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Abstract 

Background:  Pharyngeal fricative is one typical compensatory articulation error of 
cleft palate speech. It passively influences daily communication for people who suffer 
from it. The automatic detection of pharyngeal fricatives in cleft palate speech can 
provide information for clinical doctors and speech-language pathologists to aid in 
diagnosis.

Results:  This paper proposes two features (CSIFs: correlation of signals in independ-
ent frequency bands; OSPP: octave spectrum prominent peak) to detect pharyngeal 
fricative speech. CSIFs feature is proposed to detect the distribution characteristics 
of frequency components in pharyngeal fricative speech caused by the changed 
place of articulation and movement of articulators. While OSPP is presented to reflect 
the concentration degree of prominent peak which is closely related to the place 
of articulation in pharyngeal fricative, both features are investigated to relate to the 
altered production process of pharyngeal fricative. To evaluate the capability of these 
two features to detect pharyngeal fricative, we collected a speech database covering 
all the types of initial consonants in which pharyngeal fricatives occur. In this detection 
task, the classifier used to discriminate pharyngeal fricative speech and normal speech 
is based on ensemble learning.

Conclusion:  The detection accuracy obtained with CSIFs and OSPP features ranges 
from 83.5 to 84.5% and from 85 to 87%, respectively. When these two features are com-
bined, the detection accuracy for pharyngeal fricative speech ranges from 88 to 89%, 
with an AUC (area under the receiver operating characteristic curve) value of 93%.
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independent frequency bands, Energy region, Prominent peak

Open Access

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/
licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/zero/1.0/) applies 
to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

He et al. BioMed Eng OnLine           (2020) 19:36  
https://doi.org/10.1186/s12938-020-00782-3 BioMedical Engineering

OnLine

*Correspondence:   
ling.he@scu.edu.cn 
1 College of Electrical 
Engineering, Sichuan 
University, 610065 Chengdu, 
China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-7168-2737
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-020-00782-3&domain=pdf


Page 2 of 27He et al. BioMed Eng OnLine           (2020) 19:36 

Background
Cleft palate is one of the most common craniofacial alterations and birth defects [1]. 
It represents the third most frequently occurring congenital deformity in the world [2]. 
A large number of patients suffering from cleft palate are influenced by compensatory 
articulation error due to the existence of velopharyngeal insufficiency. Pharyngeal fric-
ative is one typical compensatory articulation error caused by velopharyngeal insuffi-
ciency in cleft palate speech [3]. This speech disorder passively influences daily life for 
people who suffer from it.

Pharyngeal fricatives are produced when the base of the tongue approaches the pos-
terior pharyngeal wall [4, 5]. This specific manner of articulation of the pharyngeal 
fricative is formed by constricting airflow through a narrow passage in the place of 
articulation. The place of articulation of the pharyngeal fricative is the pharynx, with 
the root of the tongue against the back of the pharynx. It operates differently from that 
place of articulation in normal speech. In particular, the manner of articulation may 
change sometimes. These changes in the production process of the pharyngeal fricative 
mainly influence the pronunciation of the initial consonant [3]. Sometimes, the speech 
production process of patients involves the nasalization [6, 7], and the pronunciation of 
the vowel is also influenced [8]. Thus, the quality of pharyngeal fricative speech could 
reduce, with a consequent reduction in the clarity of speech [9].

In clinic, three classes of approaches are generally used for the diagnosis of pharyn-
geal fricatives. (1) Medical instruments: clinicians use invasive instruments such as 
endoscopes [10, 11], lateral cephalometric radiographs on X-ray machines [3], and Opti-
Speech system [12] to observe if there exist abnormal movements of articulators in the 
production process of speech. These methods can provide an objective diagnosis for 
pharyngeal fricatives. However, they are time consuming, invasive, intrusive, and costly. 
They also cause pain and discomfort to patients, especially young children. In addition 
to these invasive medical instruments, a nasal meter [13, 14] is also used to assess phar-
yngeal fricative by evaluating the nasal score of some specific syllables. This method 
gives evaluation results quickly and effectively. However, there is an unresolved debate 
over whether pharyngeal fricative speech has a higher nasal score [13, 14] than normal 
speech. (2) Subjective methods: speech-language pathologists (SLPs) listen to live or 
recorded speech signals and perceptually rate them. Then, they tailor treatment options 
for patients with pharyngeal fricative according to the evaluation result. This process of 
speech therapy has continued for many years. It is expensive and heavily dependent on 
the subjective experience of SLPs. Thus, these methods impose a heavy burden on thera-
pists and patients. (3) Articulation evaluation system: the Ankara Articulation Test [15] 
and System Analysis Observation [16] are often adopted to assess the pronunciation of 
patients. The Ankara Articulation Test [15] scores the pronunciation of children by ask-
ing them to read given words from pictures. The score is obtained from the phoneme 
mistakes detected in their words. The system analysis observation [16] can provide a 
nonstandardized assessment of the respiration, phonation, articulation, and prosody of 
speech motor subsystems. These two evaluation methods are time consuming and non-
standardized. In addition, they require a large amount of manual operations.

With the aim of relieving the pain of patients with pharyngeal fricative and exploring 
more efficient approaches, many studies have been carried out based on speech signal 
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processing in recent years. Speech signal processing is a noninvasive technique based on 
digital signal processing, which is an efficient tool for the objective diagnosis of speech 
disorders [17]. In the field of pharyngeal fricative speech processing, some researchers 
use Speech Analyzer 1.5, Universal Signal Spectrum Analysis, and CSL-4150B to study 
several characteristics of speech signals [18–20]. These characteristics include the speech 
spectrum, fundamental frequency, formants, and pitch. These instruments provide 
a relatively objective assessment of pharyngeal fricative for clinicians and SLPs. How-
ever, since the output information of these digital instruments requires the judgement 
by clinicians and SLPs, these methods can not achieve automatic diagnosis for pharyn-
geal fricative. In clinic, clinical doctors need more objective measurements to evaluate 
the speech quality of pharyngeal fricatives [21, 22]. To overcome this limitation, related 
studies that have realized automatic detection of pharyngeal fricative have been con-
ducted by Xiao et al. [23, 24], He et al. [25], and Fu et al. [26]. Xiao et al. [23, 24] propose 
features based on one-third octave spectrum, which can reflect the characteristics of the 
energy distribution of speech signal. Their study focuses on the low-frequency region 
that is lower than 4000 Hz in the speech spectrum. However, the changes in the place 
of articulation and movement of articulators are closely related to high-frequency com-
ponents of speech signals [27–29]. The distribution information in the high-frequency 
part of the speech signal is not considered in their research. Their work focuses on the 
initial consonant /sh/ (IPA (International Phonetic Alphabet): [ʂ]) which is more sensi-
tive to pharyngeal fricative than other types of initial consonants. He et al. [25] present 
acoustic features considering only the change in the energy concentration regions of the 
pharyngeal fricative /s/. They propose the ICPD feature based on the central frequencies 
and the peak values of the energy concentration regions. There are 221 speech samples 
(127 pharyngeal fricatives /s/, and 94 normal speech /s/) in their classification work. Fu 
et al. [26] implement preliminary experiments based on speech signals collected from 
10 patients and 4 control subjects. The imbalanced sample sizes of pharyngeal fricatives 
and normal speech could result in the overfitting of the model. In addition, their pro-
posed features are based on the overall variations in the whole vocal tract, and do not 
focus on the changed place of articulation in the pharyngeal fricative. A further work to 
explore the biomarkers of pharyngeal fricatives is also needed.

In this paper, we aim to achieve automatic detection of pharyngeal fricative speech. 
The six types of initial consonants in pharyngeal fricative speech are analyzed initially. 
The generation of initial consonant is a dynamic process [30]. The common charac-
teristics of these initial consonants are the change in the place of articulation and the 
decrease in the movement of articulators. These changes result in acoustic differentia-
tions in pharyngeal fricative compared to normal speech [31]. In this work, two features 
are proposed based on these changes, namely, the correlation of signals in independent 
frequency bands (CSIFs) and the octave spectrum prominent peak (OSPP). CSIFs fea-
ture is proposed to establish a relation between the signals in high-energy region and 
the low-energy region, thereby the changes in the high- and low-frequency regions of 
pharyngeal fricative are emphasized. OSPP mainly focuses on the information of the 
dominant peak of energy-concentration region in the spectrum. The dominant peak is 
closely related to the place of articulation. Next, the capability of these two features is 
tested by speech samples with the six types of initial consonants. Compared with other 
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studies, the major contributions of this work are summarized as follows: (1) CSIFs is 
proposed as a feature. It establishes the relation of the signals in high-frequency part and 
the low-frequency part by the self-defined high-energy region and the low-energy region 
in the speech spectrum of each initial consonant. This relation can reflect the distribu-
tion difference of frequency components in pharyngeal fricative speech compared with 
those in normal speech. (2) OSPP is proposed as a feature. The typical change in the 
production of pharyngeal fricative is the place of articulation. The OSPP feature is pre-
sented to represent this change by quantifying the prominent peak of the energy-con-
centration region. This feature is sensitive to the change in the place of articulation. (3) 
In this paper, the study of pharyngeal fricative covers the six types of initial consonants 
in which the pharyngeal fricative occurs. Analyzing all six types of initial consonants is 
useful for understanding the production process of pharyngeal fricatives.

Results
This paper aims to achieve automatic detection of pharyngeal fricative speech. CSIFs 
and OSPP features are proposed to reflect the changes in the production process of 
pharyngeal fricative speech. In this section, the significance test for both proposed fea-
tures and the experiments of pharyngeal fricative speech detection using these two fea-
tures are conducted.

This section is composed of five parts. In the first part, the classifier used to evalu-
ate the performance of the proposed features is described. In this classifier, several weak 
classifiers are trained to form a strong classifier. In the second and third part, the results 
of CSIFs and OSPP features calculated from normal speech and pharyngeal fricative 
speech are described and analyzed. In the fourth and fifth parts, the results of signifi-
cance test for these two features and the detection results of pharyngeal fricative speech 
using the features are given and discussed.

Bagging of ensemble learning classifier

In our research, the pharyngeal fricative speech detection task is performed by applying 
the bagging of the ensemble learning classifier. The idea of ensemble learning is princi-
pally based on the theoretical cornerstone that the generalization ability of an ensem-
ble is usually much stronger than that of a single learner [32–34]. There are 30 learners 
in the training process of this classification model. The ensemble of the 30 learners can 
improve the generalization of this classifier. In addition, the classifier ensembled by the 
bagging method can work well for data with perturbation [35]. It has good robustness 
in different classification tasks to classify different data sets. The speech database in this 
work is composed of six types of initial consonants. The perturbations for different types 
of initial consonants are different. This classifier is suitable for the classification of the 
pharyngeal fricative speech and normal speech.

In this work, this classifier is a bootstrap-aggregated ensemble of decision trees. The 
decision tree algorithm includes three types of nodes, the root node, internal nodes, 
and end-note or target [36]. This tree algorithm uses splitting criteria to break an end-
note to form a tree. This means that the root node that consists of the entire dataset 
is divided into subgroups by using all predictors. In this work, 30 learners of decision 
trees are included in the training process for this classification model. The classification 
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performance of the model depends on the stability of the base classifiers [32]. All the 
base classifiers are mutually independent. They are trained using different train sets 
{ Di } (i = 1, 2…, T), which are formed by bootstrap sampling on the original database. 
The final ensemble classifier H predicates the label of speech signals by majority voting 
of each base classifier. The output class has more votes by these base classifiers. In this 
work, each initial consonant is segmented into N frames. The proposed CSIFs and OSPP 
features are calculated based on the frames. Then, there are N or 2*N feature values that 
represent each initial consonant. They are input into this classifier as training param-
eters. This process is illustrated by Fig. 1. The weak base classifier hi is trained on the 
training data set Di . All weak classifiers are combined to form a strong classifier.

This classifier is applied to evaluate the performance of automatic pharyngeal frica-
tive detection system using CSIFs and OSPP features based on k-fold cross-validation 
(k-CV) algorithm. The k-CV algorithm is commonly used in the field of machine learn-
ing [37–41]. In the k-CV technique, the training dataset is randomly divided into k sub-
sets with approximately equal size. In each iteration, one of the subsets is used for testing 
and the remaining data are used for training. The error of the subset in each iteration is 
calculated and the mean of the errors in all iterations gives the performance of the algo-
rithm [37]. In this work, the sample sizes of pharyngeal fricatives and normal speech are 
balanced. This k-CV algorithm is suitable for the matched sample sizes in the classifica-
tion task [38]. This work uses 10 instance of k-fold cross-validations.

The experimental results and analysis of CSIFs feature

In this subsection, the CSIFs values of the six types of initial consonants are presented 
to observe their distribution characteristics in normal speech and pharyngeal fricative 
speech. These results for each type of initial consonant are shown in Fig. 2 using box-
plot. Boxplot is an exploratory data analysis tool [42] that uses a five-point (the median, 
upper quartile (Q3), lower quartile (Q1), lowest point, and highest point [43]) summary 
to reflect the distribution information of different data sets. These five parameters can 
show the degree of concentration and distribution range of different data sets.

In Fig. 2, PF represents the CSIFs values of pharyngeal fricative speech, while NS rep-
resents those of normal speech. The symbols of diamond and inverted triangle on the 
top layer of boxplot represent CSIFs values of samples. Figure 2 demonstrates that the 
maximum values of CSIFs for pharyngeal fricative speech are close to 1, while the CSIFs 
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Fig. 1  The block diagram of ensemble learning bagging
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values of normal speech are all smaller than 0.4. The median, Q3, and Q1 of pharyn-
geal fricative speech are larger than those of normal speech. The CSIFs values of normal 
speech range from 0.01 to 0.397, while those of pharyngeal fricative speech range from 
0.10 to 0.989. These results show that CSIFs values of pharyngeal fricative speech con-
centrate in a higher range than those of normal speech.

The calculation of CSIFs is based on the relation between self-defined HER and LER. 
The HER and LER are defined considering the amplitude distribution of frequency com-
ponents in the speech spectrum of pharyngeal fricative speech and normal speech. 
They are closely related to the production process of speech signals. The difference in 
the distribution range of CSIFs values in pharyngeal fricative speech and normal speech 
is also caused by the different production processes. Speakers with pharyngeal fricative 
tend to contract pharyngeal muscle and make the posterior displacement of tongue to 
form a pinch point [44]. Meanwhile, the movements of articulators in the oral cavity 
decrease [45]. Pharyngeal fricative speech and normal speech are produced at different 
places of articulation with different movements of articulators. The places of articulation 
and the movements of articulators have great influence on the distribution of frequency 
components, especially components in high-frequency region [30]. In pharyngeal frica-
tive speech, its low-frequency components and high-frequency components are both 
mainly produced near pharynx [23]. In normal speech, the high-frequency components 
are mainly produced in the oral cavity and/or lip. Thus, the HER and LER in normal 
speech and pharyngeal fricative speech have different distribution characteristics. Their 
frequency components of the LER are uniformly distributed and are similar to the dis-
tribution of pure turbulent noise [46], while the LER of pharyngeal fricative speech has 
a wider frequency range than that in normal speech. Meanwhile, the HER in normal 
speech has a wider frequency range and includes more frequency components than that 

(a) /c/ (b) /ch/ (c) /q/

(d) /s/ (e) /sh/ (f) /x/

Fig. 2  The CSIFs values for each type of initial consonant. a /c/; b /ch/; c /q/; d /s/; e /sh/; f /x/
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in pharyngeal fricative speech. This indicates that the signals in the HER and LER of 
normal speech have greater differences in the amplitude variations and frequency range 
than those of pharyngeal fricative speech. Therefore, the CSIFs values of normal speech 
are distributed in a lower range than those of the pharyngeal fricative. This result is con-
sistent with research [47], which has introduced the relation between turbulent noise 
and other signals.

The experimental results and analysis of OSPP

In this part, the OSPP values of the six types of initial consonants are presented to ana-
lyze the overall distribution of the prominent peaks in normal speech and pharyngeal 
fricative speech using the boxplot. The OSPP values of initial consonants /c/, /ch/, /q/, 
/s/, /sh/, and /x/ are illustrated in Fig. 3.

Figure 3 illustrates that OSPP values of pharyngeal fricative speech are with narrow 
distribution ranges (0–0.5) in each type of initial consonant, while OSPP values of nor-
mal speech have different distribution ranges in different types of initial consonants. The 
common point of OSPP values in normal speech is that OSPP values of normal speech 
mostly distribute in higher ranges than those of pharyngeal fricative speech.

The difference in the distribution range of OSPP values between normal speech and 
pharyngeal fricative speech is mainly caused by the change in the place of articulation. 
Speakers suffering from pharyngeal fricative are accustomed to changing the place 
of articulation to keep the manner of articulation [44]. Their place of articulation is 
in the pharynx that is formed by posterior displacement of the tongue. This place of 
articulation is more posterior than the correct place of articulation in the production 
of normal speech. This change in the place of articulation results in a larger ante-
rior oral cavity in pharyngeal fricative than that in normal speech. Therefore, the 

(a) /c/ (b) /ch/ (c) /q/

(d) /s/ (e) /sh/ (f) /x/

Fig. 3  The OSPP values for each type of initial consonant. a /c/; b /ch/; c /q/; d /s/; e /sh/; f /x/
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energy-concentration regions of speech tend to shift to the lower frequency part, 
and the degree of energy concentration in higher frequency part decreases [23, 24]. 
The OSPP feature aims to evaluate the concentration degree of the prominent peak 
of the energy-concentration region in the speech signal. It can reflect the change in 
the energy-concentration region caused by different places of articulation. In our 
research, OSPP values of normal speech distribute in a higher range than those of 
pharyngeal fricative speech.

Significance test of the proposed features CSIFs and OSPP

Significance testing is a common technique in statistics to evaluate the significant dif-
ference in several data sets [48]. It has been widely utilized to evaluate the discrimi-
nation capabilities of different feature sets in the classification tasks [49–51]. In our 
work, for each proposed feature, the significance test is adopted to estimate its capa-
bility for discriminating pharyngeal fricative speech and normal speech. This signifi-
cance test is carried out based on these hypotheses as follows.

H = 1:	� There are significant differences in this feature between pharyngeal fricative 
speech and normal speech

H = 0:	� There are no significant differences in this feature between pharyngeal frica-
tive speech and normal speech

There are six types of initial consonants in our research. The significant test results 
are listed in Table 1, including the significance level, the p value (probability of test 
error occurring), and the result of the hypothesis.

As shown in Table  1, the significance differences based on the two proposed fea-
tures for each type of initial consonant are presented. The significance level of CSIFs 
and OSPP features is less than 1%, except for CSIFs values in the initial consonant /
ch/. Furthermore, the p-value is much less than 0.01. These parameters indicate that 
CSIFs and OSPP features have significant differences between pharyngeal fricative 
speech and normal speech for the six types of initial consonants.

Table 1  The significance test results of the proposed features

Feature Initial consonant Significance level (%) p Hypothesis

CSIFs /c/ < 1 2.85e−12 1

/ch/ < 2 2.91e−12 1

/q/ < 1 1.07e−23 1

/s/ < 1 1.51e−17 1

/sh/ < 1 1.08e−45 1

/x/ < 1 1.44e−60 1

OSPP /c/ < 1 5.13e−07 1

/ch/ < 1 0.011 1

/q/ < 1 6.79e−06 1

/s/ < 1 4.41e−04 1

/sh/ < 1 4.77e−08 1

/x/ < 1 2.37e−10 1
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Automatic pharyngeal fricative speech detection results using OSPP and CSIFs

In this research, CSIFs and OSPP are proposed to detect pharyngeal fricative in cleft 
palate speech. In this subsection, the results of automatic pharyngeal fricative speech 
detection using CSIFs and OSPP features are presented and discussed. The perfor-
mances of these two features are evaluated by the ensemble learning classifier. The gen-
eral performances of these two proposed features are discussed in terms of accuracy, 
sensitivity, specificity, and AUC. Sensitivity reflects the probability of missed diagno-
sis in clinical, while specificity reflects the probability of misdiagnosis. AUC is the area 
under the receiver operations characteristic curve. It is given to show the results more 
compactly [52]. It can also evaluate the classifiers on both balanced and imbalanced class 
distributions [53].

In this experiment, CSIFs and OSPP features are used to form different feature sets to 
discriminate pharyngeal fricative speech and normal speech. The experimental results of 
automatic detection of pharyngeal fricative speech are listed in Table 2.

As shown in Table 2, the detection accuracies of pharyngeal fricative using CSIFs fea-
ture range from 83.5 to 84.5%. Its sensitivity and specificity are larger than 76.6% and 
90%, respectively. The detection accuracies of pharyngeal fricative using OSPP fea-
ture range from 85 to 87%. Its sensitivity and specificity are larger than 79.5% and 91%, 
respectively. When CSIFs and OSPP features are combined, the detection accuracies 
of pharyngeal fricative range from 88 to 89% (AUC equals 93%), which are larger than 
those results obtained from a single feature.

In pharyngeal fricative speech, the movements of articulators and the places of articu-
lation are different from those in the production process of normal speech. Since the 
movements of articulators in the oral cavity of the pharyngeal fricative decrease and the 
places of articulation change, it is aware that the speech spectrum of pharyngeal fricative 
speech is modified in a wider spectral range with lower amplitudes. The main objec-
tive for CSIFs is to reflect this modification. In the calculation of CSIFs, HER and LER 
are defined in each initial consonant, considering the modified spectral range in phar-
yngeal fricative speech. Then, speech signals in the HER and LER are extracted. CSIFs 
can reflect this distribution difference of frequency components between pharyngeal 
fricative speech and normal speech by evaluating the relation of signals in HER and LER. 
For the OSPP feature, the prominent peak of the energy-concentration region is mainly 
influenced by the place of articulation. Since the posterior displacement of the tongue 
occurs in the production of pharyngeal fricative, its prominent peak may shift to a lower 
frequency part than normal speech, and the amplitude of the peak decreases. The OSPP 
feature focuses on characterizing the most prominent peak in the speech spectrum. 
The results of CSIFs and OSPP features indicate that they are useful to represent the 
changes occurring in the pharyngeal fricative speech. The proposal of these two features 

Table 2  The results obtained with features CSIFs, OSPP, and feature set CSIFs + OSPP

Feature Accuracy % Specificity % Sensitivity % AUC​

CSIFs 84 ± 0.5 77 ± 0.4 91.5 ± 1.5 90

OSPP 86 ± 1 80 ± 0.5 92 ± 1 91

CSIFs + OSPP 88.5 ± 0.5 83 ± 0.5 93.5 ± 1 93
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is based on the change in the pronunciation process of pharyngeal fricative. When OSPP 
and CSIFs features are combined to detect pharyngeal fricative, the detection accuracy 
increases. The discrimination between pharyngeal fricative speech and normal speech 
is improved. This improvement is probably caused by the combination of these two fea-
tures. The information on the changes in place of articulation and movement of articula-
tors is included in the same feature set.

To observe the classification performances of pharyngeal fricative detection on dif-
ferent types of initial consonants, the detection experiments of pharyngeal fricatives 
on each type of initial consonant are conducted. The experimental results are listed in 
Table 3.

As listed in Table 3, the detection accuracies of pharyngeal fricatives on different types 
of initial consonants using CSIFs feature range from 78.5 to 87%. The detection accura-
cies of pharyngeal fricatives on different types of initial consonant using CSIFs feature 
range from 84 to 90%. When OSPP and CSIFs features are combined, it illustrates that 
the accuracy, specificity, and sensitivity of pharyngeal fricative detection on different 
types of initial consonants are improved.

Discussion
In this subsection, the comparative experiments are conducted based on features pro-
posed in previous researches [23–26] and this work. The researches [23, 24] study 
the spectral characteristics of pharyngeal fricative speech based on one-third octave 
spectrum. In research [23], the amplitudes of eight one-third octave bands form fea-
ture (EMAs) for each fricative /sh/. In research [24], different groups of amplitudes 
in EMAs are input into a classifier to explore the optimum feature set that is with a 
small standard deviation of accuracy. The optimum feature set in that study consisted 
of four amplitudes (FMAs) of EMAs. In research [25], He et al. present the ICPD fea-
ture based on the variation of energy in speech signals caused by the changed place of 
articulation in pharyngeal fricative. Fu et al. [26] extract the VTG + VTA + PP feature 

Table 3  The detection results on  different types of  initial consonants based on  different 
features

Features Results Type of initial consonants

/c/ /ch/ /q/ /s/ /sh/ /x/

CSIFs Accuracy % 84 ± 1.5 81 ± 1 80 ± 1 79.5 ± 1 85 ± 1 85.5 ± 1.5

Specificity % 77 ± 2 75 ± 2 71 ± 1 80 ± 4 82 79 ± 1

Sensitivity % 91 ± 2 87 ± 2 88 ± 2 85 ± 2 90 ± 1 93 ± 1

AUC​ 91 ± 1 86 84 ± 1 87 93 93

OSPP Accuracy % 83.5 ± 2.5 84 ± 1 83.5 ± 0.5 86 ± 1 85.5 ± 0.5 85 ± 1

Specificity % 78 77 ± 3 78 84 ± 1 83 ± 1 81 ± 1

Sensitivity % 89 ± 2 90.0 ± 1.5 90 ± 2 88 88 ± 2 91

AUC​ 92 90 90 90 89 92

CSIFs + OSPP Accuracy % 88.5 ± 1 86.5 ± 2 85.5 ± 1 84 89 ± 1 89 ± 0.5

Specificity % 84 ± 2 80 ± 1 78 ± 2 79 ± 1 86 ± 2 82 ± 1

Sensitivity % 94 ± 1 92 ± 2 93 ± 1 88 93 ± 1 95 ± 2

AUC​ 92 90 ± 1 90 88 94 95
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set from the glottal waveform and the coefficients of the vocal tract model. The capa-
bilities of these features in detecting pharyngeal fricatives are tested using the data-
base in this work, which contains six types of initial consonants. The test results are 
presented in Table 4 and Fig. 4.

As shown in Table 4, the detection accuracies of existing features are lower than the 
proposed CSIFs and OSPP features (84.5%, 87%) in this work. The highest detection 
accuracy of pharyngeal fricative speech in this work is 89%. Moreover, the specificity, 
sensitivity, and AUC values of CSIFs and OSPP features are larger than those obtained 
with EMAs [23], FMAs [24], ICPD [25], and VTG + VTA + PP [26].

As shown in Fig. 4, the ROC curve of the CSIFs + OSPP feature set illustrates that 
this feature set has a balanced capability to discriminate pharyngeal fricative speech 
and normal speech. The AUC value of the CSIFs + OSPP feature set is approximately 
93%, while the EMAs [23], FMAs [24], ICPD [25], and VTG + VTA + PP [26] are 88%, 
85%, 84, and 83%, respectively.

Compared with the work of Xiao et al. [23, 24] and He et al. [25], the EMAs [23], 
FMAs [24], and ICPD [25] features are presented by analyzing the energy variations 
of the pharyngeal fricative. The proposed EMAs [23] and FMAs [24] only consider 
the energy variations of the initial consonant /sh/, while the proposed ICPD [25] is 
based on the analysis of the initial consonant /s/. However, different types of initial 
consonants have different characteristics of the energy variations; therefore, the three 
features might not perform well for each type of initial consonants. In this work, the 
two proposed features consider all types of initial consonants in which pharyngeal 
fricatives might occur.

Compared with the work of Fu et al. [26], PP [26] is the pitch period of the glottal 
waveform. VTA and VTG [26] are calculated from the estimated vocal tract model 
coefficient. The proposal of the three features is based on the overall variations of the 

Table 4  The results obtained using EMAs [23] and FMAs [24] feature sets

Features Accuracy % Specificity % Sensitivity % AUC​

EMAs [23] 80 ± 1 74.5 ± 1 85.5 ± 0.8 88

FMAs [24] 77 ± 1 75.5 ± 1 79.5 ± 1 85

ICPD [25] 76.8 ± 0.2 74 79 ± 1 84

VTG + VTA + PP [26] 78.5 ± 0.5 79 ± 3 78 ± 2 83 ± 3

(a) (b) (c) (d) (e)

Fig. 4  ROC curves obtained with EMAs [23], FMAs [24] and CSIFs + OSPP tested on our speech database. a 
EMAs [23] (AUC = 88%); b FMAs [24] (AUC = 85%); c CSIFs + OSPP (AUC = 93%); d ICPD [25] (AUC = 84%); e 
VTG + VTA + PP [26] (AUC = 83%)



Page 12 of 27He et al. BioMed Eng OnLine           (2020) 19:36 

vocal tract in the production process, and do not focus on the changed place of artic-
ulation in pharyngeal fricative. They might fail to establish a close relationship to the 
typical change in the place of articulation in the pharyngeal fricatives. In this work, 
the two proposed features CSIFs and OSPP focus on the changed place of articulation 
in the production process of the pharyngeal fricative speech. They perform better in 
detecting pharyngeal fricative speech than these features in previous work.

These features in previous work [23–26] are tested using a speech database with a 
limited sample size. In Xiao et  al.’s work [23, 24], 161 speech samples (83 pharyngeal 
fricatives /sh/, 78 normal speech /sh/) are employed. In He et al.’s work, there are 221 
speech samples (127 pharyngeal fricatives /s/, 94 normal speech /s/) in the classifica-
tion task. In Fu et al.’s work, speech samples are composed of 297 pharyngeal fricatives 
and 99 normal fricatives. In this work, the two proposed features are tested with a larger 
speech database. This speech database covers all the types of initial consonants in which 
pharyngeal fricatives might occur. It consists of 1208 speech samples collected from 50 
patients with pharyngeal fricative and 50 normal subjects.

Conclusion
In our work, the main objective is to achieve automatic detection of pharyngeal frica-
tive speech. CSIFs and OSPP features are primarily proposed based on the production 
process of pharyngeal fricative in cleft palate speech. Both features are useful for ana-
lyzing the place of articulation and movement of articulators in the generation process 
of speech signals. In this paper, their capabilities to discriminate pharyngeal fricative 
speech and normal speech are tested and discussed. This test is conducted on collected 
speech database, which consists of 1208 speech samples including six types of ini-
tial consonants. Moreover, the comparison experiments with previous studies are also 
conducted.

The proposed CSIFs feature aims to reflect the distribution differences of frequency 
components between pharyngeal fricative speech and normal speech. Since pharyngeal 
fricative speech has more posterior place of articulation and fewer movements of artic-
ulators in the oral cavity, its energy tends to shift to a lower frequency part than that 
of normal speech. Correspondingly, its low-energy region has a wider frequency range. 
CSIFs feature detects this distribution characteristic by evaluating the correlation of sig-
nals in high-energy region and low-energy region defined in this work. The experimen-
tal results of CSIFs note that CSIFs values calculated from normal speech are mostly 
lower than those calculated from pharyngeal fricative speech. The detection accuracies 
of pharyngeal fricative speech using CSIFs feature are above 83.5%. These results indi-
cate that it has the capability to discriminate pharyngeal fricative speech and normal 
speech. In addition, the matching filter is designed to locate the high-energy region and 
low-energy region of each initial consonant in the calculation process of CSIFs.

In pharyngeal fricative speech, the posterior displacement of the tongue occurs in its 
generation process. This posterior displacement influences the energy-concentration 
regions in the spectrum. Generally, it results in lower amplitudes and center frequencies 
in the energy-concentration regions of pharyngeal fricative speech. The OSPP feature 
detects the change in the place of articulation in pharyngeal fricative speech by evaluat-
ing the most prominent peak of the energy-concentration regions in the spectrum. The 
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detection accuracies of pharyngeal fricative speech obtained with OSPP feature range 
from 85 to 87%. These results indicate that OSPP feature has good capability to detect 
pharyngeal fricative speech. When the OSPP feature and CSIFs feature are combined 
in the same feature set, the best result is obtained with an accuracy of 89%. This result 
notes that the combination of OSPP and CSIFs features can improve the capability to 
discriminate pharyngeal fricative speech and normal speech.

A comparison with related researches on pharyngeal fricative speech detection is also 
conducted in this paper. Xiao Y et al. [23, 24], He et al. [25], and Fu et al. [26] have con-
ducted preliminary experiments to detect pharyngeal fricative. Their detection results 
are obtained from limited speech samples. Their proposed acoustic features are tested 
by our database (1208 speech samples) with a detection accuracy of approximately 80%. 
The detection accuracy of the proposed features in our research is 89%.

Finally, the proposed features could be adopted in other speech diseases and other lan-
guages, since there exist many similarities in the place of articulation and the place of 
manner between Chinese and other languages. A new choice is provided for the doctors 
and patients. In any choice, an informed selection of the techniques that are applied to 
model the speech signal could help the speech therapist and the clinician to make more 
accurate decisions regarding the pharyngeal fricative and the treatment prescription for 
the patients.

Methods
This section describes the details of the material and the proposed methods. In the 
first part, the details of the participants and collected speech samples are introduced. 
In the second part, the pronunciation process of pharyngeal fricative is described. In 
the following two parts, all processes of the proposed features to discriminate pharyn-
geal fricative speech and normal speech are clearly described, including their proposals, 
objectives, and detailed calculation steps.

Pharyngeal fricative speech database

Fifty patients (32 females and 18 males, mean (± SD) age: 20.3 ± 8.1 years) with phar-
yngeal fricative and 50 healthy controls (29 females and 21 males, mean (± SD) age: 
19.2 ± 7.8 years) participated in this research. All speech recordings are collected from 
the West China Hospital of Stomatology, Sichuan University. It is a prestigious and well-
known medical center in China and it has the largest number of cleft palate patients 
in the world. This study is approved by the West China Hospital of Stomatology Insti-
tutional Review Board (WCHSIRB-CT-2013-011). All participants sign their informed 
consent prior to their inclusion in this research.

In the research on pharyngeal fricative speech detection, one bottleneck is the collec-
tion of speech samples. The sample size depends on the types of collected initial conso-
nants and the amount of enrolled patients. Considering the types of initial consonants, 
there are six types of initial consonants (/c/, /ch/, /q/, /s/, /sh/, /x/) in which pharyngeal 
fricative may occur. However, in previous studies [23–26], only two types of initial con-
sonants (/sh/ [23, 24] and /s/ [25]) are studied. Research [26] investigates the character-
istics of pharyngeal fricative based on limited speech samples collected from 4 patients. 
In this paper, the collected speech samples contain the six types of initial consonants. 
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These initial consonants are collected according to a specific vocabulary list designed 
by experienced SLPs [1]. There are 24 Chinese words in this specific vocabulary. All the 
collected words are frequently used in the natural communication environment. The ini-
tial consonants are segmented from these collected words using algorithm in [54]. The 
dataset in this work contains 1208 initial consonants (604 pharyngeal fricative speech 
samples, 604 normal speech samples) that are spoken by 50 patients with pharyngeal 
fricative and 50 normal controls.

These speech samples are collected in a specific studio and sampled with 44.1  kHz 
sampling rate at a resolution of 16 bits in the hospital. These speech recordings are inde-
pendently rated by three SLPs. Each recording is selected for our database only if all 
three speech-language pathologists give the same assessment of it.

The pronunciation process of pharyngeal fricatives

The production of speech is a complex physiological process. This physiological process 
culminates in the movement of articulators to control the airflow. In the production pro-
cess of normal speech, the air flows from the lungs and passes through the glottis, while 
if the airflow is impeded by glottis adduction, a voiced sound is produced. Next, airflow 
enters the upper vocal tract, where articulators interact to control the airflow [3]. With 
the interaction of articulators, different resonant cavities are formed to generate an intel-
ligible speech signal. This pronunciation process can be simply described as: the airflow 
is restricted, and these restrictions are broken through by the airflow. If there are any 
abnormal changes in this process, a speech signal may be generated with reduced quality 
and clarity, and its acoustic features could change [3, 30, 55].

Pharyngeal fricative, a typical compensatory articulation error in cleft palate speech, 
is caused by abnormal pronunciation habits. These habits arise to compensate for vel-
opharyngeal insufficiency [56]. Due to the velopharyngeal insufficiency, speakers with 
pharyngeal fricative restrict airflow in the pharynx by posterior displacement of the 
tongue, as shown in Fig. 5 (a lateral-view schematic illustration of the pharyngeal fric-
ative compensatory articulation with broken line showing lingual configuration and 
placement [24, 57]). Thus they can generate speech with weak intraoral pressure [3]. In 
this process, the place of articulation changes, and the movements of articulators in the 
oral cavity decrease [31]. Therefore, pharyngeal fricative speech and normal speech are 
acoustically differentiated. The objective of this work is to explore speech features to 

Fig. 5  Lateral-view schematic illustration of pharyngeal fricative compensatory articulation
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represent these acoustic differentiations between pharyngeal fricative speech and nor-
mal speech.

Proposed CSIFs feature based on the distribution characteristics of frequency components

Speech signal generation is a complex nonlinear process with the movements of articu-
lators. In this process, if airflow in the lungs goes through a narrow passage in the vocal 
tract, turbulent noise may be generated. The generation of turbulent noise depends on 
the Reynolds number, which relies heavily on the size of the vocal tract and the velocity 
of the airflow [30, 46]. The Reynolds number is calculated by (1):

where Re denotes Reynolds number; ρ and u are the density and speed of the airflow, 
respectively; µ represents the viscosity coefficient between the vocal tract and airflow, 
and D represents the size of vocal tract. The size of the human vocal tract is different for 
various places and manners of articulation in different pronunciations. When the Reyn-
olds number in the place of articulation is larger than 2100, turbulent noise is generated 
[30].

Speakers suffering from pharyngeal fricative attempt to change their place of articula-
tion to compensate for velopharyngeal insufficiency. The changed place of articulation 
is the pharynx, with the root of the tongue against the back of the pharynx. In this place 
of articulation, the gap between the pharynx and tongue root decreases, and the velocity 
of airflow increases. According to (1), the Reynolds number changes correspondingly. 
This change in the Reynolds number will influence the characteristics of the generated 
speech signal.

The change in the place of articulation in the production process of pharyngeal frica-
tive results in reduced quality and intelligibility of generated speech signals. Speech 
quality and intelligibility are closely related to the amplitude variations of frequency 
components and their distribution. [30]. These information on frequency components 
can be reflected by the Fourier spectrum. To illustrate these differences in the Fourier 
spectrum between pharyngeal fricative speech and normal speech, an example is pro-
vided to show the spectra of normal initial consonant /sh/ and the pharyngeal fricative /
sh/ in Fig. 6.

(1)Re = ρuD
/

µ,

(a) Fourier spectra of normal speech 
/sh/

(b) Fourier spectra of pharyngeal 
fricative speech /sh/

(c) Fourier spectra in dB of 
normal speech /sh/

(d) Fourier spectra in dB of 
pharyngeal fricative speech /sh/

Fig. 6  The Fourier spectra (FFT size = 1024) and the Fourier spectra in dB of initial consonant /sh/. a The 
Fourier spectra of normal speech /sh/ after FFT; b the Fourier spectra of pharyngeal fricative /sh/ after FFT; c 
the Fourier spectra in dB of normal speech /sh/ after FFT; d the Fourier spectra in dB of pharyngeal speech /
sh/ after FFT
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As shown in Fig. 6, the Fourier spectra and the Fourier spectra in dB of initial conso-
nant /sh/ are divided into two parts according to the proposed definition method: the 
high-energy region (HER) and the low-energy region (LER). This definition method is 
based on the distribution characteristics of frequency components in normal speech and 
pharyngeal fricative speech. The HER is defined as the continuous frequency compo-
nents with high amplitudes. The LER is defined as all frequency components in the Fou-
rier spectrum except those in HER. In Fig. 6, the (a) and (b) are given to show the overall 
energy variations of normal speech and pharyngeal fricative speech /sh/, while (c) and 
(d) are provided to highlight the detailed amplitude variations in LER. Several typical 
characteristics in the defined HER and LER are summarized in the following points: (1) 
normal speech has richer information in the HER than pharyngeal fricative speech has. 
The HER of normal speech has a wider frequency range and includes more frequency 
components compared with that of pharyngeal fricative speech. (2) Whether speech is 
pharyngeal fricative speech or normal speech, its frequency components in LER have 
less variation than those in HER. (3) The distribution differences of the amplitudes 
between HER and LER in normal speech are greater than those in pharyngeal fricative 
speech.

Speakers with pharyngeal fricative restrict airflow in the pharynx by posterior dis-
placement of the tongue [3]. This posterior place of articulation causes the energy of the 
pharyngeal fricative speech to shift to a lower frequency region [30]. The initial conso-
nants in normal speech are produced in an anterior place of articulation, such as the oral 
cavity and/or lip. This anterior place of articulation causes the HER of normal speech 
to have a wider frequency range. As shown in Fig. 6, the HER of the normal speech has 
wider frequency range than the HER in pharyngeal fricative speech. In addition, the LER 
in normal speech has significantly lower amplitudes compared with its HER, as shown in 
Fig. 6c, while this situation is less prominent in pharyngeal fricative, as shown in Fig. 6d. 
The amplitude distribution of HER and LER in normal speech has greater differences 
than that of the pharyngeal fricative. In this work, a feature is proposed to establish a 
relationship between the signals in HER and LER. The block diagram of the calculation 
process of the proposed feature is shown in Fig. 7.

As shown in Fig. 7, the CSIFs feature is proposed based on the definition of the HER 
and LER. Its calculation is based on the designed matching filter and DSCS (double sig-
nal coordinate system). This calculation process is summarized as follows. First, the HER 
and LER of each initial consonant are separated by the designed matching filter. Second, 
simultaneous display of the HER and LER speech signals is realized in DSCS by coordi-
nate transformation. Finally, the signals of HER and LER in DSCS are adopted to calcu-
late CSIFs. The detailed technique information of CSIFs calculation is introduced in next 
two subsections.

Matching filter design based on the amplitude variations of frequency components

In this work, the cut-off frequency of HER and LER is calculated based on the amplitude 
variations in the Fourier spectrum. However, the amplitude variations in the spectrum 
of each initial consonant differ in terms of various characteristics, such as vocal tract 
length, gender, age, place of articulation, and manner of articulation. Thus, the cut-off 
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frequency of each initial consonant is different. To calculate the cut-off frequency, a 
matching filter is designed to realize self-adaptive calculation for each type of initial 
consonant.

This calculation process of the designed matching filter can be summarized as follows. 
First, the Fourier spectrum of each initial consonant is calculated and segmented into 
short segments. Second, the variance envelope is computed from the segmented spec-
trum. Then, linear regression fitting is utilized to locate the cut-off frequency of HER 
and LER. The detailed calculation process of cut-off frequency is described as follows:

Normal speech /pharyngeal 
fricative speech

Fourier spectrum calculation

Variance envelope  calculation

Cut-off frequency calculation

Linear regression fitting 

framed

Butterworth low-
pass filter
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CSIFs feature

1,2,...,ith ,..., N Frame 

Fig. 7  The block diagram of CSIFs calculation. The design of matching filter and the calculation of PCC matrix 
are two key parts in the calculation of CSIFs feature
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Fourier spectrum calculation

The Fourier spectrum of each initial consonant is calculated by fast Fourier transform 
(FFT size = 1024). Then, the spectrum is segmented into short segments using the Ham-
ming window. The selection of the window size depends on the sampling frequency of 
speech signals. In this work, the sampling frequency of speech signal is 44,100  Hz. A 
window size is selected as 689 Hz, while the window shift is 344 Hz.

Variance envelope calculation

Variance envelope Mv (v = 1, 2…, N, where N is the number of segments) is composed 
of variance values that are calculated from spectrum segments. For each spectrum seg-
ment, its variance is calculated by (2):

where si (i = 1, 2…, L, where L is the number of data points in each spectrum segment) 
is the ith data point in the current spectrum segment. M represents the variance of the 
current spectrum segment, µ denotes the mean value of si . The Fourier spectrum and its 
variance envelope of initial consonant /c/ (IPA: [tsʰ]) are shown in Fig. 8.

As shown in Fig. 8, the Fourier spectrum is represented by the variance envelope to 
reflect its overall amplitude variations. In this work, the amplitudes of the defined LER 
are small and have low fluctuations. The variance can evaluate the fluctuation of a data 
set [58]; thus, the variance envelope can facilitate the calculation of cut-off frequency in 
each initial consonant.

Linear regression fitting

In variance envelope Mv , its cth variance Mc (c = 1, 2…, N, where N is the length of 
variance envelope) to the last variance MN are fitted using linear regression. Since the 
LER of each initial consonant is represented by small variance values in Mv , these small 
variance values in consecutive segments can be reflected by small slope values of linear 
regression lines. Therefore, these slope values are used to locate the cut-off frequency 
for the HER and LER. This linear regression fitting [59] process in variance envelope is 
described in Algorithm 1.

(2)M =

∑

(Si − µ)2

L
,

(a) (b)
Fig. 8  a The spectrum of normal initial consonant /c/; b the variance envelope of normal initial consonant 
/c/
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After the processing of the linear regression fitting algorithm in Algorithm 1, the slope 
matrix that contains all the slope values of the fitted linear regression lines is calculated. 
The normalized variance envelope and slope values are shown in Fig. 9.

As shown in Fig. 9, the dotted line is the values in slope matrix R, while the solid line is 
the variance envelope. The slope matrix R magnifies the difference between the HER and 
LER in the speech spectrum of the initial consonants.

Cut‑off frequency calculation

In slope matrix R, slope value Rc (c = 4, 5…, N-2, where N is the length of matrix R) is 
compared with Rc−1 to locate the cut-off frequency. This comparison process is shown 
in Fig. 10.

A method is presented in the comparison process shown in Fig.  10. This method is 
described in Algorithm 2, in which c_f is the calculated cut-off frequency. Coor is com-
posed of all frequency index of all spectrum segments. H denotes the results (0 or 1) of 

Fig. 9  The variance envelope M and slopes R of normal fricative /c/

R1 R2 Rc-1 Rc RN-1 RN... ...

Fig. 10  The diagrammatic sketch of pairwise comparison for slope values from back to front
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the significant test [60]. When H equals to 1, it illustrates that the compared two groups 
exist significant difference. The results of H in Algorithm 2 are illustrated in Fig. 11.

In steps 5–7, when H, slope Rc−1 , and Rc+1 satisfy step 5, c_f is obtained by calculating 
the mean value of frequencies in cth spectrum segment. The c_f is the cut-off frequency 
between LER and HER region.

DSCS system

The cut-off frequency calculated above is adopted in Butterworth high-pass and low-
pass filters. Thus, the HER and LER of an initial consonant are obtained. The order 
of these two Butterworth filters is set as 10. This order is suitable for the filtering of 
speech signal [61]. To have a more intuitive comparison of signals in HER and LER, a 
DSCS system is proposed to realize simultaneous display of them in the same coordi-
nate axis. This simultaneous display of them is realized by coordinate transformation, 
which is described by (3) and (4):

In these two equations, XH and XL represent the HER and LER of the speech signal, 
respectively. NXH is obtained by the coordinate transformation of XH;NXL is obtained 
by the coordinate transformation of XL.TransH and TransL are the amplitudes of 
translation of XH and XL , respectively. The TransH is the maximum value of HER, 
while the TransL is the minimum value of LER. An example of DSCS is given in Fig. 12 
based on normal initial consonant /c/.

(3)NXH = XH − TransH ,

(4)NXL = XL − TransL.

... ... H=0 ... H=0 H=0H=1 H=0

Fig. 11  The diagrammatic sketch of the significant test results
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As shown in Fig. 12, we can observe the amplitude variations of the signals in HER 
and LER in time domain. The proposed DSCS is useful for studying the relationship 
between the signals in HER and LER. In DSCS, since the translation influences only 
the amplitudes of signals in the HER and LER, their relation does not change in this 
translation process.

The Pearson correlation coefficient calculation for the high‑frequency region 

and low‑frequency region of speech signal

The Pearson correlation coefficient (PCC) is used to calculate CSIFs in this work. PCC [62] 
can evaluate the relation between HER and LER of each initial consonant. The signals in 
HER and LER of each initial consonant have the same length in time domain. In the calcula-
tion process of PCC, the signals in high-frequency part and low-frequency part are initially 
framed. There is no overlap in adjacent speech frames. The framing process of pharyngeal 
fricative /c/ is shown in Fig. 13.

As shown in Fig. 13, the number (1, 2, 3…, N) is the frame index of the signals in HER and 
LER. The frames with the same frame index of HER and LER are as one group to calculate 
PCC. For the nth group of frames ( NXH (n) and NXL(n) ), their PCC value p_{n} (n = 1, 2…, 
N, where N is the number of frames) is calculated using (5).

Fig. 12  Coordinate transformation for high-frequency part and low-frequency part in DSCS for normal initial 
consonant /c/

Fig. 13  The framing process of pharyngeal fricative speech /c/. For each initial consonant, its LER and HER 
are correspondingly framed into N frames. The PCC value of each pair of frames is calculated. In this work, the 
N equals to 10. The frame size depends on the length of each initial consonant
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where NXH (n) is the nth frame of the HER, NXL(n) is the nth frame of the LER. E(*) is 
the expectation. Using (5), we calculate the PCC value of each pair frames. Then, each 
initial consonant is represented by these PCC values, which is called CSIFs.

Proposed OSPP feature based on the prominent peak of the energy‑concentration region

In the production process of speech, the places of articulation have great influences on 
the distribution of frequency components [63]. If the posterior displacement of the place 
of articulation occurs, the center frequency and the concentration degree of a prominent 
peak in the energy-concentration region decrease [30]. According to the places of articu-
lation in normal production process of speech, the six types of initial consonants in this 
work can be classified as three types: apical (/c/, /s/ (IPA: [s])), blade-palatal (/ch/ (IPA: 
[ʈʂʰ]), /sh/), and alveopalatal sounds (/q/ (IPA: [tɕʰ]), /x/ (IPA: [ɕ])) [3]. These places of 
articulation are all in the oral cavity in the normal production process of speech, which 
differ from those in the production of pharyngeal fricative speech. Thus, there exist dif-
ferences in the energy-concentration regions in the speech spectrum of pharyngeal frica-
tive speech and normal speech.

For each type of initial consonant, there exist one or two energy-concentration regions 
in their speech spectrum [19, 30]. The results of studies [30, 64] demonstrate that the 
center frequencies of the six initial consonant types in normal speech are distributed 
in the lower half of the frequency range. Moreover, the changed place of articulation 
in pharyngeal fricative speech results in lower center frequencies than those in nor-
mal speech [64]. Then, one-third octave spectra are adopted in this research to empha-
size the information in the low-frequency part of the speech signal [65]. In one-third 
octave spectra, frequency components ranging from 0 to 22,050 Hz are divided into 43 
frequency bands [66]. These frequency bands in the lower frequency part are densely 
distributed with shorter bandwidths than those in the higher frequency part. This distri-
bution of frequency bands is based on auditory properties that have excellent robustness 
to different speech signals [67].

Based on the above analysis on the relation between places of articulation and energy-
concentration regions, a new feature is proposed in this subsection. Figure 14 illustrates 
the implementation procedure of the calculation process for the proposed feature. First, 
pharyngeal fricative speech and normal speech are segmented into N frames without 
overlap. Second, one-third octave spectra [68] are calculated based on the Fourier spec-
trum. Third, linear regression fitting is adopted in one-third octave spectra to normalize 
the amplitudes of frequency components. Finally, the OSPP feature is calculated based 
on the differential value from one-third octave spectra and the linear regression line of 
each frame.

The calculation process of the OSPP feature is described in detail as follows:

Preprocessing

Each initial consonant is initially segmented into frames. Then, the following calculation 
is carried out based on each frame.

(5)pn =
E(NXH (n)NXL(n))− E(NXH (n))E(NXL(n))

√

E((NXH (n))2)− E2(NXH (n))
√

E((NXL(n))2)− E2(NXL(n))
,
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One‑third octave spectra calculation

The calculation of one-third octave spectra is divided into three steps:

1.	 Fourier spectrum calculation: the spectrum of each frame is calculated by Fourier 
transform (FFT size = 1024). It is performed frame by frame to calculate this spec-
trum.

2.	 Frequency bands extraction: according to one-third octave, the spectrum of each 
frame is divided into 43 frequency bands. There are three basic parameters in each 
frequency band: starting frequency, center frequency, and upper frequency. These 
three parameters are respectively represented by f 1 , fc, and f2. The bandwidth of each 
frequency band equals (f2 − f1). The relationship of these three frequency parameters 
is described by (6), (7), and (8): 

3.	 Spectral line calculation: for each extracted frequency band of the 43 frequency 
bands, its spectral line E_{i}(i = 1, 2 . . . , 43 , where i is the frequency band index) is 

(6)fc =
√

f1 × f2

(7)f2/f1 = 21/3

(8)fc/f1 = f2/fc = 21/6
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Fig. 14  The block diagram of OSPP calculation. a Original speech signal; b speech signal framing without 
overlap; c calculated Fourier spectrum; d extracted frequency bands based on one-third octave spectrum; e 
calculated one-third octave spectrum; f linear regression fitting for one-third octave spectrum
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the mean value of the amplitudes in the frequency band. Then, the one-third octave 
spectra on the band level are represented by E.

Linear regression line calculation

The linear regression line is calculated by fitting the frequency band index of one-third 
octave spectrum to its corresponding Ei using the least square method [59]. Since the 
amplitudes of the spectrum used to calculate OSPP are affected not only by overall 
energy, but also by the window size of the spectrum analysis [68], linear regression fit-
ting is adopted to normalize the overall amplitudes of one-third octave spectra.

Differential value and OSPP feature

The differential value is calculated from the most prominent peak value of one-third 
octave spectra and the corresponding value on the regression line that is directly below 
the peak. The OSPP feature of each initial consonant is formed by the group of each dif-
ferential value. This calculation is described in (9).

where DF is the differential value of each frame, n (n = 1, 2…, N, where N is the number 
of frames) is the frame index, peak represents the maximum of the most prominent peak 
in one-third octave spectra, RL denotes the value of the linear regression line with the 
same horizontal ordinate of the prominent peak.

An example of the one-third octave spectra and its linear regression fitting line of nor-
mal initial consonant /s/ is given in Fig. 15. The difference value is the distance between 
this double arrow.

Abbreviations
AUC​: Area under the receiver operating characteristic curve; OSPP: Octave spectrum prominent peak; CSIFs: Correlation 
of signals in independent frequency bands; EMAs: Amplitudes of eight one-third octave bands; FMAs: Amplitudes of four 
one-third octave bands; PCC: Pearson correlation coefficient; DSCS: Double signal coordinate system; LER: Low-energy 
region; HER: High-energy region; ICPD: Independent consonant prominent distribution; PP: Pitch period; VTA: Vocal tract 
area; VTG: Vocal tract gain.

(9)DF_{n} = peak_{n} − RL_{n},

Fig. 15  One-third octave spectrum and linear regression line of pharyngeal fricative /s/
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