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How facial aging affects perceived gender: Insights from
maximum likelihood conjoint measurement

Daniel Fitousi Ariel University, Israel

Conjoint measurement was used to investigate the joint
influence of facial gender and facial age on perceived
gender (Experiment 1) and perceived age (Experiment
2). A set of 25 faces was created, covarying
independently five levels of gender (from feminine to
masculine) and five levels of age (from young to old).
Two independent groups of observers were presented
with all possible pairs of faces from this set and
compared which member of the pair appeared as more
masculine (Experiment 1) or older (Experiment 2). Three
nested models of the contribution of gender and age to
judgment (i.e., independent, additive, and saturated)
were fit to the data using maximum likelihood. The
results showed that both gender and age contributed to
the perceived gender and age of the faces according to a
saturated observer model. In judgments of gender
(Experiment 1), female faces were perceived as more
masculine as they became older. In judgments of age
(Experiment 2), young faces (age 20 and 30) were
perceived as older as they became more masculine.
Taken together, the results entail that: (a) observers
integrate facial gender and age information when
judging either of the dimensions, and that (b) cues for
femininity and cues for aging are negatively correlated.
This correlation exerts stronger influence on female
faces, and can explain the success of cosmetics in
concealing signs of aging and exaggerating sexually
dimorphic features.

Introduction

Facial age and gender are crucial for face recognition.
These dimensions are among the first to be extracted
by observers (Young & Burton, 2017). They are
easily estimated, even in unfamiliar faces (Burt &
Perrett, 1995; George & Hole, 2000), and are perceived
categorically (Allport et al., 1954; Beale & Keil,
1995), such that their corresponding sensory cues are
transformed rapidly and automatically into discrete
labels (Enlow & Moyers, 1982; O’Neil & Webster,
2011). Recently, there has been a resurgence of interest
in these facial dimensions in the domains of psychology
(Fitousi, 2017a, 2020; Kloth et al., 2015; O’Neil &
Webster, 2011; Schweinberger et al., 2010; Wiese et

al., 2013) and computer science (Eidinger et al., 2014;
Levi & Hassner, 2015). This is primarily due to the
increasing influence of social networks that, along
with the cosmetic industry (Etcoff et al., 2011; Russell,
2009) reflects the tremendous importance individuals
place on their own and others’ facial age and gender.
One question that stands out in psychological research
concerns the extent to which facial age and gender
interact in perception and cognition. Are cues for facial
age affecting the way facial gender is perceived? Are
cues for facial gender influencing the manner by which
we estimate a face’s age?

The present study addresses these questions by
harnessing a rigorous psychophyscial technique
known as maximum likelihood conjoint measurement
(MLCM; Ho et al., 2008; Knoblauch & Maloney,
2012). The technique is based on the classic conjoint
measurement methodology, originally developed by
(Luce & Tukey 1964), and its subsequent elaborations
(Krantz et al., 1971). This methodology allows
researchers to construct the psychological scales for two
(or more) tested dimensions based on a simple paired
comparison task. It also allows testing the perceptual
independence of the pertinent dimensions. In the
current study, the MLCM was applied to the facial
dimensions of age and gender. The results strongly
suggested that these dimensions are not processed
independent of each other. It is shown that cues to
age and cues to gender have conjoint contributions to
the perception of either of the dimensions. Moreover,
the nature of these contributions can be characterized
both qualitatively and quantitatively, and they shed
light on theoretical and practical questions in social and
cognitive psychology.

The perception of facial age relies on numerous shape
and surface cues. In the course of human development,
structural changes occur in the shape of the skull, facial
features, and their configuration (Berry & McArthur,
1986). The configuration of the face continues to change
throughout adult life and is characterized by many
textural alterations of local and global aspects, such as
the eyes and lips (Burt & Perrett, 1995). Both shape cues
and texture cues have been shown to be important for
age judgments (Burt & Perrett, 1995; George & Hole,
2000; O’Toole et al., 1997; Macke & Wichmann, 2010).
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Shape cues for age consist of morphological changes,
such as nose and ear cartilage growing, which increase
the size of these features, and changes in other local
features, such as the eyes and lips (Burt & Perrett,
1995). Surface cues for age consist of skin texture, such
that young faces have soft, firm and smoother skin, and
older faces (30 years old and older) are characterized
by wrinkling (Berry & McArthur 1986; Burt & Perrett
1995; George & Hole 2000; O’Toole et al. 1997).

Similarly, the perception of facial gender relies on
numerous shape and texture cues. Shape cues for gender
consist of eyes, eyebrows, the jaw and the face outline
(Brown & Perrett, 1993; Bruce & Langton, 1994;
Burton et al., 1993), whereas surface cues for gender
include skin texture (Russell, 2009), luminance contrast
between the eyes and the mouth (Russell, 2009), skin
pigmentation (Bruce & Langton, 1994), and skin color
(Tarr et al., 2001).

Given that many of the cues for age and gender
rely on shared shape and texture cues, one may
predict that these two dimensions are dependent
in perception. However, the empirical evidence for
this hypothesis is rather mixed. Some studies point
to perceptual interactions (Cloutier et al., 2014;
Fitousi, 2017a), whereas others argue for partial or
complete independence (O’Neil & Webster 2011).
Barrett and O’Toole (2009) deployed a face gender
adaptation paradigm where a bias to classify the
gender of a gender-neutral face is opposite to that of
an adapting face. They found that gender adaptation
effects transferred across age categories, a result that
supports the independence of facial age and gender.
Similarly, O’Neil and Webster (2011) recorded facial
age adaption effects that transferred across gender
categories, again pointing to perceptual independence.
Quinn and Macrae (2005) applied Garner’s speeded
classification task (Algom & Fitousi, 2016; Garner,
1974b) to the dimensions of facial age and gender. They
found that the classification of faces on gender were
interfered by irrelevant variations on facial age, whereas
categorization according to facial age was not affected
by irrelevant variations on facial gender. Quinn and
Macrae (2005) also found that classifications of gender
were performed faster with young than old faces, but
this difference was more pronounced for female than
male faces. Fitousi (2020) reapplied the Garner task to
the same dimensions and found them to be completely
separable. However, he documented a bias in judgments
of gender by which young females and old males
were categorized faster than old females and young
males. A similar bias has been recorded by Kloth et
al. (2015). According to Kloth et al. (2015), the results
reflect built-in correlations between the sensory cues for
gender and age. In particular, observers took advantage
of the presence or absence of smooth skin texture and
used it as a clue for facial age.1

Taken together, the findings from the reviewed
studies are somewhat inconsistent. At the dimensional
level, facial age and gender appear as separable entities
(Barrett & O’Toole, 2009; Fitousi & Wenger, 2013;
Fitousi, 2020; O’Neil & Webster, 2011), but at the
level of the constituting features, facial age and gender
exhibit specific interactive patterns (Fitousi, 2020;
Kloth et al., 2015), with faces of young females and old
males being categorized more efficiently than faces of
old females and young males. These findings suggest
that cues for facial age and cues for facial gender are
not represented independent of each other. The current
study set to investigate the perceptual mechanisms that
lead to such a bias, as well as the exact contributions
of objective age and gender cues to perceived age and
gender. Stimuli in previous studies were not tightly
controlled, making it difficult to know how gradual
changes within and across age and gender categories
exactly influence each other.

The present study applied the MLCM methodology
(Ho et al., 2008; Knoblauch & Maloney, 2012) to facial
age and gender. The MLCM technique has been widely
applied to classic psychophysical dimensions (for review
see, Maloney & Knoblauch, 2020); such as surface gloss
and bumpiness (Ho et al., 2008; Qi et al., 2015), color
dimensions of hue, chroma, and lightness (Gerardin
et al., 2018; Rogers et al., 2016); time (Lisi & Gorea,
2016); and recently to facial dimensions of lightness
and ethnicity (Nichiporuk et al., 2018) and facial
gender and voice (Abbatecola et al., 2021). The current
study expands the scope of applications to additional
facial dimensions. The goal is to shed light on the
perception of facial age and gender. In Experiment 1,
observers compared pairs of faces on perceived gender.
In Experiment 2, a new group of observers judged the
same set of stimuli with respect to perceived age. The
goals were to a) exert tight control over face stimuli,
altering their age and gender levels in a parametric
fashion, b) investigate how gradual changes within
and across age and gender physical categories are
translated onto psychological scales, c) test a set of
nested models that allow us to quantify the relative
contributions of each dimension’s physical cues to
perceived gender (Experiment 1) and age (Experiment
2), and d) determine the best fitting model, separately
for the gender and age tasks.

Methods

Observers

A total of 16 observers participated in this study.
They were recruited from the Ariel University pool
of participants, and were compensated with a course
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credit. Eight observers participated in Experiment
1 (four males and four females, mean age = 24.6,
sd = 6.11 years). A new group of eight observers,
who did not participate in Experiment 1, participated
in Experiment 2 (four males and four females, mean
age = 23.8, sd = 3.15 years). All observers had normal
or corrected-to-normal vision. All observers were naive
to the goals of the study.

Stimuli and apparatus

The stimuli were two-dimensional color face images
positioned at the center of the screen over a black
background. The stimuli were created with Singular
Inversions FaceGen Modeller 3.2 (Inversions, 2008).
This software incorporates a three-dimensional
morphable model of faces to allow the generation

and variation of face images along several dimensions
such as identity, gender, and emotion (Blanz & Vetter,
1999). Faces generated by FaceGen have been widely
used in recent studies (Johnson et al., 2012; Oosterhof
& Todorov, 2008). The FaceGen model is based on
three-dimensional imaging of 273 males and females
from 12 to 67 years old, and of various ethnicities and
appropriate controls for age and gender.

The stimuli in the current study were created by
first generating a single European identity by moving
the “race morphing” slider toward the “European”
end of scale. I then changed the desired parameters of
age and gender of this identity to produce the faces
in the set. All faces in the set were created using the
same angle and default setting for lighting, without
hair or other external features. In both age and gender
scaling, the ‘Sync Lock’ option was checked to allow
synchronized contributions of texture and shape. The

Figure 1. The stimuli set in Experiment 1 and Experiment 2. The faces were created with the FaceGen software by combining five
levels of gender and five levels of age. The i stand for levels of gender and j for levels of age. Note that for a given level of age j,
physical gender becomes more masculine up the ith row. For a given level of gender i, physical age becomes older as one moves to
the right jth columns.
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age and gender group sliders are linear regressions on
the model data set. The facial gender and age of each
face were altered in a parametric fashion. This was
done by first dividing the corresponding age and gender
sliders into five equally distanced points, and then, by
moving the handles of these sliders along those points
to determine the exact age and gender levels for a given
face. Each face was assigned one of those five possible
gender levels (from very feminine to very masculine),
and one of five possible age levels (from very young
to very old). The five age values corresponded with
the objective ages of 20, 30, 40, 50, and 60 years old.
This procedure resulted in 25 possible faces (5 levels
of gender × 5 levels of age = 25). Figure 1 presents
the faces created according to this method. The figure
shows the structure of the face stimuli on a Cartesian
grid. Let i denote the rows of this grid and j denote
its columns. The stimulus matrix represents a full
factorial combination of i levels of gender and j levels
of age. For a given level of facial age j, physical gender
becomes more masculine as we move up the ith rows.
For a given gender level i, physical age becomes older as
we move to the right along the jth columns.

It should be noted that the random generator tool
in FaceGen uses a face space of features that is based
on a large sample of real-world faces. Any phenotypic
correlations between cues for age and gender may
represent the structure of cues in real-world faces; and
is therefore ecologically valid. For example, a quick look
at Figure 1 reveals that skin tone gets lighter as the face
becomes feminine. Rahrovan et al. (2018) have noted
that: “several spectrophotometric studies have shown
that in diverse populations in Europe, Asia, Africa, and
North and South America, female skin reflectance is 2
to 3 percentage points above that of male skin (having a
higher reflectance means having paler skin.)” (p.127).

Procedure and design

Two groups of observers participated. The first group
judged facial gender (Experiment 1), and the second
group judged facial age (Experiment 2). Faces were
presented at the center of the screen as color images
over black background. Viewed from a distance of 56
cm, each face subtended 4.1◦ horizontally and 9.6◦
vertically. On each trial, observers viewed 1 of the 325
possible pairs of faces from those illustrated in Figure 1
(including self-comparisons2). The two faces appeared
in succession. The observer’s task was to judge which
of the two faces looked more masculine (Experiment 1)
or older (Experiment 2). Each pair was presented three
times, making a total of 975 trials.

The sequence of events was similar to that
administrated in previous MLCM studies (Ho et al.,
2008). Each trial commenced with a central fixation
point presented for 200 ms, then the first face was

presented for 400 ms and followed by a 200-ms
interstimulus interval. Then the second face was
presented for 400 ms. The observer judged whether
the first or second faces appeared to him or her more
masculine or older, by pressing one of two keys on the
keyboard (‘z’ and ‘m’). The observer’s response initiated
the next trial.

Model

The psychophysical task required for application of
MLCM is rather simple (Knoblauch & Maloney, 2012;
Luce & Tukey, 1964). Observes viewed all possible pairs
of the 25 faces in Figure 1, and on each trial judged
which member of the pair was more masculine. In
a second experiment, a different group of observers
viewed the same stimuli and judged which member of a
pair was older. The stimuli in the two experiments were
identical, but observers in each experiment evaluated
the perceptual effects of one dimension while ignoring
the other dimension.

Now, let φg denote values on the physical gender
scale and let φa denote values on the physical age scale.
The value of gender is constant across the ith row in
Figure 1, and is denoted φ

g
i and the value of age is

similarly constant in the jth column and is denoted φa
j .

Comparison between the two faces can be represented
as a comparison between two ordered pairs (φg

i , φ
a
j )

and (φg
k, φ

a
l ). MLCM assumes that the visual system

computes an estimate of perceived gender that is based
on both its physical gender φg and physical age φa. The
estimate of this quantity is ψG(φg

k, φ
a
l ) with uppercase

letters for perceptual measures and lowercase letters for
physical variables. The resulting estimates of perceived
gender amount to the decision variable:

�(i, j, k, l ) = ψG(φg
k, φ

a
l ) − ψG(φg

i , φ
a
j ) + ε (1)

where the random variable ε ∼ N (μ, σ 2
G ) is a judgment

error. The model for perceived age was constructed
analogously, but based on the perceived age ψA(φg

k, φ
a
l )

and ψA(φg
i , φ

a
j ) of the two faces compared and

a different magnitude of judgment error for age
comparisons σ 2

A.
Maximum likelihood conjoint measurement (Ho

et al., 2008; Knoblauch & Maloney, 2012) considers
three nested models of the decision process: (a) the
independent observer, (b) the additive observer, and
(c) the saturated observer. These are applied separately
for each observer’s data, to obtain the best prediction.
Each model provides estimates of perceptual scale
values or internal response. These have the property
that equal differences in response are perceptually
equal. The independence model assumes that decisions
are made based only on one dimension, with no
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contribution from the other dimension. The additive
model assumes that decisions are made based on the
sum of component psychological responses elicited by
the physical dimensions. The saturated model assumes
that decisions also include an interaction term that
depends on the specific values of the two components
in addition to their simple additive combination. The
three models form a nested series with the independent
model as the most constrained and the saturated model
as the least constrained. They are evaluated using a
nested likelihood ratio test (Fitousi, 2014; Gerardin et
al., 2018; Ho et al., 2008; Rogers et al., 2016)

The additive conjoint model replaces ψG(φg
i , φ

a
j ) by

ψ
G:g
i + ψG:a

i , where ψ
G:g
i is an additive contribution of

physical gender to perceived gender that is constant
across the ith row of Figure 1 and ψG:a

j is a comparable
contribution of the physical age to perceived gender
that is constant across the jth column. ψ

G:g
i and

ψG:a
j are parameters of the additive model that are

estimated from data. The additive model is based on
the assumption that physical age and physical gender
interact in determining perceived gender but that
the contribution of a particular level of age ψG:a

j to
perceived gender is independent of the physical gender
of the face.

Note that the first termψ
G:g
i forms the psychophysical

scale mapping physical gender to perceived gender, and
the second term ψG:a

j represents the contribution or
contamination of perceived gender owing to changes
in physical age. The additive conjoint model is based
on the assumption that the contamination is additive,
and one of our goals is to test this assumption. Another
goal is to test whether changes in physical age affect
perceived gender at all, which amounts to the hypothesis
that ψG:a

j = 0 for all j.
The additive model can therefore be rewritten as:

�(i, j, k, l ) = ψ
G:g
k + ψG:a

l − ψ
G:g
i − ψG:a

j + ε (2)

which can be rearranged as:

�(i, j, k, l ) = [ψG:g
k − ψ

G:g
i ] + [ψG:a

l − ψG:a
j ] + ε (3)

The additive model for gender is based on judgments
of a comparison of the perceived gender levels of
the two faces with an additive contamination from
the difference in perceived age. Because there are 5
levels along each dimension, there are 2 × 5 levels plus
1 variance, which amount to 11 free parameters. To
make the model identifiable, it is customary to fix the
response at level 1 (the lowest) in each dimension to 0,
ψG

1 = ψA
1 = 0, and the variance to 1. This decreases the

number of free parameters to 8.
The independent model of gender is identical to the

additive model except that there is no contamination of
perceived gender by age. The decision in this model is

then based on:
�(i, j, k, l ) = [ψG:g

k − ψ
G:g
i ] + ε (4)

In this model, the perceived difference in gender
depends only on the physical gender of the faces
compared. Hence, the values of ψA

j are fixed at 0 and
the total number of free parameters is 4.

Last, the saturated model includes an interaction
factor that depends on the intensity levels of both
gender and age. The decision variable is defined
according to:

�(i, j, k, l ) = [ψG:g
i + ψG:a

j + ψ
G:g:a
i j ]

−[ψG:g
k + ψG:a

l + ψ
G:g:a
kl ] + ε (5)

In this model, responses cannot be accounted for
based on simple additive combination, but require the
assumption of interactive terms. Hence, it is assumed
that the response to each face in the grid of Figure 1
is based on a unique combination of the separate
contributions of age and gender. Recall that the 25
faces in Figure 1 are composed of 5 levels of gender
and 5 levels of age. One cell in this grid is fixed at 0
leading to 24 free parameters. This maximal number of
free parameters gives this model its name (saturated).

There are analogous equations for additive,
independent, and saturated models for judgments of
facial age. The three models yield a nested set, with the
independent model serving as the most constrained,
the saturated model as the least constrained, and
the additive model as intermediate. The goals of the
experiments are to estimate the perceptual scale values
and model the contributions of both dimensions from
each observer’s data, as well identifying the best fitting
model.

Results

Data analysis was performed with the MLCM
package (Knoblauch et al., 2014) in the open source
software R (R Core Team, 2017). The default method
uses the glm function to estimate the model coefficients,
and it uses a maximum likelihood criterion. An
iteratively re-weighted least squares algorithm is used
to find the ML estimates. The χ2 statistic is computed
from the differences of deviance of the nested model
fits (see Knoblauch & Maloney, 2012 p. 240–245).
The difference in the number of parameters between a
pair of models served as the test’s degrees of freedom
(Ho et al., 2008; Knoblauch & Maloney, 2012). I first
compared the additive and independent models for
judgments based on facial gender (Experiment 1) and
facial age (Experiment 2). I did it separately for each
observer. The degrees of freedom for this specific test
were computed as the difference between the coefficient
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Test faces
(additive model × independent model)

DF Deviance p-value

Obs. 1 4 5.53 0.23
Obs. 2 4 3.70 0.44
Obs. 3 4 33.41 <0.001
Obs. 4 4 5.75 0.21
Obs. 5 4 47.95 <0.001
Obs. 6 4 14.89 <0.005
Obs. 7 4 2.40 0.66
Obs. 8 4 9.92 <0.05

Table 1. Experiment 1: Comparison of independent and additive
observer models for judgments of gender. DF = degrees of
freedom.

Test faces
(additive model × independent model)

DF Deviance p-value

Obs. 1 4 492.3 <0.001
Obs. 2 4 280.2 <0.001
Obs. 3 4 492.48 <0.001
Obs. 4 4 442.04 <0.001
Obs. 5 4 348.52 <0.001
Obs. 6 4 635.81 <0.001
Obs. 7 4 387.37 <0.001
Obs. 8 4 588.27 <0.001

Table 2. Experiment 2: Comparison of independent and additive
observer models for judgments of age. DF = degrees of
freedom.

estimates in each model (8 for the additive model −4
for the independent model = 4). The results of these
comparisons appear on Tables 1 and 2. As can be noted,
the additive model was superior to the independent
model for four of eight observers in Experiment 1, and
for eight of eight observers in Experiment 2. In total the
independent model was rejected for 12 of 16 observers.
At a Bonferroni correction level of p < 0.00625 these
results still held for 11 out of 16 participants. These
outcomes entail that for most observers judgments
of gender or age were contaminated by additive
contributions from the task-irrelevant dimension.

I then derived the estimated contributions of gender
and age to perceived gender (Experiment 1) and to
perceived age (Experiment 2). These estimates can
inform us on how observers transformed the physical
values of a given dimension (gender or age) onto a
perceptual (psychological) scale of gender. Figure 2
plots the perceptual scale values as a function of the
physical scale values in the Gender task, separately
for gender and age. For all observers the perceptual

Figure 2. Experiment 1. Estimated scales for judgments based
on facial gender. Additive model average estimates for the eight
observers. Gender was the relevant dimension. Error bars are
standard errors of mean.

scale values for gender increased monotonically as the
physical scale values of gender increased. Observers
judged the face as more masculine as the faces indeed
became more masculine. The additive contamination
of gender by age was small but significant for four
observers (obs. 3, 5, 6, and 8). For two observers (3 and
5), age contributed positively to perceived gender, such
that older faces were also perceived as more masculine.
For two observers (6 and 8) age negatively contributed
to perceived gender, with faces being judged as less
masculine as they got older.

Figure 3 plots the perceptual scale values as a
function of the physical scale values in the Age task,
separately for gender and age. As expected, perceived
age increased as physical age increased. In addition,
gender contaminated age additively. For five of the
eight observers (1, 2, 4, 5, and 7) this contribution
was positive, with faces being judged as older as they
became more masculine. For three observers (3, 6,
and 8) the pattern was more complex, with negative
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Figure 3. Experiment 2. Estimated scales for judgments based
on facial age. Additive model average estimates for the eight
observers. Age was the relevant dimension. Error bars are
standard errors of mean.

(to level 4) and then (at level 5 = masculine) positive
contribution of gender to age.

The independent observer model was rejected for
all observers in the age task and for three of eight
observers in the gender task. To better estimate the
contributions of weighted combinations of age and
gender I compared the saturated and additive models
for judgments of gender (Experiment 1) and judgments
of gender (Experiment 2). The χ2 statistics in this case
has 16 degrees of freedom, computed as the difference
in number of free parameters of the less constrained
model (the saturated model = 24) and the more
constrained model (the additive model = 8). Tables 3
and 4 give the results of these comparisons. The
additive model was rejected in favor of the saturated
model for six out of eight observers in Experiment 1,
and for six out of eight observers in Experiment 2 (ps’<
Bonferroni-corrected level of 0.00625). Thus, the data

Test faces
(saturated model × additive model)

DF Deviance p-value

Obs. 1 16 14.97 0.52
Obs. 2 16 20.06 0.21
Obs. 3 16 49.93 <0.001
Obs. 4 16 58.86 <0.001
Obs. 5 16 34.05 <0.006
Obs. 6 16 62.64 <0.001
Obs. 7 16 64.95 <0.001
Obs. 8 16 55.38 <0.001

Table 3. Experiment 1: Comparison of additive and saturated
models for judgments of gender. DF = degrees of freedom.

Test faces
(saturated model × additive model)

DF Deviance p-value

Obs. 1 16 52.16 <0.001
Obs. 2 16 61.43 <0.001
Obs. 3 16 46.23 <0.001
Obs. 4 16 133.49 <0.001
Obs. 5 16 51.36 <0.001
Obs. 6 16 39.82 <0.001
Obs. 7 16 14.72 0.54
Obs. 8 16 31.84 <0.05

Table 4. Comparison of additive and saturated models for
judgments of age in Experiment 2. DF = degrees of freedom.

of 12 of 16 observers favored the saturated model over
the additive model.

Figures 4 presents the saturated model in the Gender
task. As can be noted, for two observers (obs. 1 and
2) the lines are parallel to the x axis, an outcome that
is in agreement with an independent observer model.
The remaining six observers exhibited patterns of
interaction which were consistent with the saturated
observer model. The source of the interaction for these
observers can be visually located at the increase in
perceived gender as a function of age for female faces
(levels 1 and 2 of the Gender dimension) compared
with gender-neutral faces (level 3). These faces were
perceived as more masculine as they became older. Four
observers (4, 6, 7, and 8) also exhibited an additional
trend by which male faces (level 5) were perceived as less
masculine as they became older. This pattern suggests
that the two extreme levels of gender: femininity
and masculinity maintain their strongest degree of
separation at young age (level 1 = age 20), which is then
gradually decreased.

Figure 5 presents the actual pattern of Gender
judgments made by the eight observers in Experiment
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Figure 4. Experiment 1. Results of the saturated model with the estimated contributions for each combination of facial gender and
age for each observer. In this experiment facial gender was the relevant dimension of judgment. Levels of facial gender are coded
according to: (a) numbers 1-5, with 1 being the most feminine and 5 most masculine level, and (b) lines’ color, which gradually shift
from black (feminine) to gray (masculine).

1, along with the predicted judgments of Gender
uncontaminated by changes in physical Age (i.e.,
judgments of the ideal observer). These patterns also
strengthen the conclusion that observers 3 through 8
deviated from the ideal (independent) model.

Figure 6 presents the outcome of the saturated model
in the Age task. As can be noted, for most observers
the lines are not strictly parallel to the x axis, attesting
to the unique contribution of gender to perceived age.
The interaction is generated mostly by the very young
faces (level 1 = age 20 and level 2 = 30). For these
faces perceived age is increasing as the face becomes
more masculine. In other words, the more feminine the
face the younger it is perceived. Thus, young female
faces are perceived as younger than their gender-neutral
and male peers. This effect is not present at the old age
levels. For most observers, relatively old faces (ages 50
and 60) were perceived as sharing similar psychological
age, irrespective of the face’s gender level. These results
are consistent with the idea that cues for age are
confounded with cues for gender mostly in young faces
(20s and 30s).

Figure 7 portrays the age judgments made by the
eight observers in Experiment 2 along with predicted
judgments of Age uncontaminated by changes in
physical Gender (i.e., judgments of the ideal observer).

The patterns for all observers documented a clear
deviation from an independent (i.e., ideal observer)
model, and are therefore consistent with the statistical
outcomes.

Taken together, these results support the idea that
gender and age are for most observers perceived as
dependent dimensions. Experiment 1 showed that for
six of eight observers female faces were perceived as
more masculine as the faces got older. Experiment 2
revealed that for eight of eight observers young faces
were perceived as older as they became more masculine.
These results capture a strong confound between cues
for gender and cues for age. In particular, femininity
is associated with young age. This confound has been
documented in previous studies (Fitousi, 2020; Kloth et
al., 2015; O’Neil & Webster, 2011; Schweinberger et al.,
2010; Wiese et al., 2013).

General discussion

I find that facial gender and age are not perceived
independently of each other. For 14 of 16 observers,
judgments of gender (or age) were contaminated by age
(or gender) according to a saturated observer model.
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Figure 5. Experiment 1. Gender judgments made by the eight observers are shown along with predicted judgments of Gender
uncontaminated by changes in physical age (i.e., judgments of the ideal observer). The gray levels of the squares in the matrices
represent the proportion of time that a face Skl was perceived to be more masculine than another face Si j for each pair-wise
comparison. Age level i is indicated by the large numerical labels (1,2,...,5), and gender level j (or l) is indicated by the small numerical
labels (1,2,...,5).

Generally, the results suggest that female faces are
perceived as more masculine as they become older;
and young faces (age 20 and 30) are judged as older
as they become more masculine. Why do aging and
gender interact? The answer is rooted in the perceptual
structure of the faces themselves. Perception of facial
gender and age rely on shape and texture cues (Brown
& Perrett, 1993; Bruce & Langton, 1994; Burton et
al., 1993). The correlations between these phenotypic
aspects can be readily demonstrated in our set of
synthetic face stimuli (Figure 1), and they are likely
present in real faces.3 Facial aging is conveyed by
morphological cues (Berry & McArthur, 1986; Burt
& Perrett, 1995; George & Hole, 2000; O’Toole et al.,
1997) such as a) an increase in the size of the jaw, b)
thinning of the lips, and c) an increase in the distance
between the eyebrow and the eyes. Textural cues for
aging particularly affect the skin: a) skin tone becomes
darker, b) it has more wrinkles, c) its luminance
contrast decreases, and d) its pigmentation becomes
yellower. Many of these shape and texture cues also

signal masculine features (Brown & Perrett, 1993;
Bruce & Langton, 1994; Burton et al., 1993; Russell,
2009). Men have bigger jaws, their lips are thinner, and
their eyebrows are closer to their eyes than females;
moreover, they tend to have darker skin with lower
contrast (Russell, 2010; Tarr et al., 2001). The upshot is
that many of the features that serve as cues for old age
are also signs of masculinity. The current study shows
that cues for age and for gender have the strongest
interactive influence when faces are either young or
feminine.

A comment is in order regarding the relations
between skin lightness and gender in the current
experimental setting. Despite my great efforts to
eliminate the correlation between skin lightness and
gender, feminine skin tone created by FaceGen were
slightly lighter than masculine faces. One may argue
that this undermines the current conclusions because
observers could have used skin lightness as a cue for
gender. However, one should note that such a confound
may reflect an ecologically valid cue because a) in real
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Figure 6. Experiment 2. Results of the saturated model with the estimated contributions for each combination of facial gender and
age for each observer. In this experiment facial age is the relevant dimension for judgment. Levels of facial age are coded according
to: (a) numbers, with 1 being the younger and 5 older level and (b) lines’ color, gradually shifting from black (young) to gray (old).

population female skin reflectance is 2 to 3 percentage
points above that of male skin (Rahrovan et al., 2018),
and b) FaceGen relies on a representative sample
of real people (Inversions, 2008). Moreover, a study
by Macke and Wichmann (2010) also attempted to
remove textural cues for gender (including lightness),
but it seems that these authors could not prevent this
built-in confound. In their caption to their Figure 1
they admit that: “For some men with strong beard
growth, like the gentlemen in the rightmost column, this
meant that there was a slightly darker region around
the mouth – at least from an introspective point of
view a reasonable cue to gender” (p. 6). The upshot
is that it is difficult to equate experimentally the skin
lightness of feminine and masculine faces due to natural
differences. Future studies may be able to circumvent
this confound, but then an issue may arise as to whether
such faces reflect the statistical structure of real-world
faces.

Evolution, cosmetics, and facial aging

From an evolutionary stand point, the current
findings make sense. Fertility in young females may
be signaled by cues for femininity and cues for age.
The correlation between the two types of cues lead to
informational redundancy that increases the chances

that information about fertility is transmitted efficiently
and correctly to potential mates. This idea can also
explain the success of cosmetics (Russell, 2010) and its
higher prevalence among women (Etcoff et al., 2011;
Russell, 2009). Sexual attractiveness and anti-aging
are two main goals of the cosmetics industry, and the
current study can explain why. Signals of femininity
are positively correlated with attractiveness (O’Toole
et al., 1998), and as we have shown here are also
negatively correlated with age. This finding can explain
the biological incentive for using cosmetics to highlight
sexually dimorphic attributes of femininity, but also to
conceal cues for old age. Both serve as signals of fertility
and are expressed on the same facial cues. For example,
Russell (2009) demonstrated the existence of a sex
difference in facial contrast that affects the perception
of gender. Females have greater luminance contrast
between the eyes, lips and the surrounding skin than
men. Russell (2009) showed that cosmetics consistently
increase facial contrast and thus are functioning to
exaggerate feminine features and consequently their
attractiveness. Notably, skin contrast also differs
between young and old faces and serves as a cue for
age (Berry & McArthur, 1986; Burt & Perrett, 1995;
George & Hole, 2000; O’Toole et al., 1997). Lower
levels of contrast signal old age. Thus, cosmetics not
only exaggerates sexually dimorphic attributes, but
also decreases perceived age. Etcoff et al. (2011) found
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Figure 7. Experiment 2. Age judgments made by the eight observers in Experiment 2 are shown along with predicted judgments of Age
uncontaminated by changes in physical Gender (i.e., judgments of the ideal observer). The gray levels of the squares in the matrices
represent the proportion of time that a face Skl was perceived to be older than another face Si j for each pair-wise comparison. Age
level i is indicated by the large numerical labels (1,2,...,5), and gender level j (or l) is indicated by the small numerical labels (1,2,...,5).

that the influences of cosmetics go even farther than
that, exerting dramatic positive effects on judgments of
competence, likability, and trustworthiness.

Nonveridical perception of facial gender and
age

The present study reveals that facial age and gender
are not perceived veridically, but are subjected to
major influences of context. Context here refers to
the contamination of each dimension by the other. In
this sense, each face has a specific gender (age) level
that sets a unique context for the perception of its
age (gender). This finding is in accordance with the
mentioned effects of cosmetics on perceived gender
(Etcoff et al., 2011; Russell, 2009), and also with
several recent adaptation studies that found that the
appearance of both age (O’Neil & Webster, 2011) and
gender (Schweinberger et al., 2010) can be altered
through adaptation to a previous face. For example, a
neutral-gender face seems to be male after adaptation
to a female face (Schweinberger et al., 2010). Similarly,
adapting to an old face causes faces of intermediate
age to appear younger (O’Neil & Webster, 2011). These

context effects imply that the internal representations
that govern facial age and gender are dynamic and
are sensitive to previous experience and correlational
structures in the faces themselves. I have recently
proposed a ‘face file’ approach to face recognition
(Fitousi, 2017a, 2017b), which assumes that faces are
stored as temporary episodic representations with
detailed featural information about the face’s gender,
age, identity, and emotion. These features are bound
to each other (e.g., male+young) and can be updated
momentarily. Face files can be used to account for the
context-dependent nature of facial age and gender
(Fitousi, 2017a, 2017b).

Age and gender are essential for what social scientists
call person ‘construal’ (Bodenhausen & Macrae, 1998;
Fiske & Neuberg, 1990; Freeman & Ambady, 2011;
Macrae & Bodenhausen, 2001), the process by which
social agents construct coherent representations of
themselves and others. These representations are used
by observers to guide information processing and
information generations towards others. According to
the dynamic interactivemodel by Freeman and Ambady
(2011) the initial presentation of a face launches
simultaneous activation of several competing social
categories (e.g., age, gender, race). Along the accrual of
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evidence, the pattern of activation gradually sharpens
into clear interpretation (young female), while other
alternatives are inhabited. According to this framework,
a confluence of perceptual (bottom-up) and cognitive–
social (top-down) factors can generate various types
of interactions among social facial dimensions such as
facial age and gender. The dynamic–interactive model
can account for a large body of research that has
documented interactive patterns in face categorization
including the current findings (Cloutier et al., 2014;
Freeman et al., 2012; Johnson et al., 2012). One crucial
goal made explicit by the dynamic-interactive model
is the need to distinguish between lower (perceptual)
and higher (stereotypes, attitudes, expectations) sources
of bias in face categorization (Becker et al., 2007). The
former are yielded by correlated phenotypic traits in the
sensory cues themselves (skin texture and cues for age),
whereas the latter are generated by learned associations
or social expectations that can be located in the ‘head’
of the observer.

The integral/separable distinction and MLCM

The application of theMLCM approach (Knoblauch
et al., 2014) to psychological dimensions raises a caveat
concerning a more general issue in psychology—the
concept of perceptual independence. Garner proposed a
fundamental distinction between integral and separable
dimensions (Garner, 1962, 1970, 1974a, 1974b, 1976,
1991). This distinction is a pillar of modern cognitive
science (for review see Algom & Fitousi, 2016). Objects
made of integral dimensions, such as hue and saturation
are perceived in their totality and cannot be readily
decomposed into their constituent dimensions. Objects
made of separable dimensions, such as shape and
color, can be readily decomposed into their constituent
dimensions. The integral–separable distinction cannot
be decided based on the verdict of only one procedure.
There is the risk that a theoretical concept (e.g., sepa-
rability) would be only a restatement of the empirical
result (Fitousi, 2015; Von Der Heide et al., 2018).

To avoid circular reasoning, Garner has noted the
need for converging operations (Garner et al., 1956).
Several methodologies have been used to support the
integral–separable distinction: a) Garner’s speeded
classification task (Garner, 1974b), b) similarity scaling
(Attneave, 1950; Melara, 1992), c) information theory
(Fitousi, 2013; Garner, 1962; Garner & Morton, 1969),
d) general recognition theory (GRTAshby & Townsend,
1986; Fitousi, 2013; Townsend et al., 2012; Maddox
& Ashby, 1996), and e) system factorial technology
(SFT Townsend & Nozawa, 1995). Take method b)
for example, in which observers are asked to rate the
similarity of two objects (Hyman & Well, 1967). It has
been often found that for integral objects similarity is
computed according to a Euclidian distance metric, and
for separable objects similarity is computed according

to a city-block distance metric (Melara, 1992). It has
also been shown that the outcome from the similarity
procedure accords well with the Garner task results
(Algom & Fitousi, 2016).

Recently, Rogers et al. (2016) and Rogers et
al. (2018) have proposed that the MLCM can be
used as a converging operation on the notion of
integrality–separability. A case in point in their
studies is the color dimensions of chroma and
lightness (Munsell, 1912). In the Garnerian tradition,
these dimensions are considered as classic integral
dimensions: a) they produce Garner interference
(Garner & Felfoldy, 1970) and b) they obey a Euclidian
distance metric in similarity scaling (Burns & Shepp,
1988). If indeed the dimensions are dependent in
processing, then an additive or saturated observer
MLCMmodels should best describe the data. Rogers et
al. (2016) found that the additive observer model best
described the data. Lightness negatively contributed
to perception of chroma for red, blue, and green
hues (but not for yellow). These results are important
because they demonstrate the utility of the MLCM
in providing converging evidence on the notion of
integrality–separability, and in identifying the internal
representations that govern color dimensions. They
are also highly informative in uncovering the specific
pattern of dimensional interaction. One would have
expected integral dimensions to be best fitted by
saturated observer model rather than additive observer
model. Hence, the application of multiple related
methodologies to investigate questions of perceptual
independence is of great practical and theoretical
importance in sharpening and explicating our concepts.

The Garnerian edifice is rich in theoretical insights
that can illuminate issues inMLCM, and vice versa. This
can lead to a cross-fertilization of both methods. For
example, an important caveat raised in the Garnerian
tradition concerns the direction of interaction between
a pair of dimensions. Integrality is not a symmetric
concept. Dimension A can be integral with dimension
B, while dimension B can be separable from dimension
A (Fitousi & Algom, 2020). This notion can be readily
applied to studies in MLCM. When judging dimension
A and ignoring dimension B, observers can exhibit
a complete independent observer model. However,
when judging dimension B and ignoring dimension A,
observers can exhibit an additive or saturated observer
model. Moreover, Garnerian theorizing highlights
the role of relative discriminability in determining the
direction of asymmetry (Melara & Mounts, 1993).
Often the more discriminable dimension intrudes on
the less-discriminable dimension (Fitousi & Algom,
2006). It has been shown that relative discriminability
can be altered by the researcher and determine the
direction of interaction. Therefore, to provide a fair
test of independence the dimensions should be equally
discriminable (Algom et al., 1996). These factors might
also be important in MLCM modeling.
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Future work should test in detail the exact relations
between notions of integrality–separability in the
Garner tradition and the notions of MLCM. It is not
immediately clear for example, that independence in the
two approaches is the same. When the dimensions of
facial age and gender were subjected to the Garner test
Garner (1974b) by Fitousi (2020), they were found to be
separable dimensions. But the application of theMLCM
to the same dimensions supported their dependency.
Why age and gender can appear as separable dimensions
in the Garner paradigm and as integral or interactive
dimensions (Algom et al., 2017; Algom & Fitousi,
2016) in the MLCM? The solution to this caveat comes
by assuming that perceptual independence is not a
unitary concept, but rather a nomenclature pointing
to various types of independence (Ashby & Townsend,
1986; Fitousi, 2013, 2015; Fitousi & Wenger, 2013).
This idea has been originally developed by Garner and
Morton (1969) and Ashby and Townsend (1986). It
seems that conjoint measurement gauges different types
of independence than the Garner paradigm. Future
studies may be able to understand the relations between
these two approaches.

Keywords: facial gender, facial age, social
categorization, conjoint measurement
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Footnotes
1An alternative hypothesis might be that these biases reflect stereotypes
or expectations that relate femininity to young age and masculinity to old
age.
2Self-comparisons are often added to test for response bias. They do not
affect the outcome of the modeling. They were not used here.
3Note that the software that generated the faces in the current study,
FaceGen, relies on real-world statistics, and the resulting faces reflect
ecological regularities with correlated texture and shape cues.
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