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Abstract: Cancer is the second leading cause of death worldwide. Today, the critical role of the
immune system in tumor control is undisputed. Checkpoint antibody immunotherapy augments
existing antitumor T cell activity with durable clinical responses in many tumor entities. Despite
the presence of tumor-associated antigens and neoantigens, many patients have an insufficient
repertoires of antitumor T cells. Autologous tumor vaccinations aim at alleviating this defect, but
clinical success is modest. Loading tumor material into autologous dendritic cells followed by their
laboratory expansion and therapeutic vaccination is promising, both conceptually and clinically.
However, this process is laborious, time-consuming, costly, and hence less likely to solve the global
cancer crisis. Therefore, it is proposed to re-focus on personalized anticancer vaccinations to enhance
the immunogenicity of autologous therapeutic tumor vaccines. Recent work re-established the idea
of using the alarming agents of the immune system, oxidative modifications, as an intrinsic adjuvant
to broaden the antitumor T cell receptor repertoire in cancer patients. The key novelty is the use of
gas plasma, a multi-reactive oxygen and nitrogen species-generating technology, for diversifying
oxidative protein modifications in a, so far, unparalleled manner. This significant innovation has been
successfully used in proof-of-concept studies and awaits broader recognition and implementation
to explore its chances and limitations of providing affordable personalized anticancer vaccines in
the future. Such multidisciplinary advance is timely, as the current COVID-19 crisis is inexorably
reflecting the utmost importance of innovative and effective vaccinations in modern times.

Keywords: antigen; cold physical plasma; gas plasma technology; immunogenicity; oxidative post-
translational modifications; oxPTM; reactive nitrogen species; reactive oxygen species

1. Introduction

Each year 14.1 million new cases of cancers are diagnosed that require therapeutic
attention. The classic pillars in oncology are surgery, radiotherapy, and chemotherapy.
These measures have markedly improved median survival in patients across all types of
cancer. However, significant progress has slowed down in the past decades for several rea-
sons, radioresistance and chemoresistance being among them [1,2]. Meanwhile, biologicals,
such as cytokines and antibodies targeting growth receptors, spurred therapy success [3–5].
A paradigm shift in oncology then came with the incorporation of antitumor immune
defense into the treatment concepts and repertoires of the field of oncology. Although being
predicted in the 1960s already [6,7], the concept needed several decades, and a leap in life
science technology innovations, along with mechanistic concepts in immunology and oncol-
ogy to harness its full potential. Today, antibodies targeting immunosuppressive checkpoint
receptors on T cells have provided substantial clinical responses [8]. Their success, along
with the Nobel Prize Award in Physiology and Medicine in 2018 for achievements in this
field, has given antitumor T cells undisputed importance across the globe for providing
tumor protection [9]. Tumor protection is carried out by generating antigen-specific T cells,
followed by strengthening one’s immune response through a specific anti-tumor immune
response. The personalized antigen vaccines have recently come to the fore [10] because
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they can be efficient and have few side effects. However, there are novel ways to optimize
therapeutic anti-tumor vaccines in various strategies, such as a modified tumor biopsy
vaccine [11], cryptic peptide [12], nano-particle loaded [13], or a PEG-modified antigen
vaccine. Here we propose a new technical approach to optimize the immunization by
mimicking a relevant biological process of the inflammatory microenvironment, namely
the generation of reactive species.

2. Tumor Immune Evasion and Vaccination

Cancers evolve under the constant pressure of the immune system; a process called
immune evasion [14]. Tumor variants with minimal activation of immune cells have a
growth advantage over clonotypes with highly immunogenic antigens. This classic view
was complemented over the last two decades with the opposite scenario. Highly immuno-
genic tumor cells do not attempt to hide from immune recognition but counteract immune
cell activation by activating immunosuppressive ligands and receptors, for example, PD-L1,
PD-L2, and CD80/86 [15]. Other mechanisms of an immunosuppressive microenvironment
complement this camouflage and sabotage. For instance, hypoxia [16], soluble mediators
such as kynurenine [17], and the promotion of suppressive immune cell subsets including
M2 macrophages and regulator T cells [18]. However, the clinical success of checkpoint
antibodies targeting receptors and ligands suggests the receptor-ligand-based immuno-
suppression of effector T cells as being a critical determinant of the therapeutic outcome.
Hence, it is clear that strengthening the activity of existing antitumor T cell clones is a
proven therapeutic concept in cancer immunotherapy.

A second complementary approach is broadening the T cell receptor repertoire by
augmenting the generation of novel antitumor T cell clones. Autologous tumor vaccines
provide a vast array of tumor-associated antigens (TAA) and neoantigens to the host.
Such antigens are present in all types of tumors, albeit to a varying degree [19]. Another
limitation is that not all of these tumor antigens are presentable on major histocompatibility
complex (MHC) molecules due to the preference of protein digestion and peptide cleavage
in the proteasome and immunoproteasome [20,21], as well as the affinity of the MHC
receptor family towards specific amino acids of the peptide to provide suitable binding
affinity [22,23]. However, the critical determinant of generating T cell activation or tolerance
towards such antigens is the inflammatory context in which these are presented, along with
the efficacy of antigen presentation. To address these issues, dendritic cells (DCs), being
professional antigen-presenting cells, have been investigated in numerous preclinical and
clinical studies for their ability to promote antitumor immunity after being loaded with
tumor antigens in vitro [24,25]. Undoubtedly, this elegant type of cell therapy fostered the
understanding of tumor immunology in oncology and benefited many patients enrolled
in clinical trials. Nevertheless, this concept also has limitations. First, there was limited
success in many clinical trials. Second, DC loading and expansion require state-of-the-art
facilities and are associated with high costs. Even if near-ideal protocols had been, or were
to be, developed, it is still questionable whether DC therapy would become a global gold
standard for cancer therapy apart from in countries with privileged income and health care
systems. Third, much focus has been put on DC activation and maturation. Simultaneously,
the conditioning of the tumor material has received less attention, as was recently well
demonstrated in a cohort of cancer patients [26], which at least gives rise to the idea of
rethinking the inevitable need of DCs in the realm of tumor vaccination.

Textbook immunology predicts that the body has an inherent interest in mounting
both B cell and T cell immune responses against (non-self) antigens if presented in a suffi-
ciently inflammatory context. Adjuvants provide the latter, being the basis of vaccinations,
a process currently receiving significant interest duringthe COVID-19 pandemic. Together,
with the points mentioned above, this raises the question of what is limiting the use of
autologous tumor material to be directly used as a vaccine without the need for external
processing by other cell types. It is understood that early and recent attempts of using a
native autologous tumor vaccination to provide therapeutic efficacy [27,28] failed. Notwith-
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standing, we here outline why reactive oxygen and nitrogen species might be a fascinating
option to render tumor antigens more suitable for direct vaccination campaigns in oncology
and possibly adjuvant to existing strategies [29–32], which are numerous and not covered
here. It should be stressed that, in the tumor context, this text always refers to therapeutic
vaccinations and not preventive/prophylactic vaccination.

3. Reactive Oxygen and Nitrogen Species

Reactive oxygen and nitrogen species (ROS/RNS) are molecules with great reactivity
and abbreviated with ROS in this work, as most RNS contain oxygen. Besides their past
underappreciation as mere metabolic byproducts, ROS are pivotal intracellular redox
signaling agents [33], critical for infection control [34], and increasingly recognized as key
elements of the inflammatory microenvironment. Immune cell activation and metabolic
reprogramming of leukocyte subsets have been linked to endogenous ROS production as
crucial to driving these processes [35–38]. Perhaps the best-known role of non-constitutive
ROS is their early appearance during inflammation by immune cells and non-immune
cells alike. ROS release is the very first event during tissue damage [39] and it is required
for the subsequent neutrophil influx. Subsequent neutrophil priming and activation auto-
amplifies ROS production, followed by another round of ROS amplification by incoming
monocytes and macrophages that complement the reactive species array with several
nitrogen species [40].

For instance, nitric oxide synthase (NOS) produces nitric oxide (NO), which reacts
with superoxide (O2

−), that is generated by NADPH (nicotinamide adenine dinucleotide
phosphate) oxidases (NOX), to yield peroxynitrite (-ONOO). The enzyme superoxide
dismutase (SOD) catalyzes the reaction of superoxide to hydrogen peroxide (H2O2). In
the presence of hydrogen peroxide, the arterial indoleamine 2,3-dioxygenase 1 (IDO-1)
formates singlet oxygen (1O2) for blood pressure regulation and vascular tone during
inflammation [41]. In the presence of iron, H2O2 promotes the generation of highly reactive
hydroxyl radicals (HO.) in the Fenton reaction [42]. Furthermore, myeloperoxidase (MPO)
is known to generate hypobromous acid, hypochlorous acid, and hypothiocyanite. The
hypochlorite radicals can participate in the formation of atomic oxygen (O) and HO [34].
This is the environment in which infection-related antigens are recognized, modified, and
transported to the secondary lymphatic organs to activate adaptive immunity.

Current vaccine preparation strategies almost unanimously neglect this ancient evo-
lutionary part of antigen modification. When taking a view into other research fields,
this comes as a surprise. For decades, researchers have identified a pivotal role of ROS
and oxidative post-translational modifications (oxPTMs) in autoimmunity [43]. Chronic
inflammation and chronic ROS release modified antigens, leading to auto-antibodies
and auto-reactive T cells that are observed in numerous diseases, including rheumatoid
arthritis, systemic lupus erythematosus, and diabetes [44–48], partly in a neoepitope-like
fashion [49,50]. Mechanistically, oxPTMs have been ascribed a function similar to damage-
associated molecular patterns (DAMPs) [51], providing pro-inflammatory stimuli in in
professional antigen-presenting cells (APCs), and are decisive for the balance between
antigen tolerance and immunity. Altogether, multiple ROS modify antigens, leading to a
DAMP-like character to activate innate immunity and potentially neoepitopes to broaden
adaptive immunity and the B cell and T cell receptor repertoire. ROS are, therefore, ideal
candidates to increase the immunogenicity of autologous tumor vaccines. However, the
challenges of working with ROS are numerous. First, their production, reaction kinetics,
and specificity are hard to control, apart from the short half-lives associated with most
species. Second, oxidative modifications are challenging to track and require sophisticated
infrastructure and bioinformatics for their analysis. Third, and most notably, a simulta-
neous generation of several highly reactive compounds is technically impossible unless
utilizing a concept from physics: gas plasma technology.
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4. Gas Plasma Technology as a Significant Innovation in Generating
Multi-ROS Cocktails

Gas plasma is an electron-impact and photon-driven technology. In gas plasma jets,
usually, a noble gas is excited by a high-frequency electrode [52]. Excited noble gas species
transfer their chemical energy to oxygen and nitrogen in the ambient air, generating vast
amounts of several reactive oxygen and nitrogen species simultaneously. Compared to hot
gas plasma, cold plasmas are operated at body temperatures and therefore do not denature
proteins or harm cells and tissue by thermal energy transfer. Therefore, the main product is
the bio-active multi-ROS cocktail [53–55]. Similar to the ROS released during inflammation,
plasmas generate short-lived species (O, •NO, •NO, O2•-, •OOH, -ONOO, 1O2, etc.) as
well as long-lived molecules that are mostly deterioration products from short-lived species
such as H2O2, NO2

−, NO3
−, and HOCl [56,57]. Hundreds of chemical reactions have been

identified in gas plasma jets using computer modeling, and redox biology currently does
not offer the tools to identify each of the reaction products unambiguously. The degree of
complexity is increased when considering the different spatio-temporal concentrations of
each of the species along the axis of a plasma jet. Nevertheless, gas plasmas are unique in
their ability to deliver multi-ROS cocktails onto biologically relevant targets. Strikingly,
the ROS cocktail can be modified by changing the gas composition fed into the plasma
jets (Figure 1). This leads to an enrichment of some types of ROS and a partial depletion
of others [58,59]. This way, unique oxidative modification patterns are being generated at
biological target molecules, as recently shown for the model peptide cysteine using mass
spectrometry [60]. Additionally, prototypic plasma jets often allow other parameters to
be tuned, for instance, the feed gas flux, the excitation frequency and wave form, and
the input power. Other studies confirmed the modification of antigens and proteins by
plasmas [61,62], leading to functional changes [63–65].

Figure 1. Scheme of using different feed gas settings to generate gas plasma with distinct ROS cocktail profiles. The upper
panel represents optical emission spectroscopy (intensity: relative units; wavelength: nanometer) measurements of the
visible plasma effluent leaving the jet device. The lower panel is a schematic of a biological target being exposed to the gas
plasma resulting in distinct oxidative modification patterns as depicted with the color code.

5. Proof-of-Concept Study Using Multi-ROS Cocktails to Provide Vaccine
Tumor Control

In a recent study, we used chicken ovalbumin (Ova) to study the immunogenicity
of multi-ROS cocktails in vitro and in vivo [66]. Using transgenic OT-II mice harboring
Ova-specific T cells, we found gas plasma modified Ova to elicit significantly enhanced
T cell activation compared to native antigen (Ova). This effect was specific, as it could
not be replicated using human albumin. Splenocytes of other mice strains also did not
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show any elevated T cell activation. Strikingly, the enhanced T cell activation seen with gas
plasma-treated Ova was not recapitulated when modifying Ova with equimolar amounts
of long-lived reaction products from the plasma in treated liquids (H2O2, NO2

−, NO3
−,

HOCl), unambiguously pointing towards a role of the unique cocktails generated by short-
lived species. One plasma condition had more substantial effects than another one, which—
in this specific setting—suggested a role of singlet and atomic oxygen or, possibly, lower
ozone levels in providing immunogenic oxidative modifications. Using mass spectrometry,
dozen of different modifications (e.g., oxidation, dioxidation, trioxidation, chlorination,
and quinones) were found at many of the over 400 amino acids. This exemplifies the high
degree of complexity, especially when considering the multi-ROS nature of the gas plasma
system, currently making it difficult to come to a specific conclusion on which modifications
have what effect. Some modifications were also in the sequence of the cognate peptide
region. Moreover, it is possible (and likely, in our hands) that our observations were not
based on one single type of modification or amino acid, but were rather a result of several
modifications, complicating the control and understanding of this tool, as of now. We
also found that oxidatively modified full Ova protein was needed, as the treatment of the
oxidated immunogenic peptide alone (27 amino acids) did not elevate T cell responses.
All this notwithstanding, the in vivo findings clearly showed functional consequences
of the multi-ROS exposure to the antigen. In naïve mice, an increased anti-Ova T cell
activity was created when using oxidized over native Ova, which was also reflected in a
more inflammatory cytokine release profile. Notably, the gas plasma-derived multi-ROS
Ova antigen oxidative modification led to significantly decreased tumor growth of Ova-
expressing melanoma cells when given as a vaccine in a prime-boost scheme, compared
to native untreated Ova. This was accompanied by the higher numbers and activation
profiles of intratumoral T cells. These results emphasize the power of the multi-ROS
antigen modification concept.

6. Concept and Challenges of Multi-ROS-Modified Autologous Tumor Vaccines

We propose gas plasma technology to upgrade antitumor vaccines by increasing
adjuvanticity and antigenicity: the former due to the DAMP character of antigen oxPTMs
promoting DC activation, as in the concept of immunogenic cell death (ICD) [67,68]. In-
deed, gas plasma technology was shown to induce ICD [69], change proteomics suggesting
neoepitope presentation [70], and increase the activity of antigen-presenting cells [71].
The increased immunogenicity of oxPTM and the potential formation of neoantigens was
observed in autoimmunity [47,48]. However, the development of autoimmune disorders
is not always based on oxidized antigens. Instead, some antigens are native [72], citrul-
linated [73,74] or deaminated [75]. Interestingly, Hultqvist and colleagues have shown
that elevating the low oxidative burst capacity led to suppressing an autoimmune re-
sponse [76,77]. With gas plasma technology, we mimic the ROS production of an oxidative
burst to modify tumor-associated antigens.

We propose to homogenize collected autologous tumor tissue, followed by gas plasma
exposure of the tumor lysates in a defined and pre-optimized setting (Figure 2).

The lysates may be stored frozen in several aliquots until used in multiple vaccination
rounds. Next, the multi-ROS oxidized homogenates can be thawed and combined with a
pre-optimized adjuvant; a process that could be performed in a quality-controlled envi-
ronment, such as pharmacies. In a series of elegant studies, the team of Lana Kandalaft
employed HOCl-oxidized whole tumor lysates fed to autologous DCs, followed by the
therapeutic vaccination of the latter, in a cohort of ovarian cancer patients [26]. Hundreds of
vaccines generated in this way were well-tolerated without serious side effects. This study,
which has been preceded by a decade of research [78–86], is the clinical proof-of-concept
that oxidation of autologous tumor antigen potentiates antitumor immunity. Since, in
our setting, optimized gas plasma exposure was even enhanced compared to the effect of
HOCl, an additional benefit of multi-ROS modification might be feasible. So far, there have
been three studies using gas plasma-inactivated tumor cells as a preventive/prophylactic
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vaccine that significantly decreased the tumor growth of live tumor cells given 7–9 days
after vaccination [87–89]. Elevated tumor-infiltrated T cells with memory phenotypes were
shown in plasma-treated tumors, and in patients, the infiltrated immune cells correlated
with a better outcome [90,91]. As mechanisms of action, ICD was also recently proposed to
improve DC antitumor vaccinations [92,93]. Further motivating our approach, there have
been promising results with oxidized mannan-MUC1 (Mucin 1, cell surface associated;
CD227) vaccination, as concluded from a 15-year follow-up study showing significantly
fewer recurrences [94].

Figure 2. Simplified scheme of gas plasma technology-mediated multi-ROS-driven improvement of
autologous tumor vaccines. After tumor biopsy and homogenization of the tumor material, oxidation
with complex multi-ROS cocktails generated by medical gas plasma jet technology follows prior
to vaccination.

It is understood that there are many degrees of freedom in this concept. The ideal
ROS cocktail needs to be identified. The gas plasma technology exposure needs to be
implemented in a quality-managed environment. Either the necessity of DCs or the ideal
adjuvant needs to be established, along with questions on optimized absolute dosing,
injection frequency, administration routes, and potential deterioration of the ROS-treated
vaccine. There might also be interdependence between these parameters. For instance, it
was recently reported that a sequential intravenous priming vaccination followed by a later
intradermal boost vaccination showed the best effects in providing antitumor immunity in
mice, while simultaneous administration significantly worsened the outcome [95]. Apart
from these practical aspects, the scientific challenges lie in the mapping of the type and
number of the oxidative antigen modifications, the identification of optimal ROS cocktails
for maximizing immunogenicity, the elucidation of putative APC receptors needed to
recognize oxidized antigen, and the clarification of the role of the proteasomal and antigen-
presenting machinery activity to stimulate cognate antigen recognition optimally in the
host. The T cell activation and differentiation are dependent on the binding affinity between
epitope and MHC-molecules and between MHC-complex and T cell receptors [96,97]. Con-
sequently, the presentation of oxidatively modified antigens can alter binding affinities [74],
possibly resulting in an increase or even decrease in T cell activation. After all, even a
presumably perfect antitumor vaccine cannot circumvent tumor microenvironments that
are hostile or suppressive to T cells. Therefore, vaccination should be embedded in a
treatment strategy that also addresses these challenges. Finally, augmenting antitumor
immunity, especially when using whole tumor lysates containing mostly self-antigens, is
always at the verge of promoting autoimmunity. However, at least in the trials performed
by Kandalaft and colleagues, such adverse events were not observed [81].

7. Conclusions

Therapeutic autologous antitumor vaccination is an elegant way of providing person-
alized therapy in oncology. However, its efficacy and practicability are limited by different
constraints, and new enhanced vaccine technologies are required. Due to the current
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lack of validated biomarkers and neoantigens, upgrading a biopsy of the tumor is an
intelligent, time-saving, and cost-effective way to enable personalized therapy. Oxidizing
and modifying autologous tumor material with multiple reactive oxygen and nitrogen
species simultaneously seems a promising avenue to increase both antigenicity (enhanced
T cell receptor repertoire) and immunogenicity (increased co-stimulation and activation of
adaptive antitumor immunity). Medical gas plasma jet technology is a recent innovation
capable of providing multi-ROS cocktails in a unique and equivocal manner. Here, it
is proposed to consider implementing this novel tool and to advocate its potential and
limitations in providing efficient, fast, and affordable autologous antitumor vaccination,
not just to those in privileged health care systems.
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