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Abstract

The highly pathogenic Old World arenavirus Lassa virus (LASV) and the prototypic arenavirus lymphocytic choriomeningitis
virus (LCMV) use a-dystroglycan as a cellular receptor and enter the host cell by an unusual endocytotic pathway
independent of clathrin, caveolin, dynamin, and actin. Upon internalization, the viruses are delivered to acidified endosomes
in a Rab5-independent manner bypassing classical routes of incoming vesicular trafficking. Here we sought to identify
cellular factors involved in the unusual and largely unknown entry pathway of LASV and LCMV. Cell entry of LASV and LCMV
required microtubular transport to late endosomes, consistent with the low fusion pH of the viral envelope glycoproteins.
Productive infection with recombinant LCMV expressing LASV envelope glycoprotein (rLCMV-LASVGP) and LCMV depended
on phosphatidyl inositol 3-kinase (PI3K) as well as lysobisphosphatidic acid (LBPA), an unusual phospholipid that is involved
in the formation of intraluminal vesicles (ILV) of the multivesicular body (MVB) of the late endosome. We provide evidence
for a role of the endosomal sorting complex required for transport (ESCRT) in LASV and LCMV cell entry, in particular the
ESCRT components Hrs, Tsg101, Vps22, and Vps24, as well as the ESCRT-associated ATPase Vps4 involved in fission of ILV.
Productive infection with rLCMV-LASVGP and LCMV also critically depended on the ESCRT-associated protein Alix, which is
implicated in membrane dynamics of the MVB/late endosomes. Our study identifies crucial cellular factors implicated in Old
World arenavirus cell entry and indicates that LASV and LCMV invade the host cell passing via the MVB/late endosome. Our
data further suggest that the virus-receptor complexes undergo sorting into ILV of the MVB mediated by the ESCRT,
possibly using a pathway that may be linked to the cellular trafficking and degradation of the cellular receptor.
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Introduction

Over the past decades, several arenaviruses have emerged as

causative agents of severe viral hemorrhagic fevers (VHF) that

belong to the most devastating human diseases [1]. The Old World

arenavirus Lassa virus (LASV) is the most prevalent human

pathogen among the arenaviruses, causing several hundred

thousand infections per year in Africa with thousands of deaths

[2,3]. The fatality rate of Lassa fever in hospitalized patients is

.15% [4], rising to more than 50% in some outbreaks [5]. There is

currently neither an efficient cure nor an efficacious vaccine,

making LASV arguably one of the most neglected tropical

pathogens. The prototypic arenavirus lymphocytic choriomeningitis

virus (LCMV) merits significant attention as a powerful tractable

experimental model system to study virus-host interactions and also

as a prevalent human pathogen of clinical significance in congenital

infections [6,7,8]. Moreover, LCMV infection of immunosup-

pressed adults can result in severe disease and death [9,10].

Arenaviruses are enveloped negative strand RNA viruses with a

non-lytic life cycle. The genome of LASV consists of two single-

stranded RNA species, a large segment encoding the virus

polymerase (L) and a small zinc finger motif protein (Z), and a

small segment encoding the virus nucleoprotein (NP) and

glycoprotein precursor (GPC) [11]. GPC is processed into GP1,

implicated in receptor binding, and the transmembrane GP2,

which contains the viral fusion machinery, allowing fusion of the

viral and the cellular membrane during viral entry.

Binding of a virus to its cellular receptor(s) and subsequent entry into

target cells are the first steps of virus infection and a fundamental aspect

of the virus-host cell interaction [12,13]. The first cellular receptor for

Old World arenaviruses was identified as a-dystroglycan (a-DG), the

peripheral moiety of DG, a highly conserved and ubiquitously

expressed cell surface receptor for extracellular matrix (ECM) proteins

[14]. Initially encoded as a single polypeptide, DG is cleaved into the

extracellular a-DG and membrane anchored b-DG [15]. DG is

expressed in most cells of developing and adult tissues and provides a

molecular link between the ECM and the actin-based cytoskeleton.

Alpha-DG is a primary receptor for LASV, most isolates of LCMV,

the African arenaviruses Mopeia and Mobala, as well as Clade C New

World arenaviruses [14,16].
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Upon receptor binding, arenaviruses undergo endocytosis and

are delivered to acidified endosomes where pH-dependent fusion

between the viral and the cellular membrane occurs [17]. The pH

optimum for LCMV and LASV fusion of ,5.0 is remarkably low

[18] suggesting fusion in a late endosomal compartment. Electron

microscopic examination of LCMV entry demonstrated uptake of

virions in smooth vesicles lacking a clathrin coat [17,19]. LCMV

and LASV enter cells predominantly via an unusual pathway of

endocytosis that shows some dependence on membrane choles-

terol [20], but is independent of clathrin and caveolin, and does

not require dynamin, ARF6, flotillin, or actin [19,20,21].

Receptor-mediated endocytosis of LCMV and LASV occurs

rapidly with pH-dependent fusion occurring after 16–20 minutes

[19,21], a kinetics similar to viral entry via clathrin-mediated

endocytosis [22]. Remarkably, endosomal trafficking of LCMV

and LASV was only mildly affected by dominant negative (DN)

mutants of the small GTPase Rab5, involved in vesicular

trafficking from the plasma membrane to the early endosome,

and DN Rab7, which is implicated in delivery from early to late

endosomes [19,21]. Here we sought to identify cellular factors

involved in cell entry and endosomal trafficking of LASV and

LCMV.

Results

Cell entry of LASV and LCMV depend on microtubular
transport

The low fusion pH of LASV and LCMV [18] suggests that the

fusion event occurs in a late endosomal/lysosomal compartment.

Since late endosomal compartments are located in the perinuclear

area of the cell distant from the plasma membrane, delivery of

vesicles to late endosomes is frequently facilitated by the cell’s

microtubular transport systems [12]. Depolymerization of micro-

tubules by nocodazole results in accumulation of endocytosed

cargo beyond early endosomes, but before late endosomes.

Previous experiments demonstrated that nocodazole treatment

markedly reduced infection of cells with LCMV and recombinant

LCMV expressing the glycoprotein of LASV (rLCMV-LASVGP)

[21]. These studies reported an inhibitory effect of nocodazole on

early virus infection when the drug was added up to 60 minutes

after infection [21]. Since Old World arenaviruses escape from

endosomes already after circa 20 minutes [19,21], these studies

could not distinguish between effects of nocodazole on viral entry

and/or early replication. To specifically address the role of

microtubules in cell entry of LASV and LCMV prior to pH-

dependent membrane fusion, we exploited the fact that cytosolic

transport and replication of the nucleocapsid of vesicular stomatitis

virus (VSV) after fusion does not require microtubules [23]. Since

host cell attachment and entry of arenaviruses are mediated

exclusively by the viral GP, recombinant VSV pseudotyped with

arenavirus GPs allow separating arenavirus entry from subsequent

steps of replication of the VSV core.

Recombinant VSV, whose G protein has been replaced by a

GFP reporter (rVSVDG) [24] was pseudotyped with the GPs of

LASV and the LCMV isolate clone-13, henceforth referred to as

LCMV, as described [25]. The virion particles of VSV and

arenaviruses differ significantly in size and shape. Old World

arenaviruses are pleomorphic particles ranging in size from 40–

200 nm [11], whereas the rhabdovirus VSV has a characteristic

bullet shape with a length of circa 180 nm and a width of 80 nm

[26]. Previous studies showed that pseudotyping of VSV with

arenavirus GPs preserved the bullet-shape of the VSV core [27].

Since the shape of virions may significantly affect the pathway of

cell entry, we wanted to ensure that cell entry of the VSV

pseudotypes rVSVDG-LASVGP and rVSVDG-LCMVGP still

followed the unusual route of endocytosis described for LCMV

and LASV. For comparison, we used a VSV pseudotype bearing

the endogenous VSV G (rVSVDG-VSVG) that enters cells by

clathrin-mediated endocytosis (CME) [28] analogous to wild-type

VSV [29].

First, we compared the entry kinetics of rVSVDG-LASVGP,

rVSVDG-LCMVGP and rVSVDG-VSVG. To assess how fast

receptor-bound VSV pseudotypes trafficked to endosomes and

underwent membrane fusion, we determined the time required for

the viruses to become resistant to the lysosomotropic agent

ammonium chloride. When added to cells at a concentration of

20 mM, ammonium chloride raises the endosomal pH rapidly and

blocks low pH-dependent cellular processes without causing

overall cytotoxicity [30,31]. Viruses were added to A549 human

lung epithelial cells in the cold to allow receptor binding without

internalization. The temperature was rapidly shifted to 37uC and

20 mM ammonium chloride added at the indicated time points

and left throughout the experiment. After 12 hours cells were fixed

and infected cells expressing GFP quantified by flow cytometry. In

line with previous reports on VSV cell entry [29], 50% of

rVSVDG-VSVG reached insensitivity to ammonium chloride

after only 8–10 minutes (Fig. 1A). In contrast, rVSVDG-LASVGP

and rVSVDG-LCMVGP became insensitive to ammonium

chloride with a half-time of circa 20 minutes, consistent with the

entry kinetics of rLCMV-LASVGP [21] and LCMV [19].

To verify the use of distinct pathways of cell entry by rVSVDG-

LASVGP and rVSVDG-LCMVGP on the one hand and

rVSVDG-VSVG on the other hand, we used a combination of

pharmacological inhibitors, RNA interference (RNAi) and dom-

inant negative (DN) mutants of regulatory proteins of endocytosis.

Cell entry of LASV and LCMV is sensitive to drugs that deplete

membrane cholesterol, such as methyl-b-cyclodextrin (MbCD),

whereas VSV infection via CME is less sensitive [20,32,33]. Pre-

treatment with increasing concentrations of MbCD efficiently

depleted membrane cholesterol (Fig. 1B) and resulted in a dose-

dependent reduction of infection with rVSVDG-LASVGP and

rVSVDG-LCMVGP, but not rVSVDG-VSVG (Fig. 1C). Choles-

Author Summary

Old World arenaviruses include the prototypic lymphocytic
choriomeningitis virus (LCMV) and the highly pathogenic
Lassa virus (LASV) that causes a severe hemorrhagic fever
in humans and infects several thousand individuals per
year in Western Africa. Cell entry of a virus is the first step
of every virus infection and represents a promising target
for therapeutic intervention. We and others had shown
that LCMV and LASV attach to a cellular receptor, a-
dystroglycan, followed by internalization by endocytosis
via a novel and unusual pathway. Here we investigated the
largely unknown molecular mechanisms of cell entry of
LASV and LCMV with the goal to identify host cell factors
involved. We discovered that during cell entry LASV and
LCMV pass through a particular intracellular compartment,
the multivesicular body (MVB)/late endosome, which is
implicated in the internalization and degradation of
cellular membrane receptors. Productive infection of LASV
and LCMV critically depended on cellular factors involved
in the membrane dynamics and sorting processes in the
MVB. Based on our studies, we propose a model for Old
World arenavirus entry in which the viruses hijack a
pathway that may be linked to the cellular trafficking and
degradation of their cellular receptor.

Old World Arenaviruses Cell Entry
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terol-dependence of cell entry is an operational definition and does

not imply a specific pathway of entry. To address the specific role

of CME in cell entry of the VSV pseudotypes, we depleted clathrin

heavy chain (CHC) in A549 cells by RNAi as described [21],

which resulted in .90% reduction of CHC protein levels after

48 hours as assessed by Western-blot (Fig. 1D). Subsequent

infection of CHC-depleted cells revealed a significant reduction

of infection with rVSVDG-VSVG, but not rVSVDG-LASVGP

and rVSVDG-LCMVGP, consistent with the clathrin-indepen-

dent cell entry of LASV and LCMV (Fig. 1D). As a

complementary approach, we performed inhibition studies using

chlorpromazine (CPZ), a drug that perturbs the assembly of

clathrin-coated pits at the plasma membrane and inhibits CME.

Treatment of A549 cells with up to 8 mM CPZ did not

significantly affect infection with rVSVDG-LASVGP and

rVSVDG-LCMVGP, but lead to a dose-dependent reduction of

rVSVDG-VSVG infection (Fig. 1E). In addition we employed

well-characterized dominant-negative (DN) mutants for regulatory

proteins associated with CME, including a DN form of the

clathrin-coat associated protein Eps15 (Eps15D95/295), which

selectively perturbs CME without affecting clathrin-independent

pathways [34,35], and the DN mutant K44A of dynamin II

[36,37,38]. The effects of the DN mutants on pseudotype infection

were assessed as reported [21]. Briefly, HEK293 cells were

transfected with GFP-tagged versions of the wild-type or DN

mutants by nucleofection resulting in .90% transfected cells.

Figure 1. Recombinant VSV pseudotypes adopt the cell entry characteristics of LASV and LCMV. (A) Entry kinetics of rVSVDG-LASVGP,
rVSVDG-LCMVGP, and rVSVDG-VSVG. A549 cells were seeded in 96 well plates (104 cells/well) and cultured for 16 hours. The resulting cell monolayers
were chilled on ice and the indicated pseudotypes added at MOI of 3 for 1 hour. Unbound virus was removed and cells quickly shifted to 37uC. At the
indicated time points 20 mM ammonium chloride (NH4Cl) was added and left throughout the experiment. After a total of 12 hours, cells were
detached, fixed, and infection detected by the GFP reporter in flow cytometry. Data presented show percent GFP positive cells. Means (n = 36SD). (B)
Depletion of membrane cholesterol by MbCD. Monolayers of A549 cells were incubated with the indicated concentrations of MbCD for one hour and
total cholesterol determined in a colorimetric assay. Shown are two independent experiments in triplicates expressed in percent of untreated control
(mean 6 SD). (C) Cholesterol depletion reduces infection with rVSVDG-LASVGP, rVSVDG-LCMVGP, but not rVSVDG-VSVG. A549 cells (104 cells/well)
were treated with the indicated concentrations of MbCD as in (B), followed by infection with 200 PFU of rVSVDG-LASVGP (LASVGP), rVSVDG-LCMVGP
(LCMVGP), and rVSVDG-VSVG (VSVG) per well. Infection was assessed after 12 hours by detection of GFP expressing cells in fluorescence microscopy
(mean 6 SD; n = 3). (D) Infection with rVSVDG-LASVGP and rVSVDG-LCMVGP does not depend on clathrin. A549 cells were transfected with either a
pool of siRNA targeting clathrin heavy chain (CHC) (50 nM per siRNA; 200 nM total concentration) or control siRNA (200 nM). After 48 hours, cells
were lysed and expression of CHC assessed by Western-blot. For normalization, a-tubulin (a-Tu) was detected. Cells transfected with siRNA to either
CHC or control siRNAs (Control) for 48 hours were infected with 200 PFU of rVSVDG-LASVGP (LASVGP), rVSVDG-LCMVGP (LCMVGP), and rVSVDG-
VSVG (VSVG) per well. After 12 hours, cells were fixed and infection assessed by detection of GFP as in (C) (mean 6 SD; n = 3). (E) Infection with
arenavirus pseudotypes is not sensitive to chlorpromazine (CPZ). A549 cells were pre-treated with the indicated concentrations of CPZ for 2 hours,
followed by infection with rVSVDG-LASVGP (LASVGP), rVSVDG-LCMVGP (LCMVGP), and rVSVDG-VSVG (VSVG) at MOI of 3. After 12 hours, infection
was assessed as in (A) (mean 6 SD; n = 3). (F) Comparison of the effects of DN mutants of Eps15, dynamin II, and Rab5 on infection with VSV
pseudotypes. HEK293 cells were transfected with GFP-tagged DN and wild-type (WT) Eps15, dynamin II, and Rab5 using nucleofection, resulting in
.90% transfection efficiency, as assessed by detection of GFP. After 24 hours, cells were infected with rVSVDG-LASVGP (LASVGP), rVSVDG-LCMVGP
(LCMVGP), and rVSVDG-VSVG (VSVG) at 200 PFU/well. Infected cells were detected by IFA using a mAb to VSV M protein and a rhodamine-red-X
conjugated secondary antibody. Specimens were examined using a fluorescence microscope with a narrow band-pass filter and VSV M positive cells
scored (mean 6 SD; n = 3).
doi:10.1371/journal.ppat.1002232.g001
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Twenty hours post-transfection, cells were infected with VSV

pseudotypes. At 12 hours p.i., cells were fixed and infected cells

detected by immunofluorescence assay (IFA) using an antibody to

the VSV M protein. As shown in Fig. 1F, expression of DN Eps15

and dynamin II markedly reduced infection with rVSVDG-

VSVG, but not the arenavirus pseudotypes. Another hallmark of

LASV and LCMV cell entry is independence from Rab5 [19,21],

which is implicated in incoming vesicular trafficking from the

plasma membrane to the early endosome [39,40]. HEK293 cells

were transfected with GFP-tagged constructs expressing wild-type

and DN Rab5. Twenty hours later, cells were infected with VSV

pseudotypes and infection assessed after 12 hours. In line with

previous studies, infection with rVSVDG-LASVGP and rVSVDG-

LCMVGP was only slightly affected by DN Rab5, whereas

infection with rVSVDG-VSVG was significantly reduced. In sum,

the data confirm that rVSVDG-LASVGP and rVSVDG-

LCMVGP enter cells via a cholesterol-dependent, clathrin-, and

dynamin- independent pathway characteristic for cell entry of

LASV and LCMV and bypasses Rab5-dependent transport to

early endosomes. This makes our VSV pseudotypes suitable to

address the specific role for microtubules and other cellular factors

in LASV and LCMV cell entry.

To verify independence of cytosolic transport and replication of

the VSV nucleocapsid from microtubules, we artificially induced

fusion directly at the plasma membrane. For this purpose, the

VSV pseudotypes were attached to cells in the cold, unbound virus

removed, and cells rapidly shifted to 37uC, immediately followed

by exposure to acidified medium (pH = 5.0). After 15 minutes,

cells were washed with neutral medium and virus infection

determined 12 hours later by detection of the GFP reporter in flow

cytometry. Consistent with published data [23], fusion of VSV

pseudotypes at the plasma membrane resulted in relatively

inefficient infection (,10% of normal infection levels) that was

insensitive to nocodazole (Fig. 2A). When allowed to enter via their

normal routes, infection of all pseudotypes was significantly

affected by nocodazole (Fig. 2A), although to a different extent.

Infection with rVSVDG-LASVGP and rVSVDG-LCMVGP was

reduced by circa 80%, whereas infection with rVSVDG-VSVG

was less affected. The effect of nocodazole on infection with

rVSVDG-LASVGP and rVSVDG-LCMVGP suggests that infec-

tion via the normal route involves microtubular transport to late

endosomes where pH-dependent fusion occurs. The observed

dependence of rVSVDG-VSVG on microtubules is in line with

previous reports that demonstrated a requirement for late

endosomes transport for optimal VSV infection [23]. The

significantly stronger effect of nocodazole on the arenavirus

pseudotypes when compared to rVSVDG-VSVG (Fig. 2A) may be

explained by the fact that the G of VSV has a fusion pH of .6.0,

allowing at least partial fusion and exit of the virus at the level of

the early endosome, whereas LASVGP and LCMVGP cannot

undergo fusion before reaching the more acidic late endosome.

LASV and LCMV entry depends on phosphatidylinositol
3-phosphate (PI3P) and lysobisphosphatidic acid (LBPA)

In the host cell, receptor proteins at the plasma membrane can

be internalized and delivered to late endosomes/lysosomes via

specialized endosomal compartments called multivesicular bodies

(MVB) [41]. In the MVB, receptor proteins destined for transport

to late endosomes are sorted into intraluminal vesicles (ILV) that

give the organelle its particular multivesicular morphology.

Sorting into ILV is mediated by a large supramolecular complex,

the endosomal sorting complex required for transport (ESCRT)

[41]. In a first attempt to address a possible role of the MVB in

LASV and LCMV cell entry, we interfered with the synthesis of

the lipid phosphatidylinositol 3-phosphate (PI3P), which is

required for formation of functional MVBs [41]. Perturbation of

MVB formation by treatment of cells with inhibitors of PI3 kinase

(PI3K) does not affect infection with VSV [23], because VSV can

undergo fusion at the early endosome and subsequent cytosolic

transport and replication is independent of PI3K. To assess a

possible effect of PI3K inhibition on LASV and LCMV cell entry

we therefore employed again our VSV pseudotypes. As expected,

addition of the PI3K inhibitor wortmannin (100 nM) had no

significant effect of VSV pseudotype infection when fusion was

induced at the plasma membrane (Fig. 2B). To study the effect of

wortmannin on infection via the normal entry route, VSV

pseudotypes were attached to A549 cells in the cold followed by

a temperature shift to 37uC to allow internalization. To address

the effect of wortmannin selectively on endosomal transport, but

not internalization of the virus particles, the fast-acting drug was

added 5 minutes after the temperature shift, a time point when

most of the virus is already present in vesicles [17,19]. While

wortmannin slightly enhanced infection with rVSVDG-VSVG,

consistent with published data [23], infection with the arenavirus

pseudotypes was significantly reduced (Fig. 2B), indicating that

PI3K activity is required for efficient cell entry of LASV and

LCMV pseudotypes.

Another, more specific component involved in protein and lipid

sorting through the MVB is the phospholipid lysobisphosphatidic

acid (LBPA) that is found in late endosomes, in particular in the

membrane of ILV, and is crucial for the ILV formation [42]. To

address the role of LBPA in LASV and LCMV cell entry, we used

the function-blocking monoclonal antibody (mAb) 6C4 to LBPA

[42]. Pre-treatment of cells with anti-LPBA antibody allows uptake

by fluid-phase endocytosis with accumulation in late endosomes

[23]. A549 cells were treated with anti-LBPA antibody or an

isotype (IgG1) control and subsequently infected with VSV

pseudotypes of LASV and LCMV. As a positive control, we used

VSV pseudotypes bearing VSVG, whose infection is perturbed by

anti-LBPA treatment [23]. For comparison, we included a

replication-deficient recombinant human species C adenovirus

serotype 5 expressing EGFP (AdV5-EGFP) [43], which naturally

infects human lung epithelial cells, such as A549 cells [44]. In

contrast to Old World arenaviruses, human species C adenovi-

ruses (AdV2, AdV5) use the Coxsackie virus B adenovirus receptor

(CAR) and integrins for host cell attachment and are internalized

via a clathrin-dependent pathway [45]. Upon internalization,

AdV2 and AdV5 are delivered to early endosomes and rapidly

penetrate into the cytoplasm by a complex mechanism including

low pH, interaction of the AdV penton base protein with avb5

integrins, integrin signaling, and activity of a viral protease [45].

To exclude a direct anti-viral effect of the antibody per se, untreated

cells were incubated with the viruses for 1 h at 4uC in presence of

the antibody, unbound virus washed out, and cell incubated at

37uC in absence of the antibody. As shown in Fig. 3A, pre-

treatment of cells with anti-LBPA specifically reduced subsequent

infection with VSV pseudotypes of LASV, LCMV, and VSV, but

not AdV5-EGFP. Treatment of the virus with anti-LBPA antibody

had no effect on subsequent infection.

Next, we sought to verify our findings with live arenaviruses. To

circumvent biosafety restrictions associated with LASV, we studied

LASV entry using a recombinant LCMV expressing LASV GP

(rLCMV-LASVGP). Since LASV cell entry is mediated exclusively

by the viral GP, rLCMV-LASVGP can be used as a BSL2

surrogate to study LASV cell entry in the context of a productive

arenavirus infection [21]. A549 cells were pre-treated with anti-

LBPA antibody as described above, followed by infection with

rLCMV-LASVGP, LCMV, VSV, and AdV5-EGFP. To prevent

Old World Arenaviruses Cell Entry
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secondary infection by virus released from infected cells, we added

20 mM ammonium chloride at 4 hours after infection. Cells

infected with rLCMV-LASVGP, LCMV, and AdV5-EGFP were

fixed after 16 hours and cells infected with VSV after 6 hours.

Infection with rLCMV-LASVGP and LCMV was detected by

immunofluorescence assay (IFA) using antibodies to the LCMV

nucleoprotein (NP) and VSV infection was detected by immuno-

staining with an antibody to the matrix (M) protein. Similar to our

findings with the VSV pseudotypes, treatment with anti-LBPA

antibody resulted in significant reduction of infection with

rLCMV-LASVGP and LCMV, but not AdV5-EGFP (Fig. 3B).

Remaining infected cells in cultures pre-treated with anti-LBPA

showed normal morphology and expression levels of viral NP

(Fig. 3C), excluding overt toxicity of antibody treatment. To

further exclude a non-specific effect of anti-LBPA on endocytosis,

we assessed the impact of anti-LBPA on the uptake of transferrin,

which involves CME followed by delivery to the early endosome,

but does not implicate the MVB/late endosome. Cells pre-treated

with anti-LBPA showed normal internalization of transferrin

(Fig. 3D) excluding general perturbation of endocytosis and

membrane dynamics by the anti-LBPA antibody. In sum, the

dependence of rLCMV-LASVGP and LCMV cell entry and

productive infection on PI3K and LBPA provided the first hints

that, upon internalization, the virus-receptor complex may

undergo sorting in the MVB/late endosome.

Cell entry of LASV and LCMV involves the ESCRT
components Hrs, Tsg101, Vps22, and Vps24

Sorting of cargo into ILV membranes of the MVB involves the

initial recognition of cargo by the ESCRT-0 protein Hrs, which

results in sequential assembly of ESCRT-I, ESCRT-II, and

ESCRT-III complexes, followed by vesicle formation [41]. In a

first step to investigate the role of the ESCRT for LASV and

LCMV entry, we performed RNAi silencing for selected

components of the different ESCRT sub-complexes: the

ESCRT-0 component Hrs, the pivotal ESCRT-I protein

Tsg101, and the proteins Vps22 and Vps24 that are crucial

components of ESCRT-II and ESCRT-III, respectively. Hrs

regulates MVB formation by recruiting the ESCRT to endosomes

[46] and Tsg101 is a crucial component of the ESCRT involved in

sorting of cargo into ILV, as well as ILV formation [47,48]. Vps22

and Vps24 have been implicated in endosomal sorting and

degradation of cellular membrane receptors [49,50]. For RNAi

silencing, firmly established and validated siRNA sequences to

human Hrs, Tsg101, Vps22, and Vps24 were used (for details see

Methods). Silencing of Hrs and Tsg101 in A549 cells by specific

siRNAs resulted in efficient depletion of the endogenous proteins

as assessed by Western-blot (Fig. 4A). Due to the lack of specific

antibodies to Vps22 and Vps24, the efficiency of RNAi was

verified by quantitative PCR that revealed .90% reduction in

mRNA levels after 72 hours (Fig. 4B).

To assess their role in LASV and LCMV cell entry, A549 cells

were treated with siRNAs to Hrs, Tsg101, Vps22, Vps24, and a

control siRNA. After 72 hours, cells were infected with VSV

pseudotypes of LASV and LCMV, VSV pseudotypes bearing

VSVG, and AdV5-EGFP. To exclude possible effects of the

siRNA treatment on the cytoplasmic transport and/or replication

of the VSV core, we included a series in which fusion of VSV

pseudotypes was induced at the plasma membrane as described

above. Upon fusion at the plasma membrane, infection of the

VSV pseudotypes was unaffected by siRNA treatment (Fig. 4C),

excluding adverse effects of RNAi on VSV replication at a post-

entry step. Next, we infected siRNA treated cells via the normal

route of cell entry. Although Tsg101 has previously been

implicated in budding of arenaviruses [51], this was not a concern

in our experimental setup, as VSV pseudotypes are replication-

deficient, preventing secondary infection. After 16 hours of

infection, cells were fixed and infection assessed by detection of

Figure 2. The role of microtubules and PI3K in cell entry of LASV and LCMV. (A) LASV and LCMV cell entry depend on microtubules. A549
cells (104 cells/well) in 96 well plates were pre-treated with 10 mM nocodazole (Noc) for 1 hour, chilled on ice and incubated with rVSVDG-LASVGP
(LASVGP), rVSVDG-LCMVGP (LCMVGP), and rVSVDG-VSVG (VSVG) at MOI of 1 for one hour in the cold. Unbound virus was removed and cells shifted
to 37uC in presence of nocodazole. To induce fusion at the plasma membrane, cells were pulsed with acidified medium (pH 5.0) for 15 minutes,
followed by immediate neutralization. Cells subjected to normal infection were cultured in parallel, without applying the low pH pulse. After a total of
12 hours, infection assessed by detection of GFP expressing cells in flow cytometry as in Fig. 1A (mean 6 SD; n = 3). (B) A role of PI3K in cell entry of
LASV and LCMV. A549 cells were incubated with rVSVDG-LASVGP (LASVGP), rVSVDG-LCMVGP (LCMVGP), and rVSVDG-VSVG (VSVG) at MOI of 1 for
one hour in the cold and unbound virus removed. Cells were shifted to 37uC and fusion at the membrane was induced with a low pH pulse with
acidified medium (pH 5.0) for 15 minutes. After neutralization, cells were cultured for a total of 12 hours in presence of 100 nM wortmannin. Cells
subjected to normal infection were pre-incubated with virus in the cold. After removal of unbound virus, cells were rapidly shifted to 37uC for
5 minutes to allow internalization of the virus. Wortmannin was then added (100 nM) and left throughout the experiment. Infection was determined
by detection of GFP expressing cells by flow cytometry as in Fig. 1A (mean 6 SD; n = 3).
doi:10.1371/journal.ppat.1002232.g002
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the GFP reporter. When using the normal route of cell entry,

depletion of Hrs, Tsg101, Vps22, and Vps24 resulted in significant

reduction in numbers of infected cells with VSV pseudotypes of

LASV, LCMV, and VSV (Fig. 4D). In contrast, infection with

AdV5-EGFP was only mildly affected by depletion of Tsg101 and

Vps22, whereas silencing of Hrs and Vps24 enhanced infection

(Fig. 4D). Since depletion of Hrs, Tsg101, Vps22, and Vps24 did

not affect post entry-steps of VSV infection (Fig. 4C) the data

suggest a role for these ESCRT components in cell entry of

pseudotypes of LASV and LCMV. To validate our results with

arenaviruses, A549 cells were subjected to siRNA treatment,

followed by infection with rLCMV-LASVGP and LCMV, using

VSV pseudotypes bearing VSVG and AdV5-EGFP as positive

and negative controls, respectively. Since Tsg101 has previously

been implicated in budding of arenaviruses [51], we addressed the

effect of the knockdowns on viral entry by blocking secondary

infection with 20 mM ammonium chloride added at 4 hours post

infection. After 16 hours of infection, cells were fixed and infected

cells detected by IFA using antibodies to LCMV NP. Consistent

with the results obtained with VSV pseudotypes (Fig. 4D),

depletion of Hrs, Tsg101, Vps22, and Vps24 resulted in significant

reduction of the numbers of infected cells with all viruses, except

AdV5-EGFP (Fig. 4E). In cultures treated with siRNAs specific to

Hrs, Tsg101, Vps22, and Vps24 residual infected cells had similar

expression levels of LCMV NP as observed in cells treated with

control siRNA (Fig. 4F), indicating that the siRNA treatment did

not affect post-fusion steps of early replication. To exclude

unspecific off-target effects on membrane dynamics and endocy-

tosis, cells subjected to RNAi for Hrs, Tsg101, Vps22, and Vps24

were tested for transferrin uptake. None of the RNAi treatments

Figure 3. Cell entry of LASV and LCMV depends on LBPA. (A) Infection of VSV pseudotypes of LASV, LCMV, and VSV is affected by anti-LBPA
antibody. A549 cells (104 cells/well) in 96 well plates were pre-incubated with no antibody (1), 50 mg/ml mAb anti-LBPA (2) or isotype antibody
control (3) for 14 hours. Cells were then infected with rVSVDG-LASVGP (LASV), rVSVDG-LCMVGP (LCMV), and rVSVDG-VSVG (VSV), and AdV5-EGFP at
500 PFU/well. In specimens subjected to pretreatment only (4), the cells were incubated for 1 h at 4uC with viruses in presence of the Ab, unbound
virus washed out, and cell incubated at 37uC in normal medium. Cells were fixed after 16 hours and EGFP positive cells counted (mean 6 SD; n = 3).
(B) Anti-LBPA perturbs infection of rLCMV-LASVGP and LCMV. Monolayers of A549 cells were treated as in (A), followed by infection with rLCMV-
LASVGP, LCMV, and AdV5-EGFP (AdV) at 500 PFU/well. Cells were fixed after 16 hours (rLCMV-LASVGP, LCMV, VSV, or AdV5-EGFP) and 6 hours (VSV).
Infection was detected with a mAb to LCMV NP (rLCMV-LASVGP, LCMV), VSV M protein (VSV), or EGFP (AdV5-EGFP) (mean 6 SD; n = 3). (C)
Representative specimens of cells infected with rLCMV-LASVGP in (B) LCMV NP is in red and nuclei (DAPI) appear in blue. Bar = 50 mm. (D) Anti-LBPA
treatment does not interfere with transferrin uptake. Cells treated as in (A) were incubated for 10 min at 37uC with serum-free medium containing
20 mg/ml of Alexa594-labeled human transferrin, washed with ice cold PBS, acid-stripped to remove surface-bound transferrin, fixed, and the cellular
distribution of transferrin (red) examined. Cell nuclei are stained in blue with DAPI (bar = 10 mM).
doi:10.1371/journal.ppat.1002232.g003
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significantly affected the ability of cells to internalize transferrin,

excluding a general impact on endocytosis (Fig. 4G). Since

perturbation of the ESCRT machinery may affect cellular

trafficking of the Old World arenavirus receptor, we verified the

cell surface expression of a-DG. Cells subjected to RNAi were

examined by cell surface staining with mAb IIH6 that specifically

Figure 4. A role for Hrs, Tsg101, Vps22, and Vps24 in cell entry of LASV and LCMV. (A) A549 cells were transfected with siRNAs specific for
Hrs and Tsg101 or control siRNA and efficiency of depletion assessed after 72 hours by Western-blot. For normalization, a-tubulin (a-Tu) was used. (B)
Cells were transfected with siRNAs for Vps22 and Vps24 or control siRNA and efficiency of depletion assessed after 72 hours by quantification of
mRNA levels by RT-qPCR (for details see Methods). Given are normalized levels of mRNA expression. (C) Depletion of Hrs, Tsg101, Vps22, and Vps24
does not affect post-entry steps of VSV pseudotype infection. A549 cells were treated with specific siRNAs to Hrs, Tsg101, Vps22, and Vps24 and
control siRNA for 48 hours. Cells were then detached and reseeded in 96 well plates (104 cells/well). After 24 hours, cells were incubated with
rVSVDG-LASVGP (LASV) (4000 PFU/well), rVSVDG-LCMVGP (LCMV) (4000 PFU/well), and rVSVDG-VSVG (VSV) (2000 PFU/well) in the cold, followed by
washing and a low pH pulse to induce fusion at the plasma membrane as in Fig. 2. Upon neutralization, cells were fixed after 16 hours and EGFP
positive cells scored (mean 6 SD; n = 3). (D, E) Depletion of Hrs, Tsg101, Vps22, and Vps24 affects cell entry of LASV and LCMV. Cells subjected to RNAi
silencing as in (A) were infected via the normal route of entry (D) with rVSVDG-LASVGP (LASV), rVSVDG-LCMVGP (LCMV), rVSVDG-VSVG (VSV), and
AdV5-EGFP (AdV) (500 PFU/well) and (E) with rLCMV-LASVGP, LCMV, rVSVDG-VSVG (VSV), and AdV5-EGFP (AdV) at 500 PFU/well. After 16 hours, cells
were fixed and infection quantified by detection of EGFP positive cells (D) or LCMV NP and EGFP (E) as in Fig. 3 (mean 6 SD; n = 3). (F) Representative
specimens of rLCMV-LASVGP infected cells in cultures treated with the indicated siRNAs in (E). LCMV NP is stained in green and cell nuclei stained
with DAPI appear in blue (bar = 20 mM). (G) Depletion of Hrs, Tsg101, Vps22, and Vps24 by RNAi does not interfere with transferrin uptake. Cells were
treated as in (A, B) and transferrin uptake assessed as in Fig. 3D. Transferrin is in red and cell nuclei in blue (bar = 10 mM). (H) Depletion of Hrs, Tsg101,
Vps22, and Vps24 by RNAi does not affect cell surface expression of a-DG. Cells were subjected to RNAi as in (A, B). After 72 hours cell surface staining
was performed with mAb IIH6 to a-DG, combined with Alexa 594 secondary antibody. Data were acquired in a FACSCalibur flow cytometer and
analyzed using Cell Quest software. In histograms, y-axis represents cell numbers and x-axis Alexa 594 fluorescence intensity. Shaded area: primary
and secondary antibody, empty area: secondary antibody only. The broken line indicates the superimposition of the shaded peak (primary+secondary
antibody) from cells treated with control siRNA. Note that treatment with siRNAs to Hrs, Tsg101, Vps22, and Vps24 does not significantly alter the
mean fluorescence intensity of the IIH6 signal.
doi:10.1371/journal.ppat.1002232.g004
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recognizes the mature, functionally glycosylated form of the

receptor [52]. As shown in Fig. 4H, depletion of Hrs, Tsg101,

Vps22, and Vps24 did not affect the cell surface levels of functional

a-DG in A549 cells.

To confirm the role of Tsg101 on LASV and LCMV cell entry

in a complementary manner, we overexpressed recombinant

Tsg101 and assessed the impact on the infection kinetics by

ammonium chloride treatment, as described above. For over-

expression studies, a high transfection efficiency of .80% was

needed. As A549 cells were difficult to transfect, with transfection

efficiencies of ,40%, we used HEK293 cells for these studies.

Depletion of Hrs, Tsg101, Vps22, and Vps24 in HEK293 affected

infection with rLCMV-LASVGP and LCMV in a similar manner

as observed in A549 cells (data not shown). Briefly, HEK293 cells

were transfected with an expression plasmid encoding a recom-

binant MYC-tagged form of Tsg101 or empty vector, resulting in

significant over-expression of Tsg101 (Fig. 5A). After 36 hours,

cells were incubated with rLCMV-LASVGP in the cold, unbound

virus removed, and the temperature shifted to 37uC. At different

time points 20 mM ammonium chloride was added and virus

infection detected after a total of 16 hours by intracellular staining

for LCMV NP and flow cytometry. Over-expression of Tsg101

significantly shortened the half time by which the virus infection

became insensitive to ammonium chloride (Fig. 5B). However, the

total number of infected cells was only slightly increased (Fig. 5B),

indicating a selective acceleration of the viral entry process.

Consistent with the data obtained in A549 cells (Fig. 4E), depletion

of Tsg101 by RNAi markedly reduced the number of infected cells

(Fig. 5C). The faster apparent kinetics of viral entry upon Tsg101

overexpression further supports a role of this ESCRT-I protein as

a positive regulator for Old World arenavirus entry.

rLCMV-LASVGP and LCMV infection involves the ESCRT-
associated ATPase Vps4

To further investigate a possible role of ILV in rLCMV-

LASVGP and LCMV cell entry, we targeted the ESCRT-

associated ATPase Vps4 A and B, which are implicated in the final

step of the fission of ILV in MVBs in mammalian cells [41]. To

this end we employed an ATP hydrolysis DN mutant of Vps4A,

Vps4AEQ, which interferes with the formation of functional Vps4

oligomers and perturbs the formation of ILV mediated by both

Vps4A and B [53,54,55]. HEK293 cells were transfected with

FLAG-tagged versions of wild-type Vps4A and the DN mutant,

resulting in comparable levels of expression detected in Western-

blot (Fig. 6A). Thirty-six hours post transfection cells were infected

with rLCMV-LASVGP and LCMV. Since Vps4 has been

identified as a cellular factor required for arenavirus budding

[56], we again added 20 mM ammonium chloride at 4 hours p.i.

to prevent secondary infection. At 16 hours post infection, cells

were fixed and analyzed by FACS for viral antigen expression.

Live cells expressing similar levels of the FLAG-tagged wild type

and DN mutants were selected and those expressing viral antigen

scored (Fig. 6B). Over-expression of DN Vps4A, but not the wild-

type control resulted in a specific reduction of infection with

rLCMV-LASVGP and LCMV (Fig. 6C). Together, our data

provide the first evidence that cell entry of rLCMV-LASVGP and

LCMV requires a functional MVB.

Incoming LCMV transiently co-localizes with Tsg101 prior
to delivery to late endosomes

Using a combination of RNAi and recombinant proteins we

provided first evidence for a role of the ESCRT in cell entry of the

Old World arenaviruses LASV and LCMV. To corroborate these

findings, we performed co-localization studies of the prototypic

LCMV with Tsg101, which represents a key component of

ESCRT-I implicated in recognition of cargo, as well as Rab7, used

as a marker for late endosomes. For our co-localization

experiments, purified virus had to be used at high MOI. Based

on its better in vitro growth properties, we used the LCMV isolate

WE54 for these studies. LCMV WE54 had been used for the

initial characterization of the LCMV cell entry pathway [19] and

shares the receptor binding characteristics and entry pathway of

LCMV cl-13 and LASV [20]. LCMV WE54 was grown in large

quantities in BHK21 cells and purified by ultracentrifugation on a

renografin gradient as described [57]. To investigate whether

incoming LCMV co-localized with Tsg101, A549 cells were

Figure 5. Overexpression of Tsg101 accelerates entry kinetics of rLCMV-LASVGP. (A) Over-expression of a MYC-tagged recombinant
Tsg101 by transient transfection of HEK293 cells. Cells were transfected with recombinant Tsg101 (Tsg101) or empty vector (control). After 36 hours
total cell lysates were probed by Western-blot with antibodies recognizing Tsg101 or the MYC epitope. The MYC-tagged form of Tsg101 runs at a
slightly higher apparent molecular mass, due to the presence of the tag (*). (B) Overexpression of Tsg101 accelerates the entry kinetics of rLCMV-
LASVGP. Cells transfected with recombinant Tsg101 (Tsg101) or empty vector (Control) as in (A) were cooled on ice for 30 min and rLCMV-LFVGP
added at an MOI of 3. After incubation for 1 h on ice, unbound virus was washed off, and cells shifted to 37uC. At different time points, medium
containing 20 mM ammonium chloride was added. After a total of 16 h, cells were fixed and LCMVNP detected by intracellular staining with mAb 113
to LCMV NP, combined with Alexa 488-labeled secondary antibody. NP positive cells were quantified by flow cytometry as in Fig. 5D. Note the delay
in the fusion kinetics relative to Fig. 1A due to incubations of cells with ice cold medium after the washes. Data presented are means (n = 3+SD). (C)
Entry kinetics in cells depleted of Tsg101. HEK293 cells were transfected with siRNA to Tsg101 or control siRNA as in Fig. 5A, resulting in .90%
reduction of Tsg101 protein expression after 72 hours (data not shown). Cells treated with siRNA for 72 hours were cooled on ice for 30 minutes and
rLCMV-LFVGP added at an MOI of 3. After removal of unbound virus entry kinetics was assessed as in (B). Data presented are means (n = 3+SD).
doi:10.1371/journal.ppat.1002232.g005
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exposed to purified LCMV WE54 (MOI = 100) at 4uC. Unbound

virus was removed and temperature shifted to 37uC. Cells were

fixed at different times and immunostaining performed. After mild

permeabilization of cells, incoming virus was detected with an

antibody to NP, labeling the virus RNP core. Endogenous Tsg101

was detected with a specific antibody. As a marker for late

endosomal compartments, we detected endogenous Rab7. Al-

though dominant negative Rab7 did not block cell entry of LCMV

and LASV [19,21], previous co-localization studies demonstrated

accumulation of LCMV in Rab7 positive compartment after

20 minutes, suggesting virus escape from late endosomes [19].

Specimens were examined by confocal laser scanning microscopy

and the co-localization of the virus with Tsg101 and Rab7 assessed

as described in Materials and Methods. As shown in Fig. 7, we

observed a transient co-localization of the virus with Tsg101 with a

maximum at 20 minutes after the temperature shift. At this early

time point co-localization of the virus with Rab7 was still weak

(Fig. 7B). At later time points, the co-localization between virus

and Tsg101 was gradually lost with a concomitant increase of co-

localization with Rab7 (Fig. 7B). The relatively low extent of co-

localization of LCMV with Tsg101 may be due to a transient

interaction of Tsg101 with the virus. Together, our data indicate

that incoming virus transiently passes through an MVB compart-

ment associated with Tsg101, and is then rapidly delivered to late

endosomes, consistent with sorting by the ESCRT.

LASV and LCMV cell entry depends on the ESCRT-
associated protein Alix

The apoptosis linked gene (ALG)-2-interacting protein X (Alix)

interacts with ESCRT proteins [58,59], is involved in endosomal

membrane dynamics in a LBPA-dependent manner [23,42,60],

membrane receptor endocytosis [61,62], and viral budding

[63,64,65]. To address the role of Alix in cell entry of LASV

and LCMV, we performed RNAi silencing of the protein in A549

cells using a validated siRNA to human Alix. Depletion of Alix by

the specific siRNA resulted in .90% reduction of Alix protein

levels after 72 hours, as assessed by Western-blot (Fig. 8A). Cells

depleted of Alix by RNAi were infected with VSV pseudotypes of

LASV, LCMV, and VSV as well as AdV5-EGFP. As shown in

Fig. 8B, depletion of Alix markedly reduced infection with all VSV

pseudotypes, but not AdV5-EGFP. When fusion was allowed at

the plasma membrane, depletion of Alix had no effect on post

entry replication of the VSV core (data not shown). The results

obtained with the VSV pseudotypes were validated with rLCMV-

LASVGP and LCMV (Fig. 8C). As observed with the RNAi

silencing of ESCRT proteins, depletion of Alix significantly

reduced the number of infected cells (Fig. 8C), but did not reduce

the expression levels of LCMV NP in remaining infected cells

(Fig. 8D). The efficient depletion of Alix did not cause overt

toxicity and had no significant effect on the uptake of transferrin

(Fig. 8E). Cell surface expression of functional a-DG was unaltered

(Fig. 8F). Similar effects of Alix depletion on infection with

rLCMV-LASVGP, LCMV, and VSV were observed in the

prototypic primate cell line CV-1 (data not shown), indicating a

role of Alix in rLCMV-LASVGP and LCMV cell entry in other

cell types.

An LCMV isolate independent of a-DG also depends on
ESCRT proteins for cell entry

While most strains and variants of LCMV use a-DG as a

cellular receptor, there exist LCMV isolates that can use

alternative receptors, different from a-DG [57,66]. The LCMV

isolates WE54 and WE22 differ from each other by only one point

mutation in GP1, S153 in WE54 and F153 in WE22. However,

the receptor use of WE54 and WE22 is strikingly different. Similar

to LCMV cl-13 and LASV, LCMV WE54 binds a-DG with high

affinity and depends on a-DG for cell entry, whereas WE 22 does

not bind to a-DG and infects cells in an a-DG-independent

manner [67]. The cellular receptor(s) of LCMV WE22 are

currently unknown, but initial characterization revealed that they

are either proteins or protein-associated structures [57]. Based on

their close structural relationship and strikingly different receptor

Figure 6. A role of Vps4 in rLCMV-LASVGP and LCMV entry. (A) HEK293 cells were transiently transfected with FLAG-tagged wild-type Vps4A
and the DN mutant Vps4AQE and expression of the recombinant proteins detected in Western-blot. (B) Expression of DN Vps4A reduced viral
infection. Cells were transiently transfected with FLAG-tagged wild-type and DN Vps4A. After 36 hours, cells were infected with rLCMV-LASVGP and
LCMV (MOI = 1). After 16 hours, cells were fixed and stained for the Vps4A variants (anti-FLAG) and LCMV NP. Cells were analyzed by FACS separating
transfected ‘‘expressing’’ from untransfected ‘‘non-expressing’’ cells with gating based on the intensity of the anti-FLAG signal. The percentage of
cells infected within each population was quantified. (C) Quantitation of (B). All data presented are means (n = 3 6 SD).
doi:10.1371/journal.ppat.1002232.g006
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use, we utilized WE54 and WE22 to investigate the role of the

ESCRT proteins and Alix in infection with an a-DG-independent

LCMV variant. The mutation S153F that distinguished LCMV

WE54 from WE22 lies within GP1, whereas membrane fusion of

arenaviruses is mediated by the transmembrane GP2 moiety.

However, we could at this point not exclude that the S153F

mutation had an impact on the fusion pH of WE22, perhaps

allowing the virus to exit at an earlier stage of the endosomal

pathway. To assess the relative fusion pH of WE 54 and WE22,

the viruses were exposed to progressively more acidic pH for

15 minutes. After neutralization, viruses were added to fresh

monolayers of A549 cells and residual infections titers determined

by immunofocus assay as described [68]. As controls, we used

LCMV cl-13 and rLCMV-LASVGP. In line with published results

[69], we observed a high resistance of rLCMV-LASVGP and

LCMV cl-13 towards acidic pH, with significant inactivation of

the virus only at pH,5.0 (Fig. 9A). LCMV WE54 and WE22

showed similar stability under low pH, indicating that the S153F

mutation in GP1 did not significantly affect the fusion pH (Fig. 9A).

Next, we tested the role of the ESCRT proteins Hrs, Tsg101,

Vps22, Vps24, and the ESCRT-associated protein Alix in cell

entry of LCMV WE22. A549 cells were subjected to RNAi

silencing as described above, followed by infection with LCMV

WE54, LCMV WE22, and rLCMV-LASVGP, which was used as

a positive control. Similar to the results obtained with LCMV cl-

13, infection of both LCMV WE54 and WE22 was significantly

reduced in cells depleted of Hrs, Tsg101, Vps22, Vps24, and Alix

(Fig. 9B), suggesting that a-DG dependent and a-DG independent

LCMV isolates pass through the MVB and require the ESCRT

machinery for cell entry.

The role of the MVB/ESCRT for LASV and LCMV cell entry
is conserved in human cells of the monocyte/
macrophage lineage

Human cells of the monocyte/macrophage lineage are early

and preferred targets of LASV in human and infection of

monocytes and macrophages plays an important role in the

pathogenesis of fatal Lassa fever [1,2]. Considering their

importance as targets in vivo, we investigated LASV cell entry into

human cells of the monocyte/macrophage lineage and in

particular the role of the MVB and ESCRT. For this purpose,

we employed the human monocyte cell line THP-1, which once

differentiated, represents a well-characterized model for human

macrophages. When treated with phorbol 12-myristate 13-acetate

(PMA) for 48 hours, the monocyte THP-1 cells undergo

differentiation and adopt a macrophage-like phenotype with

characteristic morphological changes [70] (Fig. 10A). In a first

step, we optimized siRNA transfection conditions using the

reagent HiPerFect and fluorescence-labeled siRNA and achieved

transfection efficiencies of .90%. We then silenced Hrs, Tsg101,

Vps22, Vps24, and Alix and assessed the efficiency of depletion

after 48 hours by Western-blot and RT-qPCR. For all five targets,

we obtained a degree of depletion similar to the one observed in

A549 cells (Fig. 10B), making this cellular model suitable for our

studies. To assess the role of PI3K and microtubules in LASV and

LCMV cell entry into THP-1 derived macrophage-like cells, cells

were treated with wortmannin and nocodazole, respectively, as

described above. Cells were then infected with VSV pseudotypes

of LASV, LCMV, and VSV via either fusion at the plasma

membrane or normal cell entry. Similar to our results obtained in

Figure 7. Incoming LCMV transiently co-localized with Tsg101 prior to reaching late endosomes. (A) Co-localization of LCMV WE54 with
Tsg101 and Rab7. A549 cells were cooled on ice for 30 min and LCMV WE54 added at an MOI of ,100. After incubation for 1 hour on ice, unbound
virus was washed off, cells shifted to 37uC and fixed at the indicated time points. Cells were then immunostained to detect endogenous Tsg101 or
Rab7 and incoming viral particles. Representative images are shown. Left: LCMV (green) and Tsg101 (red) at 20 min after temperature shift; right:
LCMV (green) and Rab7 (red) at 60 min after temperature shift. Scale bar = 5 mm. (B) Quantification of co-localization. Ten randomly selected cells per
time point were analyzed by confocal microscopy and the percentage of co-localizing viruses determined as described in Materials and Methods.
Data presented are means 6 SD (n = 10).
doi:10.1371/journal.ppat.1002232.g007
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A549 cells (Fig. 2), normal cell entry of LASV and LCMV into

macrophage-like cells was dependent on PI3K and microtubules

(Fig. 10D). Next we studied the role of LBPA by feeding

macrophage-like cells anti-LBPA antibody, prior to infection with

VSV pseudotypes of LASV, LCMV, and VSV as well as AdV5-

EGFP used as a negative control. As shown in Fig. 10E, pre-

treatment with anti-LBPA, but not control IgG1 significantly

reduced infection with pseudotypes of LASV, LCMV, and VSV,

indicating a role of LBPA in LASV and LCMV entry into

macrophage-like cells.

Lastly, we addressed the role of Hrs, Tsg101, Vps22, Vps24,

and Alix in cell entry of LASV and LCMV into macrophage-like

cells. Briefly, THP-1 cells were differentiated into macrophages

and transfected with siRNAs to Hrs, Tsg101, Vps22, Vps24, and

Alix. After 48 hours, cells were infected with VSV pseudotypes of

LASV, LCMV, and VSV, rLCMV-LASVGP, LCMV, and

AdV5-EGFP. Detection of infection after 16 hours revealed that

depletion of Hrs had no effect on entry of any of the viruses,

whereas silencing of Tsg101, Vps24, and Alix markedly reduced

infection (Fig. 10F). Depletion of Vps22 affected infection with all

viruses, but AdV5-EGFP to a lesser extent. Together, the data

indicate an at least partially conserved cell entry pathway of LASV

pseudotypes and LCMV between A549 cells and macrophage-like

cells with roles for PI3K, microtubules, LBPA, the ESCT proteins

Tsg101, Vps22, Vps24, and Alix, but distinct roles for the

ESCRT-0 component Hrs.

Discussion

In the present study we sought to identify cellular factors

involved in the unusual pathway of cell entry used by Old World

arenaviruses. We found that cell entry of LASV and LCMV

required functional microtubules and PI3K activity. Productive

viral infection depended on LPBA, a lipid involved in the

formation of ILV of the MVB/late endosome, and components

of the ESCRT complex. Productive infection with rLCMV-

LASVGP and LCMV also critically depended on the ESCRT-

associated protein Alix implicated in the membrane dynamics of

late endosomes. In sum our study identifies crucial cellular

components implicated in Old World arenavirus cell entry and

indicates that these viruses invade the host cell passing through the

MVB/late endosome using a pathway that may be involved in

degradation of their cellular receptor.

Previous studies demonstrated a role for microtubules in early

Old World arenavirus infection, but did not distinguish between a

role in viral entry and a requirement for post-entry steps of

replication [21]. In the present study we profited from the fact that

VSV replication in the cytoplasm occurs independent of

microtubules [23] and that recombinant VSV can be efficiently

pseudotyped with the GPs of LCMV and LASV [71]. Using

recombinant VSV pseudotypes, we found that cell entry of LASV

and LCMV critically depended on microtubules prior to fusion,

compatible with a role for microtubular transport in vesicular

trafficking of the virus to the late endosome.

Figure 8. Alix is required for cell entry of LASV and LCMV. (A) A549 cells were transfected with siRNAs specific for Alix or control siRNA and
efficiency of depletion assessed after 72 hours by Western-blot. For normalization, a-tubulin (a-Tu) was used. (B, C) Depletion of Alix perturbed cell
entry of LASV and LCMV. A549 cells were treated with specific siRNAs to Alix and control siRNA as in (A), followed by infection with (B) rVSVDG-
LASVGP (LASV), rVSVDG-LCMVGP (LCMV), rVSVDG-VSVG (VSV), and AdV5-EGFP (AdV) at 500 PFU/well or (C) rLCMV-LASVGP, LCMV, rVSVDG-VSVG
(VSV), and AdV5-EGFP (AdV) (500 PFU/well). Cells were fixed after 16 hours and infection detected by IFA as in Fig. 4 (mean 6 SD; n = 3). (D)
Representative specimens of rLCMV-LASVGP infected cells in cultures treated with the indicated siRNAs in (C). LCMV NP is in green and cell nuclei in
blue (bar = 20 mM). (E) Depletion of Alix does not interfere with transferrin uptake. Cells treated as in (A) were subjected to transferrin uptake assay as
in Fig. 3D. The cellular distribution of transferrin (red) and cell nuclei stained with DAPI in blue are shown (bar = 10 mM). (F) Depletion of Alix does not
affect cell surface expression of a-DG. Cells were subjected to RNAi as in (A) and cell surface staining for a-DG performed after 72 hours as in Fig. 4H.
In histograms, y-axis represents cell numbers and x-axis Alexa 594 fluorescence intensity. Shaded area: primary and secondary antibody, empty area:
secondary antibody only. The broken line indicates the superimposition of the shaded peak (primary+secondary antibody) from cells treated with
control siRNA.
doi:10.1371/journal.ppat.1002232.g008
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The unusual pathway of cell entry of LASV and LCMV is

independent of known regulatory proteins associated with

endocytosis such as clathrin, caveolin, dynamin, flotillin, or

ARF6 and appears to bypass Rab5- and EEA1 positive early

endosomes [19,20,21]. Infection of cells by LASV and LCMV

critically depends on a-DG that functions as a high affinity

receptor for Old World arenaviruses [14,67,72]. Considering the

negligible off-rate of the virus-receptor binding [71,73], it is

conceivable that the virus-receptor complex is internalized and

follows a pathway normally associated with endocytosis and

degradation of a-DG. To test this hypothesis, we addressed the

role of the MVB/late endosome in viral entry.

The formation of a functional MVB requires the biosynthesis of

the membrane lipid PI3P by PI3K [41]. Since the post-fusion steps

of VSV replication do not depend on PI3K activity [23], we again

employed recombinant VSV pseudotypes to address a possible

role for PI3K in cell entry of LASV and LCMV. In contrast to

VSV that can undergo fusion at the level of the early endosome

and is not inhibited by the PI3K inhibitor wortmannin [23],

infection with the LASV and LCMV pseudotypes was markedly

reduced. The dependence on PI3K at the level of viral entry

provided a first hint towards a requirement for a functional MVB.

To address the role of the MVB in LASV and LCMV cell entry

more specifically, we perturbed the function of LBPA, an unusual

lipid that is crucial for the formation of the MVB [42]. For this

purpose we pre-treated cells with the well-characterized function-

blocking antibody 6C4 to LBPA, which selectively prevents the

formation of ILV in the MVB/late endosome [42]. Anti-LBPA

treatment significantly perturbed LASV and LCMV cell entry,

suggesting a role of the MVB. To address the role of the ESCRT

complex, we depleted selected components of ESCRT-0 through

III, namely Hrs, Tsg101, Vps22, and Vps24, respectively, using

firmly established RNAi protocols. Depletion of Hrs, Tsg101,

Vps22, and Vps24 under our experimental conditions markedly

reduced cell entry of LASV and LCMV, but only mildly affected

infection with AdV5 and did not affect early endosomal trafficking

of TfR1, excluding general perturbation of membrane trafficking

and/or endocytosis. Similar results were obtained upon over-

expression of a DN variant of the ESCRT-associated ATPase

Vps4 that is essential for the terminal fission of ILV. While

depletion of Tsg101 markedly reduced viral infection, over-

expression of recombinant Tsg101 significantly accelerated cell

entry of LASV and LCMV, further supporting a role for Tsg101

as a positive regulator of Old World arenavirus entry. A role of the

MVB for viral entry is also supported by the reduced susceptibility

of cells depleted for Alix, an ESCRT-associated protein that is

involved in the organization of the MVB in an LBPA-dependent

manner [42]. To corroborate our findings obtained with RNAi

and recombinant proteins that pinpoint a role for the ESCRT in

Old World arenavirus entry, we performed co-localization studies

between the prototypic LCMV and Tsg101 using confocal

microscopy. Our studies indicate that incoming virus transiently

passes through a compartment associated with Tsg101, and is

subsequently delivered to Rab7 positive late endosomes, consistent

with a passage through the MVB and sorting by the ESCRT.

Figure 9. Infection of the a-DG independent LCMV WE22 also depends on ESCRT proteins. (A, B) Depletion of Hrs, Tsg101, Vps22, Vps24,
and Alix. A549 cells were subjected to siRNA knock down of Hrs, Tsg101, Vps22, Vps24, and Alix as in Figs. 4A and 8A. Depletion of Hrs, Tsg101, and
Alix was verified by Western blot as in 4A and 8A. The know-down of Vps22 and Vps24 was validated by detection of mRNA using RT-qPCR as in 4B.
(C) LCMV WE22 retains the low fusion pH of WE54. LCMV WE54, WE22, cl-13 and rLCMV-LASVGP (107 PFU/ml) were exposed to buffer solution with
the indicated pH for 15 minutes. Samples were immediately neutralized and infectious virus titers determined by immunofocus assay on fresh
monolayers of A549 cells. Means of 2 independent experiments are shown. (D) Infection with LCMV WE22 depends on Hrs, Tsg101, Vps22, Vps24, and
Alix. A549 cells were subjected to RNAi silencing of Hrs, Tsg101, Vps22, Vps24, and Alix as in (A) and (B) respectively. After 72 hours cells were infected
with the indicated viruses (500 PFU/well) and infection assessed after 16 hours by IFA (mean 6 SD; n = 3).
doi:10.1371/journal.ppat.1002232.g009
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The LCMV isolates used to study virus entry, LCMV WE54

[19] and LCMV cl-13 [20] bind to a-DG with high affinity and

are dependent on a-DG for cell entry [67]. However, a single

point mutation in the GP1 of WE54, S153F, present in the isolate

WE22 [74], abolishes a-DG binding and makes WE22 indepen-

dent of a-DG [67]. Comparison of the stability of WE54 and

WE22 towards acidic pH revealed that WE22 retained the

unusually high acid stability and low fusion pH found in LCMV

Figure 10. Cell entry of LASV and LCMV into human macrophages depends on the MVB and ESCRT proteins. (A) Differentiation of THP-
1 cells into macrophages. THP-1 cells were treated with 50 ng/ml PMA for 48 hours and changes in cell morphology assessed by differential
interference contrast microscopy (bar = 20 mM). (B) THP1 cells were seeded in 96 well plates (26104 cells/well) and differentiated into macrophage-
like cells as in (A). Cells were then transfected with siRNAs for Hrs, Tsg101, Alix, or control siRNA and efficiency of depletion assessed after 48 hours by
Western-blot as in Fig. 4A. For normalization, a-tubulin (a-Tu) was used. (C) Cells were transfected with siRNAs for Vps22 and Vps24 or control siRNA
and efficiency of depletion assessed after 48 hours by quantification of mRNA levels by RT-qPCR as in Fig. 4B. (D) Cell entry of LASV and LCMV into
human macrophage-like cells depends on PI3K and microtubules. THP1-derived macrophage-like cells generated as in (A) were treated with the
indicated concentrations of wortmannin and nocodazole. Cells were then infected with rVSVDG-LASVGP (LASV), rVSVDG-LCMVGP (LCMV), and
rVSVDG-VSVG (VSV) either via fusion at the plasma membrane (2000 PFU/well) or via the normal route of infection (200 PFU/well) as in Fig. 2.
Infection was detected by scoring EGFP positive cells (mean 6 SD; n = 3). (E) Infection of VSV pseudotypes of LASV, LCMV, and VSV is perturbed by
anti-LBPA treatment. THP-1-derived macrophage-like cells were pre-incubated with no antibody (1), 50 mg/ml mAb anti-LBPA (2) or isotype antibody
control (3) for 14 hours. Cells were then infected with rVSVDG-LASVGP (LASV), rVSVDG-LCMVGP (LCMV), rVSVDG-VSVG (VSV), and AdV5-EGFP at 300
PFU/well. In specimens subjected to pretreatment only (4), the cells were incubated for 1 h at 4uC with viruses in presence of the antibody, unbound
virus washed out, and cell incubated at 37uC in normal medium. Cells were fixed after 16 hours and EGFP positive cells counted (mean 6 SD; n = 3).
(F) Cell entry of LASV and LCMV into human macrophages depends on Tsg101, Vps22, Vps24, and Alix, but not Hrs. THP-1-derived macrophage-like
cells were subjected to RNAi silencing of Hrs, Tsg101, Vps22, Vps24, and Alix as in (B) and (C). After 48 hours cells were infected with rVSVDG-LASVGP
(VSV-LASV), rVSVDG-LCMVGP (VSV-LCMV), rVSVDG-VSVG (VSV-VSV), rLCMV-LASVGP, LCMV, and AdV5-EGFP (AdV) at 300 PFU/well. Infection was
assessed after 16 hours by IFA (mean 6 SD; n = 3).
doi:10.1371/journal.ppat.1002232.g010
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WE54 and LASV [69]. Upon RNAi silencing of the ESCRT

proteins Hrs, Tsg101, Vps22, and Vps24, as well as Alix, infection

of the a-DG-independent LCMV WE22 was affected to a similar

extent as the a-DG-dependent viruses LCMV WE54, LCMV cl-

13, and rLCMV-LASVGP. Although by no means comprehen-

sive, these studies with WE22 indicate that also an a-DG-

independent LCMV isolate passes through the MVB and depends

on ESCRT-mediated sorting for productive infection, which may

be linked to the use of a yet unknown cellular membrane receptor

and/or the unusually low fusion pH of the virus.

To study LASV and LCMV cell entry we largely used the

human epithelial cell line A549. While a good model for epithelial

cells that are important targets of arenaviruses in vivo, they are

different from human cells of the monocyte/macrophage lineage,

which represent key targets for LASV involved in the pathogenesis

of fatal Lassa fever [2]. Using a well-characterized cell culture

model for human macrophages, we assessed the roles of the MVB

and ESCRT in LASV and LCMV cell entry. These studies

revealed that LASV and LCMV cell entry into macrophage-like

cells also depends on a functional MVB and the ESCRT

components Tsg101, Vps22, and Vps24, as well as Alix. However,

in contrast to A549 and HEK293 cells, infection of macrophage-

like cells seemed independent of Hrs. Since Hrs is a constituent of

ESCRT-0 that recruits cargo to the ESCRT-I, our data suggest

that the initial events of LASV cell entry, prior to the interaction

with ESCRT-I, are distinct in A549 cells and macrophages-like

cells. This difference may be linked to differential receptor use

and/or another endocytotic pathway involved in virus internali-

zation. As befits their role in pathogen detection and antigen

presentation, macrophages express a number of pathogen

recognition receptors (PRR) and have pathways of endocytosis

that do not exist in other cell types [75,76]. Their role in LASV

infection of human macrophages is currently unknown and under

investigation in our laboratory.

The requirement for the MVB/late endosome for cell entry of

LASV and LCMV found here is reminiscent to earlier reports on

the cellular entry of the Anthrax toxin, the major virulence factor

of Bacillus anthracis [60,77], as well as studies on the endosomal

transport of influenza virus [78] and VSV [23]. In case of Anthrax

toxin and VSV, the pathogens undergo ESCRT-mediated sorting

into ILV for transport to the late endosome, where penetration

into the cytosol occurs by back-fusion of ILV with the endosomal

membrane [23,60]. Due to its pH optimum for fusion of .6.0,

VSV penetrates the ILV membrane at an early step, resulting in

the accumulation of the viral nucleocapsids in the lumen of ILV

[23]. Delivery of VSV nucleocapsids into the cytoplasm at the level

of the late endosome most likely occurs by back-fusion and

involves LBPA, Alix, and Tsg101 [23,79]. To ‘‘hide’’ the viral

nucleocapsid in the lumen of ILV during the passage through the

MVB/late endosome may be a strategy to protect the virus against

the increasingly hostile biochemical environment of the late

endosome. In contrast to VSV, LASV and LCMV have a

remarkably low pH optimum for fusion (,5.0) [18,69] and in

particular LASV is unusually resistant to acidic pH [69]. It seems

therefore rather unlikely that fusion can occur before the viruses

reach late endosomal/lysosomal compartments.

Based on previous studies and the present work, we propose a

working model for the cell entry of Old World arenaviruses

(Fig. 11). LASV, most LCMV isolates, and the related African

arenaviruses Mobala and Mopeia use a-DG as a high affinity

cellular receptor (1). Virus-receptor binding may result in receptor

clustering, possibly accompanied by receptor-mediated signaling.

Upon attachment, virus is rapidly internalized by smooth vesicles

(2) [17,19] involving a clathrin- and caveolin-independent

pathway [19,20,21]. Based on the negligible off-rate of the virus

binding to a-DG at neutral pH [71,73], we assume that the virus-

receptor complex is internalized. In a Rab5-independent manner,

virus-containing vesicles may then be delivered either directly to

the MVB (3) or passing through a yet unknown intracellular

compartment (?), which seems distinct from classical EEA1

positive early endosomes. The MVB is a dynamic organelle

characterized by the presence of ILV that gives raise to late

endosomes. Delivery of the virus-receptor complex within the

MVB to late endosomes seems to depend on microtubular

transport (4), but independent of Rab7 [19,21]. At the level of

the MVB, the virus-receptor complex may undergo ESCRT-

mediated sorting into ILV (5), followed by delivery to the late

endosome. To allow penetration of the viral nucleocapsid into the

cytosol, ILV bearing virus-receptor complexes would have to

undergo back-fusion at the level of the late endosome, which may

depend on Alix and LBPA (6). However, we cannot exclude the

possibility that the virus-receptor complex may to some extent

remain associated with the limiting membrane of the MVB (7) and

fusion may be initiated as the intraluminal pH progressively drops

(8).

A hallmark of fatal LASV infection in humans is the inability of

the host cell’s innate immune system to detect and contain the

virus, resulting in uncontrolled infection [2]. Instead of being

recognized as a foreign antigen, LASV escapes innate pathogen

detection and establish a productive infection without inducing an

interferon response [80,81]. An important class of cellular PRRs

that allows early detection of incoming RNA viruses are

transmembrane receptors of the Toll-like family localized in the

Rab5/EEA1 positive early endosome [82]. The ability of LASV to

use a pathway of endocytosis bypassing classical routes of

incoming endosomal trafficking followed direct delivery to late

endosomes may contribute to LASV’s ability to escape detection

by endosomal receptors of innate anti-viral defense, a hypothesis

we are currently testing.

Materials and Methods

Antibodies and reagents
Mouse monoclonal antibody (mAb) 113 anti-LCMV NP has

been described previously [83]. Mouse mAbs recognizing Hrs

and Tsg101 were purchased from Alexis Biochemicals (Lausen,

Switzerland) and GeneTex (Irvine, CA), while rabbit polyclonal

antibody (pAb) anti-Alix was from Covalab (Villeurbanne,

France). MAb IIH6 anti-a-DG has been provided by Dr. Kevin

Campbell (Howard Hughes Medical Institute, University of

Iowa). MAb to clathrin heavy chain was purchased from BD

Bioscience (San Jose, CA). Mouse mAb anti-FLAG M2, rabbit

pAb anti-FLAG and mouse mAb anti-a-tubulin were all obtained

from Sigma-Aldrich (St. Louis, MO). Mouse mAb 6C4 anti-

LBPA [84] was a kind gift of Dr. Jean Gruenberg (University of

Geneva, Switzerland). Mouse mAb 23H12 specific for the M

protein of VSV [85] was kindly provided by Dr. Douglas S. Lyles

(Wake Forest University School of Medicine, NC). Mouse mAb

anti-MYC was produced from the 9E10 hybridoma. Horseradish

peroxidase (HRP) conjugated secondary antibodies were from

Pierce (Rockford, IL), rhodamine red-X goat anti-mouse IgG

from Jackson ImmunoResearch (Suffolk, UK), while Alexa 594

goat anti-mouse IgM, Alexa 488 goat anti-mouse IgG2a, Alexa

647 goat anti-rabbit IgG and 49,6-diamidino-2-phenylindole

(DAPI) were purchased from Molecular Probes (Eugene, OR)

and phorbol 12-myristate 13-acetate (PMA) was obtained from

Sigma.
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Cells and viruses
Human lung adenocarcinoma epithelial cells (A549), human

embryonic kidney cells (HEK293), African green monkey kidney

cells (Vero E6), North African green monkey (Cercopithecus aethiops)

kidney fibroblasts (CV1), and Syrian golden hamster kidney cells

(BHK-21) were maintained in Dulbecco’s modified Eagle medium

(DMEM) (Gibco BRL, NY) containing 10% FBS. THP-1 cells

were maintained and differentiated into macrophages as described

[70]. LCMV clone 13 (cl-13) and recombinant LCMV carrying

the LASV GP (rLCMV-LASVGP) have been already described

[21,86]. Seed stocks of LCMV were prepared by growth in BHK-

21 cells, and titers were determined as reported previously [87].

Wild-type vesicular stomatitis virus (VSV) (Indiana serotype) was

grown in Vero E6 cells, and titers were determined by plaque

assay on Vero E6 cells. Recombinant VSV pseudotyped with

LASV GP (rVSVDG-LASVGP), LCMV GP (rVSVDG-

LCMVGP), and VSV GP (rVSVDG -VSVG) were generated as

reported previously [71]. Virus titers were determined by the

infection of Vero E6 cell monolayers and detection of GFP-

positive cells by fluorescence microscopy.

Virus infection and fusion assay
For virus infection, 26104 cells per well were seeded in 96 well

plates and cultured overnight. For infection of cells with LCMV,

rLCMV-LASVGP and VSV, seed stocks were diluted to the

indicated MOI and added to cells for 1 h at 37uC. After 1 h of

incubation, the inoculum was removed, and replaced with normal

medium. To prevent secondary infection, 20 mM NH4Cl was

added to the cells 4 h after infection. Cells were fixed 5 (VSV) or

16 (LCMV cl-13 and rLCMV-LASVGP) h after infection and

infected cells quantified by immunofluorescence assay (IFA)

detection of LCMVNP and VSVM using mAbs 113 (anti-

LCMVNP) and 23H12 (anti-VSVM) combined with fluores-

cence-labeled secondary antibodies as in [88]. Images of infected

cells within one experiment were acquired with the same

microscope settings using a Zeiss LSM 510 Meta confocal

microscope (Zeiss) and a 406, 1.3 NA or a 206 objective.

For infection of cells with rVSVDG-LCMVGP, rVSVDG-

LASVGP and rVSVDG-VSVGP, seed stocks were diluted to the

indicated MOI and added to cells for 1 h at 37uC. After 1 h of

incubation, the inoculum was removed, and replaced with normal

medium. Cells were fixed at 12 h after infection and GFP-positive

cells, or cells stained with mAb 23H12 to VSV-M, scored as

infected by flow cytometry or fluorescence microscopy.

The kinetics of cell entry by ammonium chloride treatment was

performed as described [21]. Briefly, cells were cooled on ice for

30 min and viruses added the indicated MOI. After incubation for

1 h on ice, unbound virus was washed off and cells were quickly

shifted to 37uC. After the indicated time points, 20 mM

ammonium chloride was added to the medium and kept

throughout the experiment. After a total of 12 (rVSVDG-

LASVGP and rVSVDG-VSVGP) or 16 (rLCMV-LASVGP) h,

cells were fixed, stained and analyzed by flow cytometry.

Pharmacological inhibitors
For cholesterol extraction with methyl-b-cyclodextrin (MbCD),

medium was removed, cells washed twice with medium without

FBS, and MbCD added at the indicated concentrations for one

Figure 11. Working model for the cell entry of the Old World arenaviruses LASV and LCMV. For details please see text.
doi:10.1371/journal.ppat.1002232.g011
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hour at 37uC, 5% CO2. Cells were washed three times with

medium to remove residual MbCD and infection assays

performed as described. For the quantitative determination of

cellular cholesterol, cells were extracted with chloroform and

methanol (2:1) and cholesterol quantified by a commercial

colorimetric assay (BioVision Inc. Mountain View, CA) according

to the manufacturer’s recommendations. Treatment with chlor-

promazine (CPZ) was performed as described [28]. Studies with

nocodazole to address the role of microtubules and wortmannin to

define the role PI3K for cell entry of VSV pseudotypes were

performed as described [23]. All pharmacological inhibitors were

purchased from Sigma-Aldrich (St. Louis, MO).

Infection assays with wild-type and dominant negative
mutants of dynamin, Eps15, and Rab5

Green fluorescent protein (GFP)-tagged wild-type and DN

(K44E) dynamin II [38] were kindly provided by Dr. Sandra L.

Schmid (The Scripps Research Institute, CA) and the control Eps

15DIIID2 construct [34] as well as the DN Eps15D95/295 mutant

construct [89] were provided by Drs Alice Daurty-Varsat and

Nathalie Sauvonnet (Institut Pasteur, Paris). Constructs of wild-

type GFP-tagged human Rab5A and the constitutively inactive

mutant Rab5 S34N [90,91] were provided by Dr. Craig Roy (Yale

University School of Medicine, New Haven, CT). The impact of

transgene expression on virus infection was assessed as described

[20]. Briefly, cells were transiently transfected with plasmid DNA

using the Nucleofector system (Amaxa, Gaithersburg, MD)

according to the manufacturer’s protocols. Transfection efficien-

cies with plasmids, as assessed by detection of GFP, were .90%

for HEK293 cells. Cells expressing GFP-tagged constructs for

20 hours were infected with VSV pseudotypes rVSVDG-

LASVGP, rVSVDG-LCMVGP and rVSVDG-VSVG at 200

PFU/well. Infection of VSV pseudotypes was detected by IFA

using mAb 23H12 specific for the M protein of VSV and a

rhodamine red X-conjugates secondary antibody. The number of

VSV M positive cells was determined for each well in triplicates.

RNA interference (RNAi)
The depletion of clathrin heavy chain by RNAi was performed

as described in [92] using ON-TARGETplus SMARTpool and a

control siRNA pool obtained from Dharmacon (Lafayette, CO).

Briefly, cells (26104 cell/well) were seeded in 96 well plates and

transfected with siRNAs at concentrations of 50 nM per siRNA,

corresponding to a total concentration of 4650 = 200 nM, using

Lipofectamine 2000. After 48 hours, cells were lysed and depletion

of clathrin heavy chain and caveolin-1 detected by Western-blot

analysis, using a-tubulin for normalization.

For the knockdown of ESCRT components, validated siRNAs

for human Hrs (SI00288239), Alix (SI02655345) and scrambled

siRNA (1027280) were purchased from Qiagen (Basel, Switzer-

land) while target sequences for human Tsg101, Vps22 and Vps24

were previously described in [93], [50], and [49] respectively. In

RNAi experiments, A549, HEK293, and CV-1 cells were

transfected twice at a 24 h interval with 16 nM siRNA using

Lipofectamine RNAiMAX (Invitrogen, Paisley, UK) according to

the manufacturer’s instructions, replated the day after the second

transfection and further manipulated 24 h later. THP-1 cells were

differentiated by the addition of PMA (50 ng/ml) for 48 hours and

then transfected with HiPerFect (Qiagen) according to the

manufacturers recommendation, using 50 nM of siRNA.

Anti-LBPA antibody treatment
BHK-21 cells were left untreated, pre-incubated with 50 mg/ml

of anti-LBPA antibody or with 50 mg/ml of isotype IgG control for

14 h and infected with LCMV, rLCMV-LASVGP and VSV. To

exclude a direct effect of the anti-LBPA Ab on virus infectivity,

untreated cells were incubated for 1 h at 4uC with LCMV,

rLCMV-LASVGP and VSV in presence of the Ab, unbound virus

washed out, and cell incubated at 37uC in normal medium.

Immunoblotting
Standard immunoblotting involved proteins being separated by

SDS-PAGE gel electrophoresis and transferred to nitrocellulose.

After blocking in 3% (wt/vol) skim milk in PBS, membranes were

incubated with 1–10 mg/ml primary antibody in 3% (wt/vol) skim

milk, PBS overnight at 4uC. After several washes in PBS, 0.1%

(wt/vol) Tween-20 (PBST), secondary antibodies coupled to HRP

were applied 1:5,000 in PBST for 1 h at room temperature. Blots

were developed by enhanced chemiluminescence (ECL) using

Super Signal West Pico ECL Substrate (Pierce).

Real time PCR
Total RNA was purified with RNeasy Mini Kit (Qiagen) and

cDNA synthesized using QuantiTect Reverse Transcription Kit

(Qiagen). TaqMan probes specific for Vps22 (Hs00273125_m1),

Vps24 (Hs00984915_m1) and PRKCSH (Hs00160457_m1) were

obtained from Applied Biosystems. Real Time PCR was

performed using StepOne Real-Time PCR System (Applied

Biosystems) and gene expression levels relative to PRKCSH

determined according to the 22DDCT method [94].

Transferrin uptake assay
Transferrin uptake assay was performed according to [95]. Cells

were incubated for 10 min at 37uC with serum-free medium

containing 20 mg/ml of Alexa594-labeled human transferrin

(Invitrogen), washed with ice cold PBS and acid-stripped

(150 mM NaCl, 2 mM CaCl2, 25 mM CH3COONa, pH 4.5) to

remove surface-bound transferrin. Cells were immediately fixed

with 2% formaldehyde in PBS for 15 min and specimens

examined with the same microscope settings using a Zeiss LSM

510 Meta confocal microscope (Zeiss) and a 406, 1.3 NA

objective.

Infection assays with wild-type and dominant negative
mutants of Vps4A

Expression plasmids for human FLAG-tagged Vps4A and

Vps4A mutant E228Q (Vps4AEQ) [56] were kindly provided by J.

Yasuda (Japan Science and Technology Agency, Japan). HEK293

cells were transfected using FuGENE6 and 36 h after cells infected

with LCMV or rLCMV-LASVGP (MOI,1). 20 mM ammonium

chloride was added 4 hours post infection to prevent secondary

infection. Sixteen h post infection, cells were fixed and

immunostaining against LVMV-NP and FLAG tag performed.

Two populations of cells were selected in each sample: a ‘‘non-

expressing’’ population negative for flag and an ‘‘expressing’’

population containing the construct. The percentage of cells

infected within each population was quantified in a histogram of

the virus staining intensity. The effect of a given flag-fusion protein

was expressed as normalized infection level, i.e., the ratio of the

infection level in the cell population expressing the protein divided

by the infection level in the non-expressing cell population.
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Tsg101 overexpression
pC-Tsg101 [96] carrying a MYC tag upstream the human

coding sequence was from S. N. Cohen (Stanford University

School of Medicine, CA). In transfection experiments, HEK293

cells were transfected using FuGENE6 (Roche, Basel, Switzerland)

according to the manufacturer’s protocol, and infected 36 h after.

Cell surface staining of a-DG
For cell surface staining, cells were detached with enzyme-free

cell dissociation solution (Sigma-Aldrich), resuspended in FACS

buffer (1% (vol/vol) FBS, 0.1% (wt/vol) sodium azide, PBS), and

plated in conical 96-well trays. For cell surface staining of

functionally glycosylated a-DG, cells were incubated with mAb

IIH6 (1:100). Incubation was for one hour on ice in FACS buffer.

Cells were then washed twice in FACS buffer and labeled with

Alexa 594-conjugated secondary antibodies (1:100 in FACS

buffer) for 45 min on ice in the dark. After two wash-steps in

1% (vol/vol) FBS in PBS, cells were fixed with 4% (wt/vol)

paraformaldehyde, PBS for 10 min at room temperature in the

dark. The cells were washed twice with PBS, and analyzed with a

FACSCalibur flow cytometer (Becton Dickinson, San Jose CA)

using Cell Quest software.

Virus inactivation assay
To compare the fusion pH of different LCMV isolates, viruses

were incubated with 100 mM sodium citrate solutions buffered at

the indicated pH for 15 min. Titers after incubation were

determined by infection of A549 monolayer as described

previously [68].

Co-localization analysis
To perform co-localization studies A549 cells previously seeded

on glass 8-well LabTeks were cooled on ice for 30 min, incubated

for 1 h on ice with LCMV WE54 (MOI,100) to allow virus

binding and then washed with cold medium. Cells were then

shifted at 37uC and fixed at the indicated time points with 2%

formaldehyde in PBS for 15 minutes at RT and washed with PBS.

Cells were permeabilized for 30 min at RT with 0.1% saponin,

10% goat serum, 100 mM glycine in PBS. Primary (mouse

monoclonal anti LCMV NP clone 113 2 mg/ml, rabbit polyclonal

anti Tsg101 1:100, GeneTex, and rabbit polyclonal anti-Rab7

1:100, Cell Signaling) and secondary antibodies (Alexa488-F(ab9)2

fragment of goat anti-mouse IgG and Alexa595-F(ab9)2 fragment

of goat anti-rabbit IgG, Molecular Probes) were diluted in PBS,

0.1% saponin, 1% goat serum and incubated o/n at 4uC and 1 h

at RT, respectively. Before acquisition nuclei were stained with

300 nM DAPI and LabTek were mounted with ProLong Gold

(Molecular Probes). Image acquisition was performed with a Zeiss

LSM710 Quasar confocal microscope equipped with a plan

apochromat 636, 1.2 NA objective and a 405 nm diode laser, a

458-476-488-514 nm Argon laser and a 561 nm DPSS. All images

for each data set were acquired the same day with the same

microscope settings. Images were first deconvolved using Huygens

Essential (SVI, Hilversum, Netherlands) and then analyzed for

colocalization with Imaris 7.2 (Bitplane). For each image a

colocalization channel was built thresholding the scatter plot.

Total number of viruses and the number of viruses in the

colocalization channel were automatically quantified by image

segmentation using Imaris spot detection function to model point-

like structures. Ten randomly selected cells for each time points

were analyzed.
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