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Abstract: Squamous cell carcinoma of the head and neck (HNSCC) consist of two distinct biological
entities. While the numbers of classical, tobacco-induced HNSCC are declining, tumors caused by
human papillomavirus (HPV) infection are increasing in many countries. HPV-positive HNSCC
mostly arise in the oropharynx and are characterized by an enhanced sensitivity towards radiotherapy
and a favorable prognosis. To identify molecular differences between both entities on the protein
level, we conducted a mass spectrometric comparison of eight HPV-positive and nine HPV-negative
oropharyngeal tumors (OPSCC). Overall, we identified 2051 proteins, of which 31 were found to
be differentially expressed. Seventeen of these can be assorted to three functional groups, namely
DNA replication, nuclear architecture and cytoskeleton regulation, with the differences in the last
group potentially reflecting an enhanced migratory and invasive capacity. Furthermore, a number
of identified proteins have been described to directly impact on DNA double-strand break repair
or radiation sensitivity (e.g., SLC3A2, cortactin, RBBP4, Numa1), offering explanations for the
differential prognosis. The unequal expression of three proteins (SLC3A2, MCM2 and lamin B1)
was confirmed by immunohistochemical staining using a tissue microarray containing 205 OPSCC
samples. The expression levels of SLC3A2 and lamin B1 were found be of prognostic relevance in
patients with HPV-positive and HPV-negative OPSCC, respectively.
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1. Introduction

In recent decades, there has been an increase in the incidence of head and neck squamous
cell carcinomas (HNSCC) with location in the oropharynx (OPSCC), whilst tumors arising from
the larynx and hypopharynx have been declining. Sustained alcohol and tobacco consumption no
longer represent the main risk factors for OPSCC in many countries as smoking cessation programs
were implemented [1]. The rising numbers of OPSCC can be largely ascribed to an epidemic spread
of human papillomavirus (HPV)-associated tumors mostly located at the tonsils and the base of
the tongue. In the US, the incidence of HPV-positive OPSCC has increased by 225% between 1988
and 2004, and HPV-negative OPSCC declined by 50%. Similar trends are being observed in many
other developed countries [2–5]. HPV-negative and HPV-positive HNSCC represent biologically and
clinically distinct entities. The tumorigenesis of HPV-positive cancer is largely determined by the
activity of the viral oncoproteins E6 and E7. Amongst many other functions, E6 and E7 inhibit and
degrade the tumor suppressors p53 and the retinoblastoma-associated protein (pRB), respectively.
pRB degradation results in the activation of the transcription factors of the E2F-family, which drive
S-phase entry. E2Fs also induce the expression of the CDK-inhibitor p16, which, in a negative feedback
loop, restricts E2F-activity by reinstalling the active hypophosphorylated form of pRB [6,7]. Since in
HPV-positive tumors, this regulatory loop is broken by the degradation of pRB through E7, these
tumors express and tolerate large amounts of p16. In HPV-negative OPSCC, p16 is usually suppressed
and therefore, p16 is commonly used as a surrogate marker for HPV-positivity in the clinics. Patients
with HPV-positive OPSCC show a clearly favorable prognosis despite frequent presentation with
lymph node metastasis. The higher survival rates are attributed to an enhanced sensitivity towards
therapy and are independent of the choice of primary treatment modality [8,9]. From data with
sole radiotherapy treatment, an enhanced sensitivity of HPV-positive OPSCC toward radiation is
clearly established [10,11] and in locally advanced disease, radiotherapy is virtually always included
in current multimodal regimes. Proposed mechanisms for the higher (radio) sensitivity are enhanced
immune responses [12–14] and a higher intrinsic radiation sensitivity of HPV-positive tumor cells,
mostly described to be caused by a reduced ability to repair radiation induced DNA double-strand
breaks [13,15–17].

To identify biologically relevant differences in protein expression between HPV-positive and
HPV-negative OPSCC in an open, unbiased experimental approach, we conducted a mass spectrometric
comparison of the proteomes of HPV-positive and HPV-negative OPSCC tissue samples.

2. Material and Methods

2.1. Patient Characteristics

Patients treated for HNSCC at the Department of Otorhinolaryngology of the University Medical
Center Hamburg-Eppendorf between August 2011 and March 2013 were reviewed for primary
site and HPV/p16 status within our clinical cancer database. p16 status had been determined
by immunohistochemistry using a mouse anti-p16INK4a antibody (clone G175-405; BD Biosciences,
Heidelberg, Germany) and HPV status had been determined by genomic PCR using the MY09/11
primer set and subsequent sequencing of PCR products. Ten patients with HPV/p16-positive and
10 with HPV/p16-negative OPSCC with leftover formalin-fixed paraffin-embedded (FFPE) tumor
tissue available from histopathological workup of the main tumor specimen were chosen for the mass
spectrometric comparison. The tissue microarray (TMA) contains tumor samples from patients who
had been diagnosed with a squamous cell carcinoma of the oropharynx and treated with curative
intent at the University Medical Center Hamburg-Eppendorf between 1992 and 2013. The use of
archived diagnostic leftover tissues and their analysis for research purposes as well as patient data
analysis have been approved by local laws (HmbKHG,§12,1) and by the local ethics committee (Ethics
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commission Hamburg, WF-049/09). The whole study has been carried out in compliance with the
Helsinki Declaration.

2.2. Sample Preparation and Processing

2.2.1. Tissue Sectioning and Protein Extraction

The FFPE tissue blocks from HPV-positive and HPV-negative tumors were sliced with a microtome
into sections of 6 µm thickness and transferred onto specimen slides. A total of 22 sections were cut
from each tissue sample. The first and last specimens were stained with haematoxylin and eosin (HE)
for microscopical assessment of the tumor. Areas of tumor growth were marked by a pathologist
(T.S.C.) on both HE slides to provide guidance for the macrodissection of slides 2 to 21 in the next step.

The tissue slices were washed subsequently by xylene (ChemSolute, Th. Geyer, Renningen,
Germany) twice, 100% ethanol (Merck, Darmstadt, Germany) twice, and once in 95%, 70% and 30%
ethanol for 10 min for each washing step for deparaffinization. Then, tissues from tumor areas were
transferred from the slides to reaction vials with a scalpel and incubated at 65 ◦C in antigen retrieval
buffer (Retrievit TM2, Target Retrieval Solution 10× (BioGenex, Fremont, CA, USA)) for 4 h. Then,
the tissues were washed twice with HPLC-grade water (LiChrosolv (Merck, Darmstadt, Germany) and
centrifuged at 12,000 rpm for 5 min.

2.2.2. Tryptic Digestion and Desalting

A quantity of 200 µL of 10 mM dithiothreitol (Sigma-Aldrich Chemie, (Aufkirchen, Germany))
dissolved in a 100 mM ammonium bicarbonate solution (NH4HCO3 (Carl Roth GmbH, Karlsruhe,
Germany)) in HPLC-grade water were added to the reaction vials for reduction of cysteine residues,
incubated for 10 min at 56 ◦C followed by centrifugation at 12,000 rpm for 5 min. Cysteine residues
were alkylated with 300 mM iodoacetamide (Sigma-Aldrich Chemie) dissolved in 100 mM NH4HCO3.
The samples were incubated in the dark at room temperature for 20 min, followed by centrifugation at
12,000 rpm for 5 min and removal of the supernatant. Finally, 200 µL sequencing grade modified trypsin
(Promega, Madison, WI, USA) was dissolved to a final concentration of 0.1 µg/µL in HPLC-grade
water and 1M ammonium bicarbonate of 100:4) was added to the tissue slices and incubated overnight
at 37 ◦C. Finally, the samples were centrifuged in 12,000 rpm for 10 min and the supernatant was
collected and transferred to new collection vials and dried with a vacuum concentrator.

The samples were desalted using Poros Oligo R3 reversed-phase packing material (Oligo R3
Bulk Medium (Applied Biosystems, Darmstadt, Germany) and a C18-EMPORE-DISC (Sigma-Aldrich,
Steinheim, Germany). Single-use desalting columns were prepared by stamping out a 6 mm piece of
the C18 disc and placing it into a gel loader tip, followed by washing with 100% acetonitrile (ACN,
LiChrosolv, Merck). Then, 50 µL of Oligo R3 dissolved in 50% ACN were added on top of each column.
The columns were conditioned by washing with 60 µL elution buffer (50% ACN in HPLC-grade
water with 0.1% trifluoroacetic acid (TFA (Sigma-Aldrich)) and equilibrated with 60 µL wash buffer
(0.1% TFA in HPLC-grade water). Then, the sample was dissolved in wash buffer and loaded onto the
column, and the peptides were eluted with the elution buffer. The eluates were dried with a vacuum
concentrator and stored frozen until mass spectrometric analysis was carried out.

2.2.3. LC–MS/MS Analysis

Dried samples were dissolved in a mixture of 2 µL 50% ACN and 18 µL 0.2% formic acid (FA,
Merck) in HPLC-grade water, then diluted 1:10 in 0.2% FA and centrifuged for 10 min at 15,000 rpm
at 4 ◦C. The tryptic peptides were subjected to a reversed-phase nano-UPLC (Dionex UltiMate 3000
RSLCnano (Thermo Fisher Scientific, Bremen, Germany)) coupled via electrospray ionization (ESI) to
an Orbitrap mass spectrometer (Orbitrap Fusion (Thermo Fisher Scientific)). Samples were injected

onto a trapping column (Acclaim PepMap µ-precolumn, C18, 300 µm × 5 mm, 5 µm, 100 Ǻ(Thermo
Scientific, Dreieich; Germany)) by an autosampler at 98% buffer A (0.1% FA in HPLC-water) and 2%
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buffer B (0.1% FA in ACN) and washed with 2% buffer B. The peptides were separated on a separation

column (Acclaim PepMap 100, C18, 75 µm × 250 mm, 2 µm, 100 Ǻ(Thermo Scientific)) by a gradient of
2% to 30% B in 90 min at a flow rate of 200 nL/min, followed by a gradient to 70% B in 10 min, another
gradient to 90% B in 2 min and holding 90% B for 3 min before the column was equilibrated at 2% B for
15 min for the next run.

The peptides eluting from the column were ionized with electrospray ionization in positive
mode. The mass spectrometer was operating in data-dependent acquisition top-speed mode with the
following parameters: MS1 scan range of 400–1500 Th, MS1 resolution of 120,000, AGC target of 4e5,
maximum injection time of 50 ms. Ions with charge states 2–6 and a minimum intensity of 1e5 were
selected for fragmentation, with a dynamic exclusion for 30 s for previously fragmented ions. Selected
precursor ions were isolated with a width of 1.5 Th and fragmented at a HCD collision energy of 35%.
MS2 spectra were acquired with the ion trap in rapid mode with a maximum injection time of 50 ms
and an AGC target of 1e4.

2.3. Peptide Identification and Quantitative Proteomics

Raw LC–MS data were processed with MaxQuant (Version 1.5.3.30, Max-Planck Institute of
Biochemistry, Munich, Germany) [18]. Peptide identification was performed with the Andromeda
search engine against the human SwissProt database (www.uniprot.org, 20,161 entries) and the internal
contaminant database. The search parameters were set as follows: the precursor mass tolerance
was set to 8 ppm, the fragment mass tolerance was set to 0.5 Da, and two missed cleavages were
allowed for peptide identification; an FDR of 1% was given on the peptide and the protein level.
Carbamidomethylation of cysteine residues was set as a fixed modification. Oxidation of methionine
residues and acetylation of the protein N-terminus were set as variable modifications (five at most for
each peptide). The MaxLFQ algorithm [19] was used for protein quantification with a minimum ratio
count of 1.

To compare the protein intensities between the HPV+ and HPV− groups, the quantitative protein
data was loaded into Perseus 1.5.8.5 [20]. First, label-free quantification (LFQ) intensities were
logarithmized to base 10. Missing values were imputed from a down-shifted normal distribution.
The HPV+ and HPV− groups were compared with a two-sided t-test. Only proteins with at most two
missing values in at least one group were considered.

2.4. Random Forest Analysis

R and the Bioconductor environment [21] were used to build random forests in order to separate
the HPV-positive and HPV-negative group. In total, 100 runs were performed. The Boruta package
was used to decide whether a protein was important for the separation of groups. If importance
was confirmed in one run, the protein was scored 2, if importance was tentative, it was scored 1
and if the importance was rejected by the Boruta algorithm, the protein was scored 0. Subsequently,
the Boruta sum score was built for each protein. Proteins reaching a score of ≥10 were rated as
differentially expressed.

2.5. Analyses of Identified Proteins

The list of differentially expressed proteins was uploaded to the STRING database [22] to visualize
predicted interactions. A heat map of logarithmic protein intensities of the differential proteins was
created in Perseus, depicting the relative protein abundance compared to the median, with row
clustering enabled to group proteins of similar expression patterns. Depiction of individual protein
intensities, student’s t-test and regression analyses were performed using GraphPad Prism 6. Graphs
depict mean values and standard error (SE) unless stated otherwise.

www.uniprot.org
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2.6. Tissue Microarray (TMA) Analysis

TMA construction was described previously [23,24]. For immunohistochemistry (IHC) analyses,
freshly cut 3 µm thick TMA sections were analyzed on the same day in a single experiment. Proteins
of interest were stained using specific antibodies (rabbit anti-NUP210 (Sigma, Taufkirchen, Germany,
HPA066888)), mouse anti-MCM2 (Thermo Fisher Scientific, Bremen, Germany, clone 1E7, 1:450), rabbit
anti-SLC3A2 (Fitzgerald, Acton, MA, USA, 70R-12779, 1:50), rabbit anti-LRPPRC (Abcam, Cambridge,
UK, ab97505, 1:450), rabbit anti-Lamin B1 (Atlas antibodies, Bromma, Sweden, HPA050524, 1:350)
after peroxidase blocking with H2O2 (DAKO S2023 (Agilent, Santa Clara, CA, USA)) for 10 min.
High-temperature pretreatment of slides was done in an autoclave with citrate buffer, pH 7.8 or pH 9
for 5 min. The Envision system (DAKO K5007 (Agilent)) was used to visualize the immunostaining.
Individual spots were scored for staining intensity (0, 1, 2 or 3 referring to negative, weak, moderate
or strong staining) and for the fraction of tumor cells in the highest category. To be assorted to the
intensity categories 2 and 3, a minimum threshold of 30% tumor cells had to be reached.

2.7. Analysis of Patient Survival

R and the Bioconductor environment [21] were used for data processing, analysis and evaluation.
Survival analyses were performed according to the Kaplan–Meier method and the Log-rank test using
the R packages “survival” and “survminer” [25,26]. For correlation analysis, we used “reshape2” for
data processing and “corrplot” for data analysis and visualization [27,28].

3. Results

To characterize proteome differences, we conducted a mass spectrometric comparison of primary
HPV-positive and HPV-negative OPSCC. The experimental workflow is outlined in Figure 1A.
The final analyses contained eight HPV-positive and nine HPV-negative tumors. To avoid protein
expression differences governed by HPV-independent factors, such as degree of hypoxia, we had
chosen cohorts with similar tumor size (T-stage) for the analysis. In line with their typical clinical
appearance, all HPV-positive tumors were characterized by some degree of lymph node metastasis
but favorable patient survival (Table 1, Figure 1B). The HPV-positive and HPV-negative cohorts were
not found to be statistically different regarding age, smoking status, T-, N-, or UICC-status. Liquid
chromatography–tandem mass spectrometry (LC–MS/MS) analysis of trypsin-digested, formalin-fixed
tissue samples identified a total of 2051 proteins with at least one unique peptide.
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OPSCC were initially chosen for the analysis. Two extracts were excluded from the mass spectrometric
analysis because of insufficient amounts of protein. A single HPV-negative sample was further excluded
from the random forest analysis because its expression pattern severely impaired group separation.
For reasons of comparability, the sample was also excluded from protein identification based on
congruence with a comparable previous study (through p-value and fold change) although a control
analysis demonstrated only a marginal influence of the sample in this approach. (B) Recurrence-free
survival of the 17 patients whose tumors were included in the final analyses.

Table 1. Clinicopathological characteristics of OPSCC used in this study. Statistical analyses were
performed using a two-sided Mann–Whitney test (age) or Fisher’s exact test (all others) (R, version
3.6.1). ECS = extracapsular spread, ed. = edition.

Cohort p16-Positive p16-Negative

Number of patients 8 9

Age, median (range) (p = 0.6993) 64.9 (59–76) 66.8 (53–83)

Sex (p = 1)
Male 6 7

Female 2 2

pT classification (p = 0.8756)
T1 4 6
T2 2 2
T3 1 1
T4 1 0

pN classification (p = 0.1316)
N0 0 4
N1 3 1
N2 4 4
N3 1 0

TNM stage (7th ed.) (p = 0.2467)
I 0 2
II 0 2
III 3 1
IV 5 4

ECS (p = 1)
Pos 3 3
Neg 5 6

smoking (p = 0.2941)
Yes 5 8
No 3 1

The complete list of proteins including their respective intensity values in the individual tumors
is presented in Table S1. Two methods were used to detect differential expression between the two
groups. Primarily, we applied a random forest machine learning approach to identify specific proteins
that are able to distinguish between the two groups. Additionally, proteins were defined as unequally
expressed when the intensity values were significantly different between the two groups in a two-sided
t test (p < 0.05; non-adjusted), the group means were at least different by a factor of 2 and corresponding
observations had been made in a previous, comparable mass spectrometric study [29].

The random forest analysis identified a total of 24 proteins whose differential expression allowed
separation of the HPV-positive and HPV-negative group in at least 5 of the 100 runs performed. A total
of 15 proteins were concordantly identified through p-value and fold change in our and a similar
study by Sepiashvili et al. [29]. With seven of these not identified in the random forest analyses, we
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obtained a total of 31 differentially expressed proteins. Surprisingly, only four of these (SLC3A2,
LRPPRC, Cortactin, AKR1B10) were expressed at a higher level in HPV-negative tumors, while 27
were expressed at a higher level in HPV-positive (Table 2, Figure 2A, Figure S1).

Table 2. Proteins differentially expressed in HPV-positive and HPV-negative HNSCC. Proteins 1–24 were
identified as unequally expressed through the random forest analysis, proteins 25–31 were additionally
identified through significance (unadjusted) and fold change (difference ≥ 2 fold, corresponding to
Log2FC values ≥1 or ≤−1) congruently in this and a comparable previous study [29]. Bold numbers
indicate that the respective thresholds were met.

No Gene (Protein) Names Boruta
Score p-Value Log2FC

(HPV+/−)

p-Value
(Sepiashvili

et al.) [29]

Log2FC
(HPV+/−)

(Sepiashvili
et al.)

1 MCM2 200 0.000235 2.8231 0.000573 1.1887
2 NUP210 200 0.000261 1.3284 0.000764 1.5418
3 LMNB1 (Lamin B1) 200 0.000651 0.8628 0.002252 0.5517
4 TOP2B 200 0.004052 1.3653 0.007912 0.6057
5 CDKN2A (p16) 200 0.004598 1.3982 0.000002 3.3464
6 RHOA; RHOC; RHOB 200 0.012392 0.8633 0.6526 (RHOA) 0.0336 (RHOA)

7 STMN1; STMN2
(Stathmin; Stathmin-2) 196 0.001886 1.0479 0.0544 (STMN1);

0.0050 (STMN2)
0.3838 (STMN1)
1.1807 (STMN2)

8 ACTR3 (ARP3) 196 0.005275 0.4038 0.042775 0.3757

9 UBA52; RPS27A; UBB;
UBC 132 0.001915 0.4820 0.0601 (UBA52);

0.0765 (RPS27A)
0.3174 (UBA52);
0.3108 (RPS27A)

10 SKP1 72 0.001183 2.0275 0.015037 2.1586
11 HEBP2 46 0.056098 0.8142 0.186598 0.4573
12 HLA-DRB1; HLA-DRB5 40 0.002618 2.6530 0.006311 0.8931
13 CAPG 34 0.002681 0.8428 0.000616 0.7927
14 HIST1H4A 34 0.011118 0.5163 0.076559 0.2950

15

HIST2H2BE; HIST1H2BB;
HIST1H2BO; HIST1H2BJ;

HIST3H2BB (Histone
H2B, multiple types)

24 0.010950 0.7303

0.1806
(HIST1H2BB);

0.1988
(HIST1H2BJ);

0.1244
(HIST3H2BB)

0.2649
(HIST1H2BB);

0.2754
(HIST1H2BJ);

0.3035
(HIST3H2BB)

16 INPP1 20 0.041938 1.2062 n. d. n. d.
17 MCM5 18 0.002374 1.5963 0.005306 1.3743
18 LRPPRC 18 0.085066 −1.1076 0.060111 −0.5621
19 MCM6 16 0.007168 1.5859 0.000426 1.2566
20 CCT8 14 0.022356 0.4512 0.463460 0.1661
21 TMPO (LAP2) 12 0.005542 1.0096 0.016226 1.0534

22 RBBP4;RBBP7 10 0.003404 1.1455 0.0707 (RBBP4)
0.9507 (RBBP7)

−0.4031 (RBBP4)
−0.0165 (RBBP7)

23 SLC3A2 10 0.006046 −1.5631 0.317565 −0.4671
24 GSN (Gelsolin) 10 0.027809 0.6165 0.029810 0.3432

25 CTTN (Cortactin) 1 0.015119 −1.2674 0.000396 −1.2752
26 MCM3 0 0.014093 1.5990 0.000023 1.3652
27 NUMA1 0 0.016250 1.5247 0.000340 1.1813
28 MCM7 0 0.028008 1.2418 0.000820 1.0757
29 AKR1B10 0 0.035758 −2.6277 0.042775 −1.0294
30 ICAM1 0 0.037439 1.2982 0.000168 3.5303
31 PTPRC 0 0.042037 1.0681 0.012870 1.0362
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Figure 2. Proteins differentially expressed in HPV-positive and HPV-negative OPSCC. (A) Heat map
depicting the differentially expressed proteins. Only four proteins were found to be expressed at a
higher level in HPV-negative OPSCC. (B) Expression levels of proteins (almost) exclusively detected in
HPV-positive OPSCC as assessed by LC–MS/MS intensity values. Note that for (A) and in the statistical
analyses, random low-intensity values were assigned to proteins not detected in the LC–MS/MS
measurement to avoid false-positive significance.

A prerequisite for the inclusion of clinical samples in our study was positivity, respectively
negativity for immunohistochemical p16 staining in the HPV-positive or -negative cohort. In line with
this, p16 (product of the CDKN2A gene) was exclusively detected in HPV-positive tumors. It was
classified as differentially expressed by both definitions and among a group of six proteins identified
in every run of the random forest analysis. Very similar patterns of (almost) exclusive identification in
HPV-positive tumors were observed for four other proteins: Nuclear pore membrane glycoprotein 210
(NUP210), heme-binding protein 2 (HEBP2 or SOUL), inositol polyphosphate 1-phosphatase (INPP1)
and topoisomerase 2 beta (TOP2B) (Figure 2B). Due to their similar expression patterns to p16, these
proteins may have the potential to serve as additional surrogate markers for HPV-induced tumors,
enabling a more specific immunohistochemistry (IHC)-based discrimination in OPSCC and possibly
also in non-OPSCC, where sole p16 staining is clearly insufficient [30].

3.1. Pathways and Functions of Identified Proteins

More than half of the 27 proteins upregulated in HPV-positive OPSCC could be assigned to one of
three distinct functional groups: 1. DNA replication, 2. Nuclear architecture and 3. Regulation of the
cytoskeleton (Figure S2).

3.1.1. DNA Replication Factors (MCM2/3/5/6/7, RBBP4)

This group includes five of the six minichromosome maintenance homolog proteins (MCM),
which form the replicative helicase complex, a hexameric ring that separates the DNA double-strand
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preceding the replication fork. In fact, all detected MCM proteins showed higher expression levels in
HPV-positive tumors (Figure 3).Cancers 2020, 12, x 9 of 22 
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values. * not identified to be differentially expressed in our analyses.

The MCM complex is critical for replication initiation as well as replication fork progression [31].
A dissociation of the complex from the rest of the replication fork machinery is a hallmark of replication
stress and exposes stretches of single-stranded DNA, which is at constant risk of nuclease digestion
possibly contributing to genomic instability. The expression levels of the individual MCM subunits are
interconnected and the downregulation of single subunits negatively influences the expression levels
of others [32,33]. In line with this, our measurements demonstrate tight associations of the expression
levels of various MCM proteins in the individual tumor samples, indicating that MCM expression
follows an orchestrated pattern, also in the HPV+ tumors with enhanced expression (Figure S3).
Also expressed at a higher level are the retinoblastoma-binding proteins 4/7 (RBBP4/7 or RbAp48/46),
histone-binding proteins and part of the chromatin assembly factor complex 1 (CAF-1). CAF-1 is
directly attached to the replication fork and deposits histone A3/A4 dimers onto newly replicated
DNA, promoting rapid chromatin reassembly [34,35].

3.1.2. Nuclear Architecture (Lamin B1, LAP2, NUP210, Numa1)

Four proteins upregulated in HPV+ OPSCC represent structural components of the nucleus
and nuclear envelope. Nuclear mitotic apparatus protein 1 (Numa1) is one of the most abundant
structural components of the interphase nucleus and has been suggested to be a major constituent
of the proposed nuclear scaffold termed the nuclear matrix [36]. Nuclear Numa 1 serves diverse
functions, e.g., in chromatin organization [37,38] and DNA repair [39,40]. Interestingly, it has been
shown to directly interact with HPV oncoproteins [41,42]. Lamin B1 and lamina-associated polypeptide
2 (LAP2 or thymopoietin, TMPO) are components of the nuclear lamina and membrane, while NUP210
is a component of the nuclear pores, which enable traffic through the aforementioned structures.
The lamins A, C, B1 and B2 build the core of the nuclear lamina, which is linked to the inner nuclear
membrane and to chromatin through LEM-domain proteins, such as LAP2. The nuclear lamina and
associated proteins provide structural support for the nucleus and serve a wide range of functions,
including chromatin organization, regulation of replication, gene expression and DNA repair as well
as telomere maintenance and signaling (reviewed in detail in [43]). We observed a higher expression
of lamin B1 in HPV-positive OPSCC and a tight association between lamin B1 and B2, although the
latter was not identified in our analyses (Figure 4A). The expression of lamins A/C (both derived
from the LMNA gene through alternative splicing) was similar in both groups (Figure 4B). A subset
of HPV-positive OPSCC may, therefore, possess a different composition of the nuclear lamina with a
higher abundance of B-type lamins. LAP2 is expressed in different isoforms, partly interacting with
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lamin B1 and partly with the nucleoplasmic subfraction of lamins A/C. The expression of lamin B1 and
LAP2 was recently reported to be simultaneously regulated (together with pRB) by the ubiquitin ligase
RNF123 (RING finger protein 123) [44]. In line with this, we observe a significant association of their
expression levels and, interestingly, the expression of lamin B1 and Numa1 were also significantly
associated (Figure 4C).
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NUP210 is one of only two transmembrane proteins of the nuclear pore complex but is not
necessarily required for either assembly or function and is lacking in some cell types [45–47]. It was
found to be overexpressed in a number of tumors, such as ovarian cancer, often together with lamin
B1 and 2 [48]. It was reported to inhibit apoptosis in the context of muscle cell development and in
peripheral CD4+ T cells [49,50]. Whether NUP210 may also serve an anti-apoptotic function in cancer
cells is currently unknown.

3.1.3. Regulators of the Cytoskeleton (APR3, CAPG, Gelsolin, Stathmin, Numa1, CCT8, RhoA/B/C)

This group comprises seven actin and microtubule organizing proteins (Figure 5). The cytoskeleton
is composed of actin filaments, microtubules and intermediate filaments. It provides shape and stability,
is required for migration, intracellular transport of vesicles and organelles, nuclear and cell division and
influences cellular signaling [51]. Actin-related protein 3 (ARP3) is part of the ARP2/3 complex, which
promotes the formation of branched actin networks [52], gelsolin is a versatile actin-regulating protein
that can sever existing filaments, block their barbed ends against elongation but can also promote
filament assembly [53]. The related protein CapG (macrophage-capping protein) also blocks filament
ends but does not sever existing filaments [54]. Stathmin prevents the polymerization of tubulin and
promotes the depolymerization of microtubules, while Numa1 is the major microtubule tethering
factor at the mitotic spindle [36,55]. The Rho-GTPases are signaling transducers that critically regulate
various factors and pathways involved in both actin filament and microtubule formation [56], whereas
CCT8 (chaperonin containing T-complex polypeptide 1 subunit 8) as part of the TRiC chaperone
complex assists the folding of actin and tubulin [57]. The enhanced expression of these factors points
to enhanced cytoskeletal dynamics in HPV-positive tumors, which may be associated with enhanced
tumor cell migration and invasiveness.
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3.2. Immunohistochemistry (IHC)

Five proteins were selected for the validation of our findings by IHC staining of an HNSCC
tissue micro array (TMA) containing 205 OPSCC samples with known p16 status (Table S2). While
MCM2, 1amin B1 and NUP210 had shown a strongly enhanced expression in HPV-positive tumors
as described above, two multifunctional proteins with reduced expression in HPV-positive tumors
were further selected based on their clinical relevance and biological function. SLC3A2 (solute carrier
family 3 member 2) comprises the heavy chain of the heterodimeric amino acid transporter CD98.
Beyond or as a consequence of amino acid metabolism, SLC3A2/CD98 are involved in a wide range
of functions relevant for cancer development and survival, such as mTOR pathway activation and
autophagy [58], integrin signaling [59], immunity [60] and oxidative stress [58,61] and are negative
prognostic factors in various cancers [62,63]. In HNSCC, SLC3A2/CD98 were described to mark
tumor stem cell populations [64] and to confer a negative prognosis, which was completely restricted
to HPV-positive tumors in one report [65] but primarily described for HPV-negative tumors in
others [58,66–68]. In contrast to SLC3A2, there are no data regarding a possible prognostic role of
leucine-rich PPR motif-containing protein (LRPPRC) in HNSCC. The protein is mostly localized at the
mitochondria but also in the nucleus, at the nuclear membrane, ER and cytoskeleton and has been
associated with various functions. Amongst others, LRPPRC is implicated in mitochondrial RNA
metabolism acting as an RNA-chaparone for the mitochondrial transcriptome [69], is reported to be
a restriction factor for autophagy, mitophagy and apoptosis [70] and was recently described to be a
negative regulator of the mitochondrial antiviral signaling protein (MAVS) during viral infection [71].
Although the retinoic acid-inducible gene I protein (RIG1)/MAVS pathway normally responds to RNA
viruses, it has also been described to play a role in the innate defense against HPV, although the
molecular source of pathway stimulation is currently unknown [72]. An altered expression of LRPPRC
has been reported in various tumors, with high levels often being associated with worse prognosis [70].

With the exception of NUP210, suitable staining conditions could be established for all proteins
(Figure 6A). Creating a semiquantitative expression score by multiplying the highest staining intensity
observed (0 to 3) with the respective percentage of tumor cells stained, we could validate a significantly
higher expression of MCM2 and lamin B1 and lower expression of SLC3A2 in the p16-positive samples
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and further observed a non-significant trend towards reduced expression for LRPPRC (p = 0.0678,
one-sided t-test) (Figure 6B).Cancers 2020, 12, x 12 of 22 
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survival (RFS). Here, higher SLC3A2 staining intensity trended towards worse survival 
independently of p16-status, resulting in significance for the whole OPSCC population. Lamin B1 
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prognostic impact was observed for MCM2 or LRPPRC. 

Figure 6. Validation of differential expression through IHC-analyses in an OPSCC tissue microarray.
(A) Examples of staining intensities classified 0 (no), 1 (weak), 2 (moderate) and 3 (strong).
(B) Semiquantitative expression scores (“maximum intensity” * “respective % of cells stained”) confirm
significantly different expression of SLC3A2, MCM2 and lamin B1 dependent on p16-status (unpaired,
one-sided t-test). Note that the semiquantitative scoring may underestimate expression differences,
since factors of 1, 2 and 3 are cautious estimations when appraising the expression differences between
weakly, moderately and strongly stained tumors. Depicted are median ± interquartile range.

Regarding patient outcome, we observed significantly worse overall survival (OS) for the few
patients whose p16-positive tumors demonstrated the highest (3) SLC3A2 staining intensity (p = 0.036),
despite a considerable association of SLC3A2 expression with lower N-stage. No such difference
was observed in patients with p16-negative tumors (Figure 7A, Figure S4B). A low lamin B1 staining
intensity (0 and 1) conferred an excellent prognosis for patients with p16-negative tumors (p = 0.05),
but rather trended towards worse survival in those with p16-positive ones (p = 0.17) (Figure 7B).
Interestingly, these differences with regard to p16-status were not observed for recurrence-free survival
(RFS). Here, higher SLC3A2 staining intensity trended towards worse survival independently of
p16-status, resulting in significance for the whole OPSCC population. Lamin B1 staining intensity had
no impact on RFS in both entities (Figures S4 and S5). The underlying mechanisms for these differences
between OS and RFS require elucidation in future studies. No prognostic impact was observed for
MCM2 or LRPPRC.
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survival in dependence of SLC3A2 and p16 status. OPSCC were categorized as showing strong (3) vs.
all other (0,1,2) staining intensities. (B) Overall survival in dependence of lamin B1 and p16 status.
OPSCC were categorized as showing a low (0,1) vs. high (2,3) staining intensity.

4. Discussion

Our study represents the third mass spectrometric comparison of HPV-positive and –negative
OPSCC. Slebos et al. performed repeated measurements of pooled tissue samples from 10 HPV-positive
vs. 10 HPV-negative frozen tumors [73]. A disadvantage of the use of pooled extracts is that inter-tumor
heterogeneity is not assessed and outliers with high expression can have a large impact. To minimize
the rate of false positive results, we integrated the inter-tumor heterogeneity in protein expression levels
by performing individual measurements of each tumor specimen and by applying a random forest
machine learning approach to identify proteins that can separate the two groups. When independent
data sets are available, concordant results can be considered a strong indicator for real differences.
Therefore, we also classified those proteins as unequally expressed whose intensities were significantly
and, on average, at least two fold different in our and the comparable study by Sepiashvili et al., the
largest mass spectrometric analysis of HPV-positive and –negative OPSCC to date [29]. In total, this
yielded a number of 31 differentially expressed proteins. Of the 16 proteins identified solely through
the random forest analysis, 10 could be confirmed by the Sepiashvili dataset when applying relaxed
criteria (one sided unadjusted t-test with same direction of enhanced/reduced expression), while for
five proteins (SLC3A2, CCT8, HEBP2, RhoA, histone H2B isoforms), a differential expression could not
be confirmed and one protein (INPP1) had not been detected.

Within our dataset, two factors clearly speak in favor of the accuracy and robustness of our
measurements: i. the detection of p16 in seven of eight HPV-positive but in none of the HPV-negative
samples (Figure 2B) and ii. the tight association of the expression levels of proteins known to be
co-regulated, namely the MCM-subunits as well as lamin B1 and LAP2 (Figure 4, Figure S3). Finally,
we could confirm a significantly different expression of three out of four proteins tested by IHC analysis
of a large independent cohort on a tissue micro array (Figure 6).



Cancers 2020, 12, 1531 14 of 22

4.1. Implications for Tumor Biology

Regarding tumor cell biology, our results suggest differences between HPV-positive and
HPV-negative OPSCC, especially in three functional groups: replication, nuclear architecture and
cytoskeleton regulation. The expression of replication factors, especially the MCM-proteins, was
congruently found to be upregulated in HPV-positive OPSCC in all three proteome studies as well as
previous transcriptome analyses [29,73–76]. The non-tumorigenic normal life cycle of HPV necessitates
the transfer of differentiating cells into the replicative S-phase to enable the productive replication of
the viral genome [77]. The most important mechanism for this forced S-phase entry is the degradation
of pRB and subsequent liberation of the transcription factors of the E2F-family, which govern the
expression of many S-phase specific genes. For example, the expression of the MCM-proteins and
LAP2, are at least partly governed through E2F-induced transcription [78,79]. Interestingly, the protein
levels of LAP2 and lamin B1 are normally co-regulated together with pRB by the ubiquitin ligase
RNF123 [44] and RBBP4/7 and LAP2 are direct binding partners of pRB [80,81]. An enhanced RBBP4
expression has been previously described in an HPV-unrelated experimental tumor model based on
somatic inactivation of RB [82]. Therefore, the enhanced expression of these proteins in HPV-positive
HNSCC may well be a direct or indirect consequence of the E7-mediated lack of pRB in these tumors,
which confirms the findings from previous studies [29,73–76].

The most relevant clinical features of HPV-positive OPSCC are the enhanced sensitivity towards
treatment, especially radiotherapy [8,13], and early formation of lymph node metastases. The latter
requires a high migratory and invasive capacity, which may be reflected by the enhanced expression
of various cytoskeletal regulators. In fact, high expression of gelsolin, CapG, Stathmin, CCT8 and
Rho GTPases have all been described to promote tumor cell migration, invasion and formation of
metastases in various tumor entities [83–91]. For gelsolin, a direct interaction with HPV-E7 has been
demonstrated to exert anti-apoptotic and pro-survival effects [92] and to be critical for cell movement
and invasiveness in cervix carcinoma [93]. In contrast, the cytoskeletal regulator cortactin, which
recruits the ARP2/3 complex to existing actin filaments [94], was among the few proteins expressed at a
reduced level in HPV-positive OPSCC (see Figure S1). This may raise the possibility that the enhanced
ARP3 level may to some extent represent a compensatory mechanism.

Regarding the enhanced radiation sensitivity of HPV-positive OPSCC, we had previously shown
that HPV-positive HNSCC cells are characterized by a defect in the repair of radiation-induced DNA
double-strand breaks [17], which was confirmed in further reports [13,15]. Some of the differences
observed in our analysis may potentially have a profound impact on chromatin organization, which
may also affect DNA repair after irradiation. For example, the nuclear lamina and NUMA1 are
well described to participate in chromatin organization [37,38,43]. In this regard, we observed a
negative prognostic impact of high lamin B1 expression in HPV-negative but not HPV-positive
OPSCC in the TMA analyses (Figure 7). While this is an interesting finding, its understanding
clearly requires further investigations. RBBP4/7 are not only part of the chromatin assembly factor
complex (CAF-1), which reinstalls chromatin after replication and repair but represent the histone
binding component of various chromatin remodeling complexes: the nucleosome remodeling and
histone deacetylase (NuRD) complex, the core histone deacetylase (HDAC) complex, the nucleosome
remodeling factor (NURF) complex and the PRC2/EED-EZH2 complex, all of which regulate, mostly
repress, transcription and have been implicated in oncogenesis [95–97]. It is obvious that altered
expression of global chromatin organizing factors may have various potential implications, but to
clarify their role in the treatment sensitivity of OPSCC requires future functional studies. Potentially
influencing DNA repair and radiation sensitivity in a direct manner, Numa1 has been described
to promote homologous recombination repair [40] but to inhibit the non-homologous endjoining
promoting factor 53BP1 by restricting its diffusion in the nucleoplasm [39]. RBBP4 on the one hand and
SLC3A2 and cortactin on the other have been explicitly described as radiosensitivity or radioresistance
factors, respectively [58,65,66,98–100]. Intriguingly, SLC3A2 was shown to mediate radioresistance
and to be a negative prognostic factor in HPV-negative HNSCC cells and tumors in some recent
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reports [58,66,68], whereas our overall survival data rather support the finding of a generally reduced
expression and of a negative prognostic role more evident in HPV-positive OPSCC as reported by
Rietbergen et al. [65] (Figure 7). Whether and by which means SLC3A2 may actively contribute to the
inferior survival and whether it may also serve as a predictive marker, e.g., for the exclusion of patients
with HPV-positive tumors from de-intensified regimes, will need to be addressed in future studies.

Another interesting finding of our analysis is the enhanced expression of ubiquitin and of S-phase
kinase-associated protein 1 (SKP1), an essential component of the SCF (SKP1-CUL1-F-box protein) E3
ubiquitin ligase complex. Target specificity of the SCF complex is mediated by the specific member of
the F-box protein family loaded. Ubiquitination mediates degradation via the 26S-proteasome but
also the activity of a large number of proteins. Amongst other functions, SCF-complexes are critically
involved in the regulation of the DNA damage response and double-strand break repair by mediating
the degradation or triggering the activity of central factors, such as NBS1, Exo1, claspin, XRCC4 or
CDC25A [101–104]. Linking the 26S proteasome/ubiquitin system to radiation sensitivity, a decreased
expression of components of this pathway was congruently associated with a more radioresistant
phenotype in breast, laryngeal, lung, esophageal and rectal cancer and/or cancer cell lines [105–110],
which is in line with the observation of enhanced expression of ubiquitin and SKP1 in the radiosensitive
HPV-positive OPSCC population. Finally, recent data suggest critical roles of nuclear actin and the
actin regulating ARP2/3 complex in DNA repair, e.g., by mediating the movement of double-strand
breaks out of densely packed heterochromatic areas [111,112] but to date, no connections to the cellular
radiation sensitivity have been drawn.

4.2. Limitations of Our Study

Our exploratory mass spectrometric study has several limitations, such as a limited number of
tumors or the inclusion of tumor-associated stroma cells in the macrodissected tissue samples, which
will to some extent, dilute the tumor-cell-specific signals. In addition, the detected peptides were not
always sufficient to distinguish between isoforms or homologous proteins. For example, the three
Rho proteins RhoA, RhoB and RhoC, which share 85% sequence identity [113], were identified by two
peptides in our mass spectrometric analysis (Table S1). Since these peptides are identical in the three
Rho proteins, it cannot be inferred whether one, two, or all three Rho proteins were present in our
samples and whether there was any difference within the Rho protein composition. The use of whole
tissue extracts clearly favors the detection of proteins with high abundance or highest desolvation and
ionization efficiency. Despite these limitations, we were able to detect meaningful differences between
the two OPSCC entities. The tumorigenesis of HPV-positive cancers is to a large extent mediated by
the multifunctional viral oncoproteins E6 and E7. These tumors are, therefore, expected to represent a
relatively homogeneous group, as compared to carcinogen-induced tumors largely driven by randomly
occurring mutations, which may help to detect differences between both entities. A puzzling finding
of our study is the by far higher number of proteins with higher expression in HPV-positive tumors
(27 proteins) compared to those with a higher expression in HPV-negative (4 proteins). While for us
unexpected, this observation is highly concordant with the results from the Sepiashvili study [29].
A given higher homogeneity of HPV-positive tumors may again be a contributing factor as different
HPV-negative tumors may less uniformly overexpress the same proteins and those factors potentially
downregulated in HPV-positive tumors may not have been detected in enough samples. In general,
data from open, exploratory approaches like ours can provide novel insights but should be considered
as hypothesis generating and mostly require independent validation and more detailed and functional
follow-up analyses.

5. Conclusions

In summary, our mass spectrometric comparison of HPV-positive and negative OPSCC tumors
has identified protein level differences in replication, nuclear architecture and cytoskeletal regulation.
We further identified a number of potential HPV surrogate markers and confirmed, respectively
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identified the negative prognostic value of strong expression of SLC3A2 and lamin B1 in HPV-positive
and HPV-negative OPSCC, respectively. Finally, our data suggest several candidate proteins,
which, based on altered expression in HPV-positive tumors, may contribute to the enhanced
treatment sensitivity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1531/s1,
Figure S1: Proteins identified to be expressed at a higher level in HPV-negative OPSCC as assessed by LC-MS/MS
intensity values, Figure S2: Protein-protein interaction network. The network was created with the STRING
tool. Line colors indicate the type of interaction (grey = unspecified), arrowheads indicate a positive, negative
or unspecified effect. Replication factors: MCM2, MCM3, MCM5, MCM6, MCM7, RBBP4; Nuclear architecture:
Lamin B1, LAP2, NUP210, Numa1; Cytoskeleton regulators: APR3 (ACTR3), Gelsolin (GSN), CAPG, Stathmin
(STMN), RhoA, Cortactin (CTTN), Numa1, CCT8, Figure S3: Linear regression analyses demonstrate tight
associations of the expression levels of the depicted MCM proteins as assessed by LC-MS/MS intensity values,
Figure S4: Recurrence free survival in dependence of the SLC3A2 expression status and correlation with
clinicopathological characteristics, Figure S5: Patient survival in dependence of the lamin B1 expression status,
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