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A B S T R A C T

After sudden traumatic brain injuries, secondary injuries may occur during the following days or weeks, which
leads to the accumulation of reactive oxygen species (ROS). Since ROS exacerbate brain damage, it is important
to protect neurons against their activity. Zinc finger protein 179 (Znf179) was shown to act as a neuroprotective
factor, but the regulation of gene expression under oxidative stress remains unknown. In this study, we
demonstrated an increase in Znf179 protein levels in both in vitro model of hydrogen peroxide (H2O2)-induced
ROS accumulation and animal models of traumatic brain injury. Additionally, we examined the sub-cellular
localization of Znf179, and demonstrated that oxidative stress increases Znf179 nuclear shuttling and its
interaction with specificity protein 1 (Sp1). Subsequently, the positive autoregulation of Znf179 expression,
which is Sp1-dependent, was further demonstrated using luciferase reporter assay and green fluorescent protein
(GFP)-Znf179-expressing cells and transgenic mice. The upregulation of Sp1 transcriptional activity induced by
the treatment with nerve growth factor (NGF) led to an increase in Znf179 levels, which further protected cells
against H2O2-induced damage. However, Sp1 inhibitor, mithramycin A, was shown to inhibit NGF effects,
leading to a decrease in Znf179 expression and lower cellular protection. In conclusion, the results obtained in
this study show that Znf179 autoregulation through Sp1-dependent mechanism plays an important role in
neuroprotection, and NGF-induced Sp1 signaling may help attenuate more extensive (ROS-induced) damage
following brain injury.

1. Introduction

Traumatic brain injury (TBI) is a serious public health problem
resulting in death or disability [1], due to damages caused by both
immediate and secondary injuries. Secondary injuries generate the
most damage because they develop and progress over many hours and
months after the immediate injury. Environmental stressors include
ischemic sugar/oxygen deprivation, inflammatory cytokine release, the
release of excitatory neurotransmitters, and metabolic depression. This
leads to the accumulation of reactive oxygen species (ROS) [2,3], which
plays a major role in the pathophysiology of various kinds of brain
damage. The accumulated ROS can damage cellular organelles and

induce apoptosis of brain cells if untreated. Therefore, preventing ROS-
mediated cellular damage is important in the therapy of neurological
disorders.

Zinc finger protein 179 (Znf179, also known as Zfp179/RNF112/
Bfp) is predominantly expressed in human nervous system [4], and it is
necessary for the embryonic nervous system development [5]. When
retinoic acid (RA) is used to induce P19 EC cells to differentiate into
neural cells, Znf179 expression was shown to be upregulated, which
results in the increase of p35 and p27 protein levels, leading to the cell
cycle arrest at the G0/G1 phase and the initiation of cell differentiation.
The inhibition of Znf179 expression was shown to significantly sup-
press neuronal differentiation [5]. Recently, the results of our study
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indicated that Znf179 acts as a novel neuroprotector mitigating cell
death after hydrogen peroxide (H2O2)-induced oxidative stress, and its
accumulation correlates with H2O2 exposure time [6]. However, the
mechanism of H2O2-induced elevation of Znf179 expression remains
unclear.

Specificity protein 1 (Sp1) is a transcription factor, which is
essential for the regulation of the expression of many genes involved
in cell growth, angiogenesis, and survival [7]. Previous studies indi-
cated that Sp1 in neurons acts as a pleiotropic oxidative stress response
protein [8–10]. It was shown that the exposure of primary cortical
neurons to ischemia-like oxygen-glucose deprivation, Sp1 expression
increased, which led to the accumulation of this protein, and the
protection of neurons against ischemic damage [9]. Additionally, Na
+/Ca2+ exchanger 1 (NCX1), was shown to represent a Sp1 target
protein [11], and it is important for the reduction of brain damage
following cerebral ischemia [12]. Therefore, Sp1 activation may
provide neuroprotection and neurorestoration to cells in vitro and in
the animal models of brain ischemia.

In this study, we investigated the mechanisms of Znf179 upregula-
tion during the exposure to stressful conditions. Our results demon-
strated that Znf179 positively autoregulates its own expression through
Sp1-dependent activation of transcription, and that the increase in
nerve growth factor (NGF)-induced Sp1 activity significantly increases
Znf179 levels and improves cell survival after H2O2 treatment. These
findings may have potential therapeutic value in the treatment of ROS-
induced damage in neurotraumatic diseases.

2. Materials and methods

2.1. Experimental animals

We used 10–12 weeks old male wild-type mice (C57BL/6: n =24
and FVB/NJ: n =12, National Laboratory Animal Center, Taipei,
Taiwan) and 12 weeks old male Znf179-expressing transgenic mice
(n =8) on the C57BL/6 genetic background (Table 1), housed five per
cage in an air-conditioned vivarium with free access to food and water.
Throughout the study, a 12-h light/dark cycle was maintained with
lights on at 8 AM. Each mouse was used for one experiment only. All
procedures adhered to the Guidelines for Care and Use of Experimental
Animals of the Taipei Medical University (Taipei, Taiwan). Ten C57BL/
6 mice were excluded from weight-drop TBI because they: (1) had
missed target areas (wild-type: n =4) or (2) died during the experi-
mental procedures (wild-type: n =5; znf179 transgenic: n =1) and
within 24 h after the impact (wild-type: n =1).

2.2. Bacterial artificial chromosome (BAC) transgene construction
and transgenic mice generation

By the assistance of National Laboratory Animal Center, the
transgenic mouse overexpressing green fluorescent protein (GFP)-
Znf179 under control of znf179 gene promoter presented in a BAC
expression vector were generated. Mouse znf179 gene fused to GFP
was inserted into the BAC DNA (RP23-354C18) using homologous
recombination in Escherichia coli. Subsequently, the recombined BAC
clone was injected into fertilized mouse oocytes from C57BL/6 mice,

and the oocytes were implanted into the uterus of pseudo-
pregnant foster mothers. After birth, potential founders were screened
for the presence of the transgene using PCR with primers: 5′-
CGCACCATCTTCTTCAAGGACG-3′ and 5′-TTCTCGTTGGGGTC
TTTGCTC-3′. Animal positive for the transgene mated to wild-type
(C57BL/6) mice to stabilize the line and for further characterization.

2.3. Weight-drop TBI model

Mice (C57BL/6) weighing 25–30 g were anesthetized lightly by
inhalation of isoflurane (3%) in a closed glass chamber for 2 min. The
left side of the head, between the eye and ear, was positioned under the
guide tube of a weight-drop device and held in place by a sponge. In the
device, a cylindrical iron weight (50 g) with a spherical tip was dropped
from the full height of the vertical, graduated guide tube (100 cm long).
The effect of the injury on the brain was studied at 4 days following the
trauma.

2.4. Controlled cortical impact (CCI) model

Mice (FVB/NJ) weighing 25–30 g were anaesthetized and placed in
a Kopf stereotaxic head frame (David Kopf Instruments). By using a
dental drill, a 5-mm craniotomy was performed over the left parietal
cortex between the bregma and lambda. The bone flap was removed
and injury was made using a Precision Systems and Instrumentation
TBI-0310 (Fairfax Station, VA) that administered a 1 mm cortical
compression (3 mm impactor diameter, 2.5 m/s velocity, 150 ms
duration dwell time) [13]. Sham animals were anesthetized but no
CCI. Body temperature was monitored throughout the surgery by a
rectal probe; temperature was maintained at 37.0 ± 0.5 °C using a
heated pad.

2.5. Cell culture and transfection

Mouse neuroblastoma Neuro-2a (N2a) cells (ATCC) were cultured
in minimum essential medium Eagle (MEM, Invitrogen) containing
10% (vol/vol) fetal bovine serum (FBS), and 1% penicillin/streptomy-
cin in an incubator set at 37 °C with 5% CO2. Cellular differentiation
was induced by serum deprivation in MEM/BSA medium (MEM
supplemented with 0.1% bovine serum albumin) for 24 h [14], and
differentiating N2a cells were used for all experiments. The 80%
confluent cells were treated with H2O2 (Sigma-Aldrich), NGF
(Invitrogen), and/or mithramycin A (Sigma-Aldrich). Transfection of
a reporter plasmid (pGL2-Basic-znf179), protein-expressing vectors
(pEGFP, pEGFP-Sp1, and pEGFP-Znf179) or shRNA plasmids (pLKO-
shLuc and pLKO-shSp1) was performed by using Lipofectamine 2000
according to the manufacturer's protocol (Invitrogen). Each transfec-
tion experiment was performed more than three times as indicated,
and each sample in each experiment was prepared in duplicate.

2.6. Western blot analysis

Protein samples from cells (1×106) were separated by electrophor-
esis on a polyacrylamide gel in the presence of sodium dodecyl sulfate,
and then transferred onto a PVDF membrane (Bio-Rad Laboratories).
The membrane after transfer was blocked with 5% skim milk in TBST
for 1 h and incubated with primary antibodies: Anti-Sp1 (0.5 µg/ml),
anti-GAPDH (0.1 µg/ml), anti-actin (1 µg/ml) antibodies from
Millipore, anti-p53 (1 µg/ml), anti-phospho-p53 (Ser15) (1 µg/ml),
anti-p38 (1 µg/ml), anti-phospho-p38 (Thr180/Tyr182) (1 µg/ml)
antibodies from Cell Signaling Technology, and anti-Znf179 (0.5 µg/
ml) antibody [5], for 2 h at room temperature. After primary antibody
incubation and washing, the membrane was then incubated with
horseradish peroxidase-conjugated anti-mouse or anti-rabbit antibo-
dies (0.15 µg/ml, Santa Cruz Biotechnology) for 1 h at room tempera-
ture. Finally, the membranes were washed three times with TBST

Table 1
The number of animals used in each group of weight-drop TBI and CCI.

Weight-drop TBI model (C57BL/6) CCI model (FVB/NJ)

Wild-type znf179 transgenic Wild-type

sham TBI Exclusion
of TBI

Sham TBI Exclusion
of TBI

Sham TBI Exclusion
of TBI

n 8 7 9 3 4 1 3 9 0
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buffer, and the peroxidase was developed by chemiluminescent sub-
strates (GE Healthcare).

2.7. Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA of cells (1×106) was isolated using a TRIzol RNA
extraction kit (Invitrogen) and subjected to RT-PCR using
SuperScript II reverse transcriptase (Invitrogen). Znf179 primers for
PCR were 5′-GAAGGTGGCTGTGTTCTTAGTG-3′ and 5′-
GATCGGTATCCTTCAGCTCTTG-3′. Actin primers for PCR were 5′-
ACTGGGACGACATGGAGAAG-3′ and 5′-GGTACGACCAGAGGCATA
CAG-3′. The PCR products were separated using agarose gel electro-
phoresis and visualized with ethidium bromide staining.

2.8. Luciferase reporter assay

The promoter fragment of mouse znf179 (−533 to −5) was
constructed into the pGL2-Basic vector (Promega). Twenty-four hours
after transfection and reagent treatments, cells (5×105) were harvested,
and the luciferase activities from these cell lysates were measured using
the Dual-Luciferase Reporter (DLR) Assay System as per the manufac-
turer's instructions (Promega).

2.9. DNA affinity precipitation assay (DAPA)

The Sp1-binding oligonucleotide 5′-GCTCTCCCCCTCCCCT
CCCCCTCCCTGTCCTT-3′, localized –372 to −341 bp within the pro-
moter of znf179, and the Sp1 mutant oligonucleotide 5′-
GCTCTCaCaaTCaaCTCaCaaTCaCTGTCCTT-3′ were biotinylated at 5′
termini and then annealed with their complementary strands. Cell
extract (300 µg) was incubated with the biotin-labeled oligonucleotide
(1 µg) in 500 µl of binding buffer (60 mM KCl, 12 mM HEPES, pH 7.9,
4 mM Tris–HCl, 5% glycerol, 0.5 mM EDTA, 1 mM dithiothreitol) for
2 h at 4 °C. Then the streptavidin-agarose beads (30 µl, Sigma-Aldrich)
were added, and the mixture was incubated for 1 h at 4 °C, in order to
pull down the DNA-protein complexes.

2.10. Immunoprecipitation

Cells (1×107) were washed with PBS, and the cellular lysates were
prepared by using modified RIPA buffer (50 mM Tris, pH 7.8, 150 mM
NaCl, 5 mM EDTA, 0.5% Triton-X100, 0.1% Nonidet P-40, and
protease inhibitors). Polyclonal anti-Sp1 antibodies or control immu-
noglobulin G (IgG) were then added (2 µg/ml) to the lysates and
incubated at 4 °C with rotation. After 2 h, protein-A/G agarose beads
(30 µl, Santa Cruz Biotechnology) were also added to the mixture and
further incubated for 1 h. The protein beads were washed three times
with modified RIPA buffer. Bound proteins were eluted by using
electrophoresis sample buffer.

2.11. Immunofluorescence

The cells were fixed with 4% paraformaldehyde (Sigma-Aldrich) in
PBS according to a method described previously [15]. Immunostaining
was conducted with anti-Sp1 (Millipore) and anti-Flag M2 (Sigma-
Aldrich) antibodies. The cells were then treated with Alexa Fluor 488-
conjugated goat anti-rabbit IgG and Alexa Fluor 568-conjugated goat
anti-mouse IgG polyclonal antibodies (Invitrogen). Finally, the cells
were mounted in 90% glycerol containing 4′-6-diamidino-2-phenylin-
dole (DAPI) (Invitrogen), and examined using a fluorescence micro-
scope (Leica STP6000).

2.12. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) assay

Cells were plated into 24-well plates at a concentration of 10,000

cells/well. After treatment with reagents as indicated, cells were wash
and incubated with MTT (300 µl of 0.5 mg/ml, Sigma Aldrich) in PBS
for 1 h at 37 °C. Following incubation, the MTT solution in each well
was then carefully removed, and 300 µl of 100% DMSO was added to
each well. The amount of resultant formazan crystals was determined
by measuring the absorbance at 570 nm using an iMark Microplate
Absorbance Reader (Bio-Rad).

2.13. Statistical analysis

Each assay was run in duplicates and similar results were obtained
from more than three independent experiments. The statistical ana-
lyses for data from the Western blots, reporter assays, and MTT assays
were calculated using the unpaired, two-tailed Student's t-test. The
significance level was set less than 0.05 (p < 0.05).

3. Results

3.1. Peroxide insult increases znf179 promoter activity

Closed head injuries were successfully induced using the weight-
drop device, as demonstrated by the hematomas that formed on top of
the brain lesions (Fig. 1A). The levels of Znf179 protein after TBI were
analyzed by the western blot analyses of cortical brain tissue homo-
genates. A statistically significant increase in Znf179 protein levels was
detected in the injured brain tissues compared to those in the sham-
operated controls (Fig. 1B and C). ROS accumulation is a major cause
of neuronal death in the secondary injury following TBI [16], and
therefore, we induced ROS generation in differentiated N2a cells using
H2O2, which demonstrated that the activation of cell death signaling
pathways following H2O2 treatment was similar to that seen in the
animal models of TBI (data not shown). Furthermore, to examine the
correlation between Znf179 expression and intracellular ROS produc-
tion, differentiated N2a cells were treated with H2O2 for 24 h, and the
obtained results showed that Znf179 expression is induced by H2O2 in
a dose-dependent manner (Fig. 1D and E). We further investigated
znf179 expression and the activity of its promoter using RT-PCR and
luciferase reporter assay, respectively, and demonstrated that peroxide
insult leads to the upregulation of znf179 expression, and enhanced
transcriptional activity (Fig. 1F and G).

3.2. Sp1 is involved in the regulation of znf179 gene expression

To identify transcription factors regulating znf179 gene expression,
we searched for the potential transcription factor-binding sites in the
promoter‐proximal region of human and mouse znf179 genes, span-
ning from position −500 to position −100, relative to the translation
start codon, and found at least seven conserved Sp1-binding elements
in this promoter region (Fig. 2A). Therefore, we examined Sp1 binding
to these Sp1-binding elements, and DAPA results confirmed that Sp1
binds to znf179 promoter, but its binding was significantly lower when
Sp1 mutant oligonucleotide was used (Fig. 2B). To confirm the roles of
Sp1 in the regulation of znf179 expression, we overexpressed Sp1 in
the differentiated N2a cells. Luciferase reporter assay and western blot
results showed that both the activity of znf179 promoter and the
expression of this protein were increased following the overexpression
of Sp1 (Fig. 2C and D). However, a considerable reduction in Znf179
mRNA and protein levels was detected by using the cells treated with
Sp1 antagonist mithramycin A (MA) and short hairpin RNA (shRNA)
Sp1 knockdown cells (Fig. 2E and F).

3.3. Znf179 positively autoregulates its own expression

Previously, we had generated a stable cell line, with cells expressing
GFP-Znf179 fusion protein [6]. The endogenous Znf179 levels were
shown to be upregulated in these cells as well, in comparison with

J.-Y. Chuang et al. Redox Biology 11 (2017) 135–143

137



those in the GFP-expressing control cells (Fig. 3A). In order to further
elucidate this, znf179 transgenic mice (Znf-Tg) were generated, with
constitutive GFP-Znf179 expression in neurons. A significant increase
in endogenous Znf179 levels was observed in Znf-Tg mice as well
(Fig. 3B), strongly indicating that Znf179 positively autoregulates its
expression. We investigated the transcriptional activity of znf179, and
confirmed that Znf179 can induce the activity of its own promoter
(Fig. 3C). By using Sp1-antagonist treatment combined with DAPA
analysis, Sp1 was identified as a critical mediator in Znf179 auto-
regulation (Fig. 3D and E).

3.4. H2O2 stimulates the protein shuttling of cytoplasmic Znf179 into
the nucleus

Znf179 was shown to localize to both nucleus and cytoplasm in the
primary cultures of mouse cerebellar cells [5]. However, whether stress
induces the sub-cellular Znf179 localization changes remains unclear.
We performed cellular fractionation to obtain nuclear and cytoplasmic
fractions, and Znf179 was shown to localize predominantly in the
cytoplasm in untreated cells, but nuclear Znf179 levels increased
following a 30-min exposure to oxidative insults (Fig. 4A).
Immunofluorescence staining and image analyses demonstrated nucle-
ar import of Znf179 and the co-localization of this protein with Sp1 in
nucleus after H2O2 treatment (Fig. 4B). To examine the interactions
between Sp1 and Znf179 further, Flag-Znf179 overexpressing cells
were used for co-immunoprecipitation analysis, and the result showed
an obvious association between Znf179 and Sp1 following H2O2

treatment (Fig. 4C).

3.5. TBI and H2O2 treatment induce both Sp1 and Znf179 expression

TBI was induced using the CCI model, as demonstrated by
hematomas (at day 1–4) and swelling (at day 7) that formed on left
side of the brain (Fig. 5A). We examined Sp1 and Znf179 protein levels
after TBI. Western blot analyses of cortical brain tissue homogenates
demonstrated concordant upregulation of Sp1 and Znf179 levels in the
injured tissues compared with those measured in the right hemisphere
controls and sham-operated controls (Fig. 5B). Additionally, we
analyzed protein levels of Sp1 and Znf179 following H2O2 treatment,
and found that the upregulation of Znf179 correlated with the increase
in Sp1 levels (Fig. 5C). These results suggested that the Sp1-mediated
upregulation of Znf179 expression play an important role during brain
injury, particularly in oxidative insults. Therefore, we overexpressed
Znf179 in Znf-Tg mice that underwent TBI, and Flag-Znf179 in cells
that underwent oxidative stress. Western blot results showed that cell
death signaling pathways, such as the phosphorylation of p53 and p38,
were induced by TBI and H2O2 treatment, but Znf179 upregulation
significantly reduced the activation of these pathways activation
(Fig. 5D and E). Furthermore, cell viability was measured using the
MTT assay, which showed that Znf179 overexpression can prevent cell
death induced by oxidative stress (Fig. 5F).

Fig. 1. Oxidative stress and traumatic brain injury (TBI) induce Znf179 expression. (A) Weight-drop TBIs; A clot in the left mouse hemisphere was generated in order to induce a
cerebral injury. (B) Mouse brain (cortex) homogenates from sham-operated and TBI mice were analyzed using western blot. (C) Znf179 levels, normalized to actin levels, were
quantified. Results from five independent experiments, described in B, are presented (t-test: ***p < 0.001). (D and E) Differentiated neuron-like N2a cells were treated with different
H2O2 concentrations for 24 h, and Znf179 levels were analyzed. (E) Bars represent mean ± standard error of mean (s.e.m.) obtained in three independent experiments (t-test: *p < 0.05,
**p < 0.01). (F) Znf179 mRNA levels were analyzed in N2a cells treated with 50 µM H2O2 for 6 h. Actin was used as an internal control. (F) Luciferase assay results, using HEK 293 T and
N2a cells overexpressing znf179, which were treated with H2O2 for 24 h (**p < 0.01, ***p < 0.001).

J.-Y. Chuang et al. Redox Biology 11 (2017) 135–143

138



3.6. NGF stimulates Znf179 expression which protects cells against
oxidative injury

Previous studies indicated that NGF levels in the cerebrospinal fluid
and serum of TBI patients are significantly increased [17,18], and Lin
et al. recently demonstrated by using a pseudo lentiviral-delivery
method that the long-term expression of NGF can rescue the hippo-
campus function following the TBI [19]. However, the precise role of
NGF in the recovery after head injury remains unclear. As Sp1 is a
main downstream effector of NGF [20], which affects znf179 gene
expression, we further investigated whether NGF mitigates H2O2-
induced cytotoxicity through the activation of Sp1-Znf179 pathway.
N2a cells were treated with different doses of NGF for 1 day, and the
reporter assay and western blot results confirmed that NGF increases
both mRNA and protein levels of Znf179 (Fig. 6A and B), but the pre-
treatment with Sp1 antagonist nullified the protective effects of NGF
(Fig. 6B and C). Following this, the viability of cells treated with H2O2

was measured using MTT assay, and we showed that NGF prevents
H2O2-induced cell death (Fig. 6D). However, Sp1 antagonist treatment
reduced cell survival.

4. Discussion

The data obtained in this study demonstrate that Sp1-mediated
upregulation of Znf179 expression plays a role in the mitigation of cell
death following the TBI. We showed that the expression of Sp1 and its
downstream target, znf179, is upregulated after TBI and peroxide
insult, that H2O2 induces positive Znf179 autoregulation by stimulat-
ing Sp1 activity, and that NGF-stimulated Sp1 activation leads to an
increase in Znf179 expression, providing maximal protection against
oxidative injury (Fig. 7). These findings indicate that NGF-induced
increase in neuroprotective functions of Sp1-Znf179 pathway may
allow the development of new therapeutic approaches for the preven-
tion or reduction of extensive secondary damage caused by TBI.

Using tissue distribution analysis, Znf179 was shown to be primar-
ily expressed in brain and upregulated during neuronal differentiation
[5,21]. Recently, several studies revealed that Znf179 is an important
regulator of neural development, synaptic plasticity, and cellular
survival [5,6,22,23]. During the embryonic development, Znf179
induces cell cycle arrest at the G0/G1 phase, which initiates neuronal
differentiation [5]. znf179-/- mouse embryos were shown to have

Fig. 2. Sp1 induces znf179 promoter activity. (A) The promoter‐proximal region of human and mouse znf179. (B) DNA affinity precipitation assay (DAPA) results, using N2a cell
extracts without (-) or with (+) a DNA probe, containing Sp1 binding sites in the znf179 promoter, or the mutant sites. (C and D) Luciferase assay, using N2a cells co-transfected with the
empty vectors or pEGFP-Sp1 together with pGL2-Basic-znf179 (**p < 0.01, C). These samples were analyzed using western blot as well (D). (E) Plasmid-transfected cells, as in (C), were
treated with mithramycin A (MA) for 24 h. Bars represent luciferase activity (mean ± s.e.m.) obtained in three independent experiments (t-test: *p < 0.05, **p < 0.01). (E) Cells were
transfected with pLKO-shSp1 (shSp1), and Sp1 and Znf179 protein levels were analyzed using western blot (**p < 0.01, ***p < 0.001). pLKO-shLuc (encoding luciferase shRNA, shLuc)
was used as a control.
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smaller brains compared with those of the wild-type mice, and the
knockout of this gene led to an early death in utero, indicating that
Znf179 is necessary for the embryonic neural development [24]. In
adult brain, Znf179 regulates excitatory synapses and spine density at
the cytoplasm through endosomal membrane association [22]. The
treatment of brain cells with pro-inflammatory cytokines or the
exposure to oxidative stress were shown to lead to an increase in
Znf179 levels, which further leads to the downregulation of pro-

apoptotic genes and the upregulation of antioxidant gene expression
[6,23]. Therefore, high expression levels of Znf179 are crucial not only
in the fetal period during the development of the nervous system, but
also in the adult brain, where this protein is involved in the main-
tenance of neural functions and protection of the nervous tissue cells
from stress-induced damage. A recent study demonstrated that in
astrocytes, CCAAT/enhancer binding protein delta (CEBPD) represents
a key factor leading to znf179 upregulation upon interleukin-1β

Fig. 3. Znf179 autoregulates its promoter through Sp1 activity. (A) Znf179 levels were analyzed in GFP (G) and GFP-Znf179 (G-Z) expressing N2a cells. (B) Znf179 levels were analyzed
in brain cortex homogenates obtained from the wild-type (Wt) and GFP-Znf179-expressing transgenic mice (Znf-Tg). (C) N2a cells were transfected with reporter plasmid pGL2-Basic-
znf179 and co-transfected with pEGFP-Znf179 (GFP-Znf179) or empty pEGFP vector (GFP) for 1 day. The luciferase activity was then analyzed (***p < 0.001). (D) pGL2-Basic-znf179-
transfected cells were co-transfected with pEGFP, pEGFP-Sp1, and/or pEGFP-Znf179, or treated with MA as indicated for 24 h. Bars represent luciferase activity (mean ± s.e.m.)
obtained in three independent experiments (The effects of Sp1 and Znf179 on znf179 promoter activity, t-test: ***p < 0.001; The effects of MA on znf179 promoter activity, t-test: ###p <
0.001). (E) DAPA analysis was performed using a biotinylated DNA probe (+), containing the wild-type or mutated Sp1 binding sequence, which was incubated with cellular lysate
harvested from N2a cells, but no probe (-) was used as a control.

Fig. 4. Hydrogen peroxide treatment induces Znf179 shuttling into the nucleus. (A) Znf179 levels in the nuclear and cytoplasmic fractions of N2a cells treated or not with H2O2 were
determined using western blot. The relative purity of the nuclear and cytoplasmic fractions was confirmed using nuclear marker lamin A/C and the cytoplasmic marker tubulin. (B and
C) Flag-Znf179-expressing cells were treated with (+) or without (-) H2O2, and analyzed using immunoblotting (B) or fluorescence microscopy (C).
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treatment [23]. However, in neurons, the mechanisms regulating the
expression of this gene remain unknown. Here, we identified Sp1 as an
additional key factor leading to znf179 upregulation during the
differentiation of neuron-like cells, and the increase in the levels of
Sp1 protein coincided with Znf179 expression levels during TBI and
H2O2-induced oxidative damage. Furthermore, we demonstrated a
novel Sp1-mediated mechanism of positive Znf179 autoregulation.
Sp1 binding to Znf179 may induce the activation of the Znf179-
positive autoregulatory loop, since their interaction was detected
within 30 min after the peroxide treatment. To further examine the
protective effects of Sp1-Znf179 pathway, Znf179 overexpression and
NGF-induced Sp1 activation were analyzed, and we conformed that the
upregulation of Sp1-Znf179 pathway attenuates the damage after TBI

and oxidative insults.
Previous studies showed that Znf179 is a bifunctional transcription

regulator capable of activating and inhibiting gene expression [6,23].
Znf179 overexpression in U373MG human glioma cells led to the
significant changes in the expression of 437 genes (98 upregulated and
339 downregulated) [23]. Znf179 was shown to interact with tran-
scription repressors, such as promyelocytic leukemia zinc finger (Plzf)
[25], and this repression complex targets several pro-apoptotic genes,
including RING1- and YY1-binding protein (RYBP), Bcl2-interacting
killer (BIK), growth arrest and DNA-damage-inducible (GADD45B),
and insulin-like growth factor binding protein 3 (IGFBP3), exerting
anti-apoptotic roles in astrocytes [23]. Additionally, the expression of
several genes, for instance CDK 5 regulatory subunit (CDK5R),

Fig. 5. Sp1 and Znf179 display similar expression patterns in stressful conditions, and Znf179 upregulation protects cell from stress-induced damage. (A) Twelve mice were subjected to
the controlled cortical impact (CCI). At day 1 (n =3), 4 (n =3), and 7 (n =3) post-injury, the injured mice as well as the sham-operated mice (n =3) were sacrificed and the cerebral
injuries in the left parietal lobes were visualized (arrows). (B) The expression of Sp1 and Znf179 in these tissues was analyzed. GAPDH was used as a loading control. (C) Wild-type (Wt,
sham: n =3; weight-drop TBI: n =3) and transgenic mice expressing GFP-Znf179 (Znf-Tg, sham: n =3; weight-drop TBI: n =4) were subjected to TBI, and the brain tissues were analyzed
using the indicated antibodies. (D) N2a cells were treated with different doses of H2O2 for 24 h, and the levels of the indicated proteins were analyzed. (E) N2a cells were transfected with
empty pCMV-Tag 2A vector or Flag-Znf179 expressing vector. After 1 day, cells were treated with or without H2O2 for 30 min and the obtained lysates were analyzed using western blot.
(F) N2a cells were treated with different concentrations of H2O2 for 1 day, and cell viability was assessed using the MTT assay (*p < 0.05, **p < 0.01).
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peroxiredoxin III (Prx3), and superoxide dismutase 2 (SOD2), is
upregulated by Znf179 [5,6]. However, the mechanisms of Znf179-
mediated gene upregulation are poorly understood, and the transcrip-
tional activator inducing Znf179 expression has not been elucidated.
Sp1 is a redox-regulated transcriptional activator [26]. Here, we
demonstrated that Znf179 interacts with Sp1 in order to induce its
own expression following the oxidative stress. As Sp1 regulates the
levels of several neuroprotective proteins and antioxidants after brain
damage [11,27–30], Znf179 may upregulate the expression of these
genes through the activation of Sp1. However, the number of genes
targeted by Znf179-Sp1 complex requires further investigation.

Although Znf179 resides mainly in the cytoplasm and regulates
synaptic plasticity, including excitatory synapses and spine density
[22], here we observed nuclear translocation of this protein following
the oxidative stress. Previous study showed that the interaction
between Plzf and Znf179 and the overexpression of Plzf lead to
Znf179 translocation from cytoplasm to nucleus [25]. The increase in

nuclear levels of Sp1 may play a similar role as Plzf, affecting sub-
cellular localization of Znf179 after H2O2 treatment. In our previous
studies, we demonstrated that protein-protein interactions, protein
levels, and the transcriptional activity of Sp1 are regulated by post-
translational modifications (PTMs), such as phosphorylation [31–34].
Additionally, oxidative stress affects the phosphorylation state of Sp1
through the induction of various signaling pathways [35]. Therefore, it
is possible that nerve injury-mediated ROS generation induces Sp1
phosphorylation, increasing the ability of this protein to interact with
Znf179. Furthermore, NGF was shown to elevate Sp1 phosphorylation
levels through the induction of phosphatidylinositol 3-kinase/PKC-ζ
pathway [36]. Taken together, NGF-induced increase in Sp1 phosphor-
ylation may protect the neurons against oxidative stress, through the
induction of Sp1-Znf179 interactions, triggering the activation of
positive Znf179 autoregulatory loop.

In conclusion, the results obtained in this study indicate that
Znf179 represents a novel binding partner of Sp1, and the Sp1-
Znf179 pathway plays an important role in the neuroprotection against
oxidative stress. Notably, NGF induces Znf179 expression through a
Sp1-dependent autoregulatory loop, exerting its protective effects. The
obtained results may be further used for the development of novel
treatment of TBI and injury-induced oxidative damage during the
subacute posttraumatic period.
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