immunocytochemical detection
of H4K8Ac. (D) Immunocytochemical detection of H3K18Ac. The cells (both in C and D) were
double-stained with AlexaFluor 488 (1st column) and DAPI (2nd column). Images in the 3rd column
are merged images of both fluorophores. Images in the 4th column are schematics representing
histone localization in the nucleus. The light-blue ellipses with dashed lines represent nucleoli, the
green color represents the histone proteins, and the blue color—chromatin. The white hollow arrows
at c5 and d9 mark a large heterochromatin area lacking histone activity. The white arrows mark the
singular areas of higher histone activity. The scale bar is approx. 10 µm.

3. Discussion
3.1. Prolonged Hydroxyurea Incubation Causes Heterochromatin Under-replication, Suppresses
Mitotic Divisions, and Diminishes CycD1 and RbS807/811 Activity

Hydroxyurea is a factor well-known for arresting cells in the G1/S phase and blocking
replication due to its inhibition of the enzyme ribonucleotide reductase (RNR), which
results in the depletion of dNTP pools [53]. The flow cytometry results confirm that
the same effect is observed in Vicia faba’s root meristem cells (Figure 1A), as one can see
a significant increase in the number of S-phase cells, most of which were arrested in
the early-S-phase. Once this has taken place, stalled replication forks require the ATR-
dependent mechanisms to react and prevent them from collapsing even if the replisome
components usually disengage from the DNA [54]. Induction of PCC “shifts” the cell cycle
by bypassing the ATM/ATR-dependent checkpoint, forcing the cells to progress into the
mitotic division regardless of whether the replication is finished. Our previous studies
have shown that PCC-type cells are prone to start mitosis with heavily under-replicated
chromatin causing vast chromosome aberrations. This was not observed in cells that were
arrested in S-phase [2,4]. Heterochromatin areas seem to be of the highest importance in
terms of a cell’s response to replication arrest as studies show that HU frequently causes
the accumulation of ssDNA and leads to epigenetic alterations within these regions [50,55].
Replication stress has been proved to facilitate the expansion of heterochromatin regions
at multiple loci (compare with Figure 1B), possibly by the methylation of H3K9 [56]
and silencing of heterochromatin-associated PEV [55], among others. The HU-induced
spreading of chromatin seems to be more prominent the longer the treatment abides and
seems to be locus-specific, affecting the constitutive and facultative heterochromatin areas
primarily [57]. These structural changes may be inherited epigenetically, and previous
studies show that this phenomenon is evolutionarily conserved [57]. It is interesting to
note that PCC induction reverses heterochromatin expansion of HU-treated cells back to
‘normal’ levels even in interphase cells (compare Figure 1B). Little is known, however,
about the underlying mechanisms that drive this reversal in cells exposed to the inhibition
of ATM/ATR kinases. We theorize that it may involve cohesin activity and nucleosome
modification mechanisms responsible for chromatin compaction during the quiescence, but
more detailed research into this matter is required. Other studies have shown that cohesins
contribute greatly to the primary chromatin structure, and their absence alters the residence
of nucleosomes in some regions [58]. Additionally, transcription-dependent chromatin
remodeling may also be caused by the tumor-suppressing protein pRb which is involved
in the nucleosome remodeling and histone modifications (e.g., acetylation/deacetylation
or methylation) [13,17,40].

The aberrant activation of Rb-E2F in cancer-developing cells is usually an effect of
reduced levels of dNTPs [59], which was replicated in this research with the use of HU.
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The canonical mitogenic pathway of G1/S transition involves CycD-activated CDK4/6
complexes, which lead to the phosphorylation of pRb and, in turn, the release of E2F, previ-
ously repressed by hypophosphorylated pRb [34,35,59]. We decided to take a preliminary
look at both CycD1 and RbS807/811ph in V. faba cells. Our data show that prolonged HU
treatment causes a drop in the activity levels of both proteins, and these levels are slightly
restored after the induction of PCC, but not to their original extent (Figure 1C). As a matter
of fact, a decrease in activity was the only notable change in CycD1 (Figure 1D). pRb also
displayed some prominent changes in the patterns of activity regarding its location in
the nucleus (compare Figure 2A,C). This preliminary research pointed us to the initial
conclusion that further analysis of interphase pRb activity profiles may shed some light on
the V. faba cell’s response to replication arrest and the induction of PCC.

3.2. Retinoblastoma ProteinActivity Profiles Do Not Change Despite Induction of Replication
Stress and PCC

The characteristic S-phase activity profiles of pRb distinguished in this research
(Figure 5I) are—in our opinion—linked to the transcriptional needs of the nucleus at
a given stage of the replication. All profiles, except Type 1 (expressing pRb activity only
within the nucleolus, compare Figure 5IIA), correspond to the rates of replication during
the early/late S-phase periods as analyzed by Li et al. [57], although we theorize that Type
1 may just be the very early, possibly even initial stage of G1/S transition. Stochastic events,
such as replication origin firing, are usually very hard to describe based on observation.
Hence, various mathematical models have to be used to help explain the empirical data.
Replication dynamics depend greatly on this stochasticity and any disturbance, a stalled
fork, for instance, may jeopardize the whole process [48,60,61].Replication is also an orderly
advancing process, and in eukaryotes, euchromatin is generally replicated early in S-phase
while heterochromatin is replicated later (with some exceptions). This scheme is conserved
within the entire eukaryotic kingdom [62]. The small pRb foci observed in Types 2, 2a, and
2b pertain to the euchromatin areas, replicated vividly during early S-phase, while Type
3, characterized by larger foci, is related to the heterochromatin and late S-phase replica-
tion [57]. However, this connection is indirect as pRb only facilitates the transcription of
E2F-related genes and not the replication itself.

The loss of pRb activity after HU treatment appears to be a proper cell response to
the event of replication stress induction, but it does not seem to be the only cause for the
depletion of dNTPs. As a matter of fact, eukaryotic cells have been shown to somehow
control the levels of dNTPs, never allowing them to drop to zero [53]. Replication is arrested
when dNTP levels are not above a critical threshold. This mechanism keeps the minimum
required level of dNTPs as a backup should the replication restart. Recent studies confirm
previous theories that cells may react to HU via some sensory mechanism other than the
depletion of dNTPs. Research shows that HU treatment may produce reactive oxygen
species that may also act as triggers for other stress-response mechanisms [7]. Interestingly,
pRb activity patterns observed after HU still remain the same as in control cells. Their
morphology may be altered because there are a lower number of foci and those present
are not as active, but their localization patterns follow the same five types as in control
cells. In our opinion, the areas that were already being replicated when the HU treatment
started might have been allowed to finish the replication, but the cells did not activate any
new origins. What is striking is the fact that even prolonged HU treatment cells exposed
to HU exhibited a proper stress response, lacking any significant aberrations. Although
HU induces ssDNA at the sites of stalled replication forks, V. faba cells do not seem to
accumulate an excessive number of fragile sites even after 32h of treatment. Studies show
that upon replication arrest, nucleosome components disengage from DNA [54], allowing
the ssDNA-RPA complex to act as a landing site for—among others—ATR kinase [63,64]
and the prevention of fork collapse. Strikingly, these results were also reported for human
cells after acute HU treatment, but the same cells lacked the ability to restart replication
forks after prolonged HU incubation [54]. Replication in cells unable to restart replication
forks usually results in the accumulation of under-replicated chromatin areas that may lead
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to genome instability or death of daughter cells. Vicia faba’s cells seem to react in a more
stable manner than human cells, at least in terms of preventing fork collapse for longer
periods of time, but this feature is yet to be determined precisely.

The fact that cells maintain some minimal threshold of dNTPs, even with inactivation
of RNR, may explain why one can see a slight increase in pRb (and in turn replication)
activity after the induction of PCC. Should the replication stress response mechanism wait
for the dNTP pool to be reduced to zero, the induction of premature mitosis would not
result in the reactivation of any replication activity. However, retinoblastoma protein foci
are maintained following the same patterns found in control, which means they activate the
same chromatin regions as they would without the cell cycle bypass. The vast chromosome
aberrations that can be observed in PCC-type cells (especially mitotic chromosomes) do
not seem to be derived just from a lower activity of pRb. Caffeine is an agent well-known
for its inhibition of ATM and ATR kinases [65] thus—in our opinion—aberrant structures
result primarily from the ATM/ATR disruption rather than from a noneffective stress
response. pRb-related mechanisms seem to work efficiently even during PCC induction as
the localization patterns are subjected to changes similar to those in HU-type cells.

3.3. Heterochromatin

Heterochromatin plays a key architectural role in eukaryotic cells. For instance,
it can ensure correct chromosome segregation by influencing the proper assembly of
centromeres [66] or regulation of gene expression [67]. Studies show that constitutive
heterochromatin is mostly transcriptionally silent, while facultative heterochromatin is
composed of regions that are preferentially silenced and form rather large compartments,
for instance, Lamina-Associated Domains (LADs) located at the periphery of the nucleus
and Nucleolus-Associated Domains (NADs) located around the nucleolus [68]. Both
heterochromatic compartments may be functionally redundant as some studies show
they may change their location from LAD to NAD (and vice versa), should the other
compartment be disrupted [69]. Heterochromatin organization ensures both the stability
of gene regulation but also helps to organize the large-scale genome and form specialized
compartments, including the nucleolus [68,70].

The Rb protein is particularly active in the perinucleolar region in Type 2a nuclei,
as shown in Figure 5IIC. Interestingly, this is the only ”early S-phase” replicating profile
with such prominent pRb activity in this heterochromatin area. Foci forming a signature
ring around the nucleolus border usually tend to cluster into larger compartments (com-
pare with Figure 5IIc2), which is characteristic of heterochromatin regions. Replication
stress is especially dangerous for the late-replicating heterochromatin simply because the
early-replicating regions usually have time to finish duplication (this may be the reason
why cells keep some critical threshold levels of dNTP pools). One important fact that
should be highlighted here is that replication arrest does not force forks to stop replicating
immediately. Cells with accumulated dNTP pools were shown to continue replication
regardless of RNR inhibition [53]. Cells react, however, by inhibiting new origin firing,
preventing any new initiation of replication. The most common outcome, therefore, is the
under-replication of late-replicating heterochromatin [71]. One can see that the number of
cells expressing Type 3 activity (representing pRb activity profile in heterochromatin areas)
are much less common in HU- and PCC-type cells (Figure 5I), most probably due to the
fact that these areas are restricted from starting replication. What is noteworthy is that the
number of cells expressing increased perinucleolar pRb activity increases after HU and
PCC treatment. This indicates that perinucleolar heterochromatin may be a key factor in
response to replication stress. In fact, some other areas of facultative heterochromatin may
also contribute to this response as we observed an increased activity of pRb in some small
areas, usually in the perimeter of eu- and heterochromatin (compare Figure 6).

Heterochromatin is usually highly condensed and formed by denser and less mobile
nucleosome groups compared to euchromatin [72,73]. This feature presents a challenge for
replication forks and replisome components, which are meant to replicate heterochromatin
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DNA. For this reason, heterochromatin areas are more prone to replication stress caused
by a stalled fork generated by an environmental obstacle or genotoxic interference (like
HU, for instance). During replication, nucleosomes are disrupted ahead of the progressing
replisome [74] in order to unwind DNA. After replisome passes, DNA organization is
restored by reassembling parental histones and the deposition of newly synthesized his-
tones onto DNA [49]. The mechanisms guarding the fidelity of epigenetic markings passed
onto new DNA strands are still quite elusive, but recent studies show that replication
stress causes disturbances in the transfer of the epigenetic markings, leading to epigenetic
instability [55].

3.4. Histones

Apart from being a ”gateway” protein for G1/S progression, pRb also plays a sig-
nificant role in the regulation of nucleosomal structures as well as chromatin compart-
ments, partially by its interactions with HDAC1 (histone deacetylase 1) or SWI/SNF
(ATP-dependent histone exchange/removal complex) proteins [31], which modulate gene
transcription by modifying the structure of chromatin. Generally, histone acetylation leads
to the opening of chromatin and stimulates transcription. Retinoblastoma protein can
modulate the local balance between histone acetylation/deacetylation and transcription
as a result [40]. The correlation between acetylation and transcriptional activity has been
proven several times, as described by Jasencakova and her co-workers [52,75]. There is,
however, evidence that modifications at the lysines of histones H4 and H3 are connected
with replication itself rather than transcription [52]. Histone H4 acetylation has been
reported to be strongest in heterochromatic regions during replication and to correlate
with the incorporation of BrdU, while the H3 acetylation patterns were mostly uniform
throughout the cell cycle [52,75]. The comparison of H4K8Ac and H3K18Ac histones with
pRb activity confirms general acetylation of chromatin domains occur during S-phase, as
shown in Figure 7C (H4K8Ac) and Figure 7D (H3K18Ac) seem to correlate mostly with
replication. Some local acetylations may be related to the transcription—their percentage,
however, is minimal. In our opinion, general pRb activity in interphase nuclei is also related
mostly to replication. The exception to this is the nucleolus and perinucleolar region of
heterochromatin that may correspond to the transcriptional activity. This idea is supported
by the fact that there is an increased number of cells expressing enhanced pRb activity in
these regions after replication arrest and PCC induction (Figure 5I).

4. Material and methods
4.1. Plant Material, Growth Conditions, Hydroxyurea, and Caffeine Treatment

The seeds of Vicia faba var. minor (Center for Seed Production, Sobiejuchy, Poland)
were germinated on Petri dishes lined with a wet filter paper, in the dark, at room tempera-
ture until the seedlings were approximately 3 cm long. Selected seedlings were divided
into 3 groups and incubated in (i) water (negative control; 32 h total incubation time),
(ii) 2.5 mM HU (S-phase synchronization/positive control; 32h total incubation time), and
(iii) 2.5 mM HU for 24h, and transferred to a mixture of 2.5 mM HU and 5 mM caffeine
for 8h (PCC induction; 32h total incubation time). Roots were continuously aerated in
a water-bath shaker (30 rpm). The procedure and incubation times were performed as
described previously by [3].

4.2. DAPI Staining and Quantitative Heterochromatin Measurements

The nuclei were isolated using Van’t Hoff’s method as first described in [76]. Vicia
faba’s roots were fixated in PBS buffer (4% paraformaldehyde, pH 7.2) for 10 min at room
temperature. Root apical fragments were cut off after fixation and washed in PBS buffer
twice (5 min each). Lastly, they were suspended in a drop of PBS buffer and squeezed
between 2 microscope slides. The nuclei released into the drop were collected and purified
in a centrifuge (5 min, 600 g). Isolated nuclei, suspended in fresh PBS, were stained
with a DAPI (Sigma-Aldrich, Saint Quentin, France) solution at 1 µg/mL, in the dark
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for 5 min. The nuclei were centrifuged after staining (5 min, 500 g at 4 ◦C) in order to
remove the staining agent, suspended in a fresh PBS, and applied on polylysinated slides.
Samples were analyzed using Nikon ECLIPSE E600W (Nikon, Warsaw, Poland) fluorescent
microscope, and obtained images were used for heterochromatin measurements.

Unedited images were converted into grayscale, and chromatin density was measured
as the level of each pixel’s lightness, from 0 (no chromatin present) to 255 (highly condensed
chromatin). In the first step, the nuclei were marked, and the areas of each nucleus were
measured as a total number of px on the image, in the second step, only the heterochromatin
areas of each nucleus were marked and their area was measured (also as the number of
pixels). The overall heterochromatin percentage in the nucleus was calculated as the mean
heterochromatin area against the mean area of the nucleus, in percentage terms as described
in [8].

4.3. Cell Cycle Analysis

Cell cycle analysis was performed using the RSLII flow cytometer and FlowJo 10.4.1.
software (FlowJo LLC, Ashland, OR, United States), similarly to the procedure described
in [64]. The forward and side scatter channels (FSC and SSC, respectively) were used for
the identification of cells in different phases of the cell cycle. First, the debris was removed
by analysis of SSC-A versus FSC-A plot. Next, the FSC-H versus FSC-A plot was used
to remove clumps and doublets and SSC-H versus SSC-A plot to remove debris remains
and some apoptotic cells. Finally, gated cells were applied to propidium iodide (PE-A vs
PE-W), and the final plot was generated using cell count versus PE-A. The control sample
of cells was used to validate the gating, and the same parameters were used for the rest of
the samples. Final identification of the subpopulation of cells in different phases of the cell
cycle was performed in FlowJo by fitting Gaussian curves to each phase.

4.4. Western Blotting

Approximately 1.5 mm-long root meristem sections (n = 30 for each series) were cut off
and used for protein extraction. Analyzed proteins were extracted in accordance with [2],
using TriPure Isolation Reagent (Roche Diagnostics Corporation, Indianapolis, IN, United
States) in accordance with manufacturer’s instructions, and final concentrations of cell
lysates were assessed by Ultrospec 110 pro (Amersham Biosciences, Vienna, Austria).
Protein extracts were separated on 7% polyacrylamide-SDS gel and extracted onto a
nitrocellulose membrane (u 0.45 µm, Schleicher and Schüel, Dassel, Germany). Signal
visualization was performed using NBT/BCIP (Nitro blue tetrazolium chloride/5-bromo-
4-chloro-3-indolyl phosphate, toluidine salt, Sigma-Aldrich, Saint Quentin, France) as
substrates. β-tubulin was used as an internal control for CycD1 (1:1000; Sigma-Aldrich,
Saint Quentin, France), Rb (1:1000; Cell Signaling Technology, Beverly, MA, USA) and
RbS807/811ph (1:1000; Cell Signaling Technology, Beverly, MA, USA), and β-actin (1:1000;
Cell Signaling Technology, Beverly, MA, USA) was used as an internal control for H4K8Ac
and H3K18Ac (1:1000; Cell Signaling Technology, Beverly, MA, USA).

4.5. Tissue Printing

Apical root fragments (approx. 1.5 cm-long) were dissected longitudinally and blotted
onto a nitrocellulose membrane in accordance with [8]. The procedure performed was
similar to [4]. Anti-cyclin D1 (anti-CycD1;1:1000; Sigma-Aldrich, Saint Quentin, France)
were used as primary antibodies together with secondary antibodies conjugated with
alkaline phosphatase. The induction of color reaction was performed for 10 min with
substrates for alkaline phosphatase—NBT and BCIP (nitro blue tetrazolium and 5-bromo-
5-chloro-3-indolyl phosphate, respectively) in a buffer (100 mM Tris, pH 9.5; 100 mM NaCl;
5 mM/Mg Cl2). Prints were made using Stemi 2000C microscope (Zeiss, Jena, Germany),
images were acquired with AxioCam ERc5s CCD camera (Zeiss, Jena, Germany).
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4.6. Immunocytochemistry

Immunocytochemical procedures were performed similarly as described by [4,14,77].
1.5 mm long apical parts of V. faba roots were fixed in PBS-buffered 3.7% paraformaldehyde
(45 min, 18 ◦C), washed in PBS several times, and put into a digesting solution containing
2.5% pectinase (Fluka, Munich, Germany), 2.5% cellulose (Onozuka R-10; Serva, BIOKOM,
Janki-Warsaw, Poland), and 2.5% pectolyase (Sigma, St. Louis, MO, United States), buffered
with citric acid (pH 5.0; 45 min; 37 ◦C). After digestion, root tips were washed in PBS
3times, rinsed with distilled water, squash-flattened onto Super Frost Plus glass slides
(Menzel-Gläser, Merck, Darmstadt, Germany), and air-dried. Slides prepared in that
manner were next pretreated with 5% BSA containing 0.5% Triton X-100 (60 min, 20 ◦C)
and incubated overnight (4 ◦C in a humidified environment) with a primary antibody
(raised against Rb, RbSer807/811ph, H4K8Ac, and H3K18Ac, respectively) produced by
rabbits (Cell Signaling Technology, Beverly, MA, USA, at dilution of 1:500). The slides were
again washed three times after overnight incubation with PBT and next incubated with
the secondary anti-rabbit IgG AlexaFluor 488 (Cell Signaling Technology, Beverly, MA,
USA, at dilution of 1:1000) in PBT (2h, room temperature in the dark). Lastly, samples
were washed with PBT and PBS (2 times, 5 min each). Additional DAPI staining of nuclear
DNA (0.4 µg/mL) was also performed. After washing with PBS, the slides were air-dried
and seated in mounting media (Vectashield, Vector Laboratories, Burlingame, CA, United
States). Observations were made with AxioImager.A1 fluorescence microscope (Zeiss,
Jena, Germany).

4.7. Image Analysis and 3D Modeling

Unless said otherwise, images were captured using AxioCam ERc5s CCD camera
(Zeiss, Jena, Germany). Quantitative image analysis was performed on unedited images,
converted to 8-bit grayscale in Fiji—an Open Source platform [78] based on ImageJ software
(NIH and LOCI, University of Wisconsin, Madison, WI, United States). Post-analytic image
processing was performed in Affinity Photo 18.5 and Affinity Designer 18.5 (Serif Europe
Ltd., Nottingham, England). 3D models of nuclei and protein activity were prepared in
Blender 2.9.1 (Blender Foundation, Amsterdam, The Netherlands), based on the microscope
images of real samples.

4.8. Statistical Analysis

All statistical analyses were performed using Statistica 13.3 PL (Statsoft INC, Tulsa,
OK, USA). The measured data were presented as mean ± SD (bar and whiskers plots)
or raw data (scatterplots). Group differences were assessed by a one-way ANOVA and
post-hoc analysis by Tukey’s test. Correlation coefficients r and r2 were calculated for the
2D scatterplots. Statistical significances were analyzed at p > 0.05.

5. Conclusions

Replication stress possesses a threat not only to the integrity of the genome itself, but
also to the epigenetic modifications, especially within the heterochromatin area, which is
usually under-replicated after the induction of replication arrest. Prolonged inhibition of
fork progression interferes with the recycling of histones as well as the epigenetic marking
of new ones and may lead to a loss of identity in new cells. Our findings suggest that
mechanisms that respond to replication stress in root meristem cells of V. faba act in an
orderly and precise manner. Even though the overall pRb activity is diminished, the activity
profiles characteristic to the subsequent stages of replication are still clearly visible. One
can only observe local, specific alterations, most probably related to DNA-damage cell
response pathways or replication perturbations that need to be addressed. Facultative
heterochromatin areas, especially in the perinucleolar region, seem to play a key role in this
response as pRb activity is, at the very least, maintained within this area, and the number
of nucleolus-active cells is increased after HU and PCC induction.
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