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Abstract: The cellular functions are executed by biological macromolecular complexes in nonequi-
librium dynamic processes, which exhibit a vast diversity of conformational states. Solving the
conformational continuum of important biomolecular complexes at the atomic level is essential to
understanding their functional mechanisms and guiding structure-based drug discovery. Here, we
introduce a deep manifold learning framework, named AlphaCryo4D, which enables atomic-level
cryogenic electron microscopy (cryo-EM) reconstructions that approximately visualize the confor-
mational space of biomolecular complexes of interest. AlphaCryo4D integrates 3D deep residual
learning with manifold embedding of pseudo-energy landscapes, which simultaneously improves 3D
classification accuracy and reconstruction resolution via an energy-based particle-voting algorithm. In
blind assessments using simulated heterogeneous datasets, AlphaCryo4D achieved 3D classification
accuracy three times those of alternative methods and reconstructed continuous conformational
changes of a 130-kDa protein at sub-3 Å resolution. By applying this approach to analyze several
experimental datasets of the proteasome, ribosome and spliceosome, we demonstrate its potential
generality in exploring hidden conformational space or transient states of macromolecular complexes
that remain hitherto invisible. Integration of this approach with time-resolved cryo-EM further allows
visualization of conformational continuum in a nonequilibrium regime at the atomic level, thus
potentially enabling therapeutic discovery against highly dynamic biomolecular targets.

Keywords: AlphaCryo4D; cryogenic electron microscopy; biomolecular complex; structural dynam-
ics; conformational space; energy landscape; deep learning; manifold learning; particle voting

1. Introduction

Essential cellular functions are executed and regulated by macromolecular complexes
comprising many subunits, such as the ribosome, proteasome, replisome, and spliceo-
some. Their structures in functional cycles are often compositionally heterogeneous and
conformationally dynamic, involving many reversibly associated components in cells.
Visualizing the conformational continuum of highly dynamic megadalton complexes at
high resolution is crucial for understanding their functional mechanisms and for guiding
structure-based therapeutic development. The current approaches in cryogenic electron
microscopy (cryo-EM) structure determination allow atomic-level visualization of major
conformational states of these dynamic complexes [1–12]. However, high-resolution struc-
ture determination of transient, nonequilibrium intermediates connecting their major states
during their functional cycles has been prohibitory at large. To date, there has been a lack
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of appropriate approaches to visualizing the conformational space of large biomolecular
complexes at high resolution.

The problem of structural heterogeneity in cryo-EM structure determination has been
investigated with numerous computational approaches including maximum-likelihood-
based classification and multivariate statistical analysis [5,6,11,13–18]. As an extension of
multivariate statistical analysis, several machine-learning approaches were recently pro-
posed to estimate a continuous conformational distribution in the latent space [11,12,19–22].
The estimation of continuous conformational distributions does not guarantee an improve-
ment of 3D classification accuracy nor warrant the identification of hidden conformational
states of biological importance. These methods often trade off the reconstruction resolution
for gaining an overall representation of the conformational landscape in the latent space.
The insufficient resolution would preclude their potential applications in structure-based
drug discovery.

The most widely used method so far to counteract structural heterogeneity in cryo-EM
for resolution improvement is the hierarchical maximum-likelihood-based 3D classification
due to its ease of application [1,23,24]. To improve the resolution of major conformers,
low-quality classes are often manually removed during iterations of curated hierarchical
classification, inevitably causing an incomplete representation of the true conformational
landscape [25,26]. The outcome of refined cryo-EM maps depends on user expertise
in decision-making in class selection [27], which can be biased by user experience and
subjectivity. Importantly, a considerable portion of misclassified images can limit the
achievable resolution of observed conformational states and result in missing states that
could be biologically important.

In addition to the approaches characterizing global structural heterogeneity, other
methods were proposed to analyze local structural dynamics or to improve the local
resolution of flexible regions in cryo-EM reconstructions. These include the multi-body or
focused refinement [4,28,29], normal mode analysis [30,31], flexible refinement [32,33], non-
uniform refinement [34] and integrating traditional molecular dynamics (MD) simulations
with or without use of deep learning [35,36]. Nonetheless, these methods were not designed
to recover a complete picture of structural dynamics hidden in cryo-EM datasets.

The energy landscape is a statistical physical representation of the conformational
space of a macromolecular complex and is the basis of the transition-state theory of chemi-
cal reaction dynamics [37,38]. The minimum-energy path (MEP) on the energy landscape
theoretically represents the most probable trajectory of conformational transitions and can
inform the activation energy for chemical reactions [38,39]. Previous studies have demon-
strated the benefit of pseudo-energy landscape estimation in characterizing conformational
variation of macromolecules from cryo-EM data [40–46]. In these studies, single-particle
images classified into the same conformation were assumed to have approximately similar
free energy. Thus, the relative energy differences between distinct conformations could be
computed by the ratio of particle numbers classified into different conformers using the
Boltzmann relation, provided that the molecular system can be approximately described
as a canonical ensemble. Because of inaccuracy in 3D classification, a potential violation
of canonical ensemble approximation and possible compositional heterogeneity, such a
procedure may be at best considered to yield a pseudo-energy landscape.

The combination of linear dimensionality reduction via 3D principal component
analysis (PCA) and pseudo-energy landscape estimation has been demonstrated to be
capable of capturing the overall conformational landscape [41–43]. The benefit of using
nonlinear dimensionality reduction and manifold embedding, such as diffusion map [47],
to replace PCA for estimating pseudo-energy landscapes has also been investigated at a
limited resolution, with the assumption that the conformational changes can be discerned
through a narrow angular aperture [40,44,45]. This assumption restricts its potential
applications to more complicated conformational dynamics.

Breaking the resolution barrier in visualizing the conformational space of highly dy-
namic complexes represents a formidable technical challenge. Achieving this goal may
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further leverage cryo-EM applications in both basic biomedical science and drug discovery,
where high-resolution features of highly dynamic components may provide crucial mecha-
nistic insights and guide more accurate structure-based ligand design. This would require
a substantial improvement in 3D classification techniques that are optimized for achieving
higher resolution. We hypothesize that a high-quality estimation of the pseudo-energy
landscape could be potentially used to improve the 3D classification of highly heteroge-
neous cryo-EM datasets. If different conformers or continuous conformational changes
can be sufficiently mapped and differentiated on a pseudo-energy landscape, the energetic
visualization of the conformational continuum could then be used to discover previously
‘invisible’ conformers and achieve higher resolution for lowly populated, transient, or
nonequilibrium states.

To explore these ideas in this study, we developed a novel machine learning framework
named AlphaCryo4D that can break the existing limitations and enable 4D cryo-EM recon-
struction of highly dynamic, lowly populated intermediates or transient states at the atomic
level. We examined the general applicability of AlphaCryo4D in analyzing several large
synthetic datasets over a wide range of signal-to-noise ratios (SNRs) and four experimental
cryo-EM datasets of diverse sample behaviors in complex dynamics, including the human
26S proteasome [25], malaria parasite 80S ribosome [48], pre-catalytic spliceosome [49] and
bacterial ribosomal assembly intermediates [50]. Our approach pushes the envelope of
visualizing the conformational space of macromolecular complexes beyond the previously
achieved scope toward the atomic level.

2. Results
2.1. Design of Deep Manifold Learning

The conceptual framework of AlphaCryo4D integrates unsupervised deep learning
with manifold embedding to learn a pseudo-energy landscape, which directs cryo-EM
reconstructions of the conformational continuum or transient states via an energy-based
particle-voting algorithm. AlphaCryo4D consists of four major steps (Figure 1A). First,
hundreds to thousands of 3D volumes are resampled with M-fold particle shuffling and
Bayesian clustering using a maximum-likelihood-based 3D (ML3D) classification algorithm
implemented in RELION [3,7]. To this end, all curated particles are aligned in a common
frame of reference through a consensus 3D refinement. They are then randomly divided
into M + 1 groups of equal data sizes. In the step of ‘M-fold particle shuffling’, one group
of particles is excluded to form a shuffled dataset. This procedure is repeated M + 1
times, each time with a different particle group being excluded, resulting in M + 1 shuffled
datasets (Figure 1B). Each shuffled dataset is subject to 3D volume resampling separately
and is clustered into tens to hundreds of 3D reconstructions through Bayesian clustering in
RELION [3,7]. In total, hundreds to thousands of volumes from all shuffled datasets are
expected to be resampled through these steps.

Next, all resampled volumes are learned by a 3D autoencoder made of a deep residual
convolutional neural network in an unsupervised fashion (Figure 1C) [51,52]. The 3D deep
residual autoencoder is composed of six and five residual learning blocks in the encoder
and decoder, respectively. Each residual learning block is derived from the ResNet archi-
tecture and consists of two convolutional neural network layers with shortcut connection
skipping two adjacent layers, which has been shown to mitigate the degradation problem
that learning accuracy becomes saturated and then quickly degrades with increasing the
network depth [51,52]. A 3D feature map is extracted for each volume by the deep residual
autoencoder and is concatenated with the volume data for nonlinear dimensionality reduc-
tion by manifold embedding with the t-distributed stochastic neighbor embedding (t-SNE)
algorithm (Figures 1D and 2A,B) [53].
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Figure 1. Algorithmic framework of AlphaCryo4D for 4D cryo-EM reconstruction. (A) Schematic 
showing the major conceptual steps of single-particle cryo-EM data processing in AlphaCryo4D. (B) 
Schematic showing the method of M-fold particle shuffling for resampling of 3D volumes. In step 

Figure 1. Algorithmic framework of AlphaCryo4D for 4D cryo-EM reconstruction. (A) Schematic
showing the major conceptual steps of single-particle cryo-EM data processing in AlphaCryo4D. (B)
Schematic showing the method of M-fold particle shuffling for resampling of 3D volumes. In step
1, all particles are split randomly into M + 1 groups equally. Then step 2 carries out the Bayesian
clustering for reconstructions of 3D density maps within each of the M + 1 particle sets that are
shuffled via the ‘removing-one-group’ approach. After these two steps, thousands of 3D volumes
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are generated for the subsequent 3D deep learning, with each particle contributing to M volumes. (C)
Schematic of unsupervised deep residual learning of 3D feature maps by a six-block autoencoder
conjugated to a five-block decoder. (D) Schematic showing the algorithmic concept of energy-based
particle voting for 3D classification of improved accuracy. The left panel shows the pseudo-energy
landscape obtained by deep manifold learning. After clustering along the minimum energy path, all
M locations of each particle on the pseudo-energy landscape can be tracked to cast M votes. A vote
of the particle is only counted for the cluster when it is mapped within the voting boundary of the
cluster, as indicated by the circles marked on the pseudo-energy landscape. Eventually, this particle is
classified in the 3D cluster with at least M/2 votes for this particle. (E) Alternative distance-based 3D
classification method. This serves as a control in the analysis of the algorithmic performance. Instead
of particle voting, each particle is directly classified to the cluster with the nearest clustering center
among the M volume data points in the distance-based 3D classification strategy.
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SNR of 0.01 by the 3D autoencoder. Each data point corresponds to a 3D volume. The color labels 
the conformer identity of ground truth for the purpose of verification. (B) Pseudo-energy landscape 
computed from the manifold embedding shown in (A). (C) Minimum energy path (orange line) 
calculated by the string method is used to find the approximate cluster centers of 20 conformers. 
The cluster boundaries for energy-based particle voting are shown as dashed circles. (D) The 20 
reconstructions resulting from AlphaCryo4D using a simulated dataset with SNR of 0.01 are super-
imposed together, shown in surface representation, and aligned against its LRR domain. (E–H) Plots 
of 3D classification precisions of the 20 NLRP3 conformers from blind assessments on the simulated 
NLRP3 dataset with SNR of 0.01, using AlphaCyo4D (E), 3DVA in cryoSPARC (F) [11], cryoDRGN 
(G) [12], and ML3D in RELION (H) [3]. All 3D conformers in panel (E) were reconstructed to 2.6–
2.9 Å resolution (Supplementary Figure S2D). Asterisks mark the missing conformers that were 
completely lost due to misclassification. Black arrows highlight Conformer 6. (I–L) Typical side-by-
side comparison of density map quality and local resolution of the same conformer (ID 6) recon-
structed by AlphaCryo4D (I), 3DVA (J), cryoDRGN (K) and ML3D (L). The maps are colored by 
their local resolutions calculated by Bsoft blocres program. (M–P) Closeup side-by-side comparison 
of the same two secondary structures, including a loop (upper row) and a helix (lower row), in the 
NACHT domain illustrates considerable improvements in local density quality and resolution by 
AlphaCryo4D (M) as opposed to 3DVA (N), cryoDRGN (O) and ML3D (P). The locations of the loop 
and helix in the NLRP3 structure are marked by dashed boxes in panel (L). The same ground-truth 
atomic model of Conformer 6 shown in stick representations is superimposed with the density maps 
shown in blue mesh representations, all from the same perspective. The atomic model was not fur-
ther refined against each map for visual validation of the map accuracy. 

  

Figure 2. Performance evaluation of AlphaCryo4D for reconstruction of the conformational con-
tinuum at the atomic level. (A) Manifold learning of 3D volumes of the simulated NLRP3 dataset
with SNR of 0.01 by the 3D autoencoder. Each data point corresponds to a 3D volume. The color
labels the conformer identity of ground truth for the purpose of verification. (B) Pseudo-energy
landscape computed from the manifold embedding shown in (A). (C) Minimum energy path (orange
line) calculated by the string method is used to find the approximate cluster centers of 20 conformers.
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The cluster boundaries for energy-based particle voting are shown as dashed circles. (D) The
20 reconstructions resulting from AlphaCryo4D using a simulated dataset with SNR of 0.01 are
superimposed together, shown in surface representation, and aligned against its LRR domain. (E–H)
Plots of 3D classification precisions of the 20 NLRP3 conformers from blind assessments on the
simulated NLRP3 dataset with SNR of 0.01, using AlphaCyo4D (E), 3DVA in cryoSPARC (F) [11],
cryoDRGN (G) [12], and ML3D in RELION (H) [3]. All 3D conformers in panel (E) were reconstructed
to 2.6–2.9 Å resolution (Supplementary Figure S2D). Asterisks mark the missing conformers that
were completely lost due to misclassification. Black arrows highlight Conformer 6. (I–L) Typical
side-by-side comparison of density map quality and local resolution of the same conformer (ID 6)
reconstructed by AlphaCryo4D (I), 3DVA (J), cryoDRGN (K) and ML3D (L). The maps are colored by
their local resolutions calculated by Bsoft blocres program. (M–P) Closeup side-by-side comparison
of the same two secondary structures, including a loop (upper row) and a helix (lower row), in the
NACHT domain illustrates considerable improvements in local density quality and resolution by
AlphaCryo4D (M) as opposed to 3DVA (N), cryoDRGN (O) and ML3D (P). The locations of the loop
and helix in the NLRP3 structure are marked by dashed boxes in panel (L). The same ground-truth
atomic model of Conformer 6 shown in stick representations is superimposed with the density maps
shown in blue mesh representations, all from the same perspective. The atomic model was not further
refined against each map for visual validation of the map accuracy.

Third, the relative free-energy difference between 3D volumes is estimated using
the particle number of each volume via the Boltzmann relation [40]. A pseudo-energy
landscape is visualized by mapping the values of energy difference on the learned mani-
fold [40–46]. Note, that only the relative difference of free energy can be estimated, and the
estimated pseudo-energy values do not represent the total energy of the system, which is
not measurable by the Boltzmann relation. Then, a string method can be optionally used to
search the MEP on the pseudo-energy landscape [54,55]. The local energy minima or transi-
tion states connecting adjacent minimum-energy states can be defined as the centers of 3D
clustering, with a circular range defined as the cluster boundary for subsequent particle
voting (Figures 1D and 2C); 3D volumes within a cluster boundary on the pseudo-energy
landscape form a 3D cluster.

Last, because each particle is used M times during volume resampling, it is mapped
to M locations on the pseudo-energy landscape. The mapping of each copy of the particle
is called a ‘vote’. By counting the number of votes of the same particle cast within the
same cluster boundary on the pseudo-energy landscape, the reproducibility of the machine
learning procedure can be evaluated at the single-particle level. Each particle is classified
into the 3D cluster that receives more than M/2 votes of this particle within its voting
boundary (Figures 1D and 2C,D). If none of the 3D clusters on the pseudo-energy landscape
receives more than M/2 votes of a given particle, the corresponding particle is voted out
and excluded for further 3D reconstruction. The resulting 3D classes are expected to be
conformationally homogeneous enough for high-resolution cryo-EM refinement.

Since many protein complexes exhibit profound conformational changes in different
local regions, we also implemented a focused classification strategy of AlphaCryo4D that
applies a local 3D mask [6] throughout the entire procedure, which is executed as an
iterative step after initial 3D classification by AlphaCryo4D in the absence of any 3D mask
(Figure 1A).

2.2. Solving Conformational Continuum at Atomic Level

To assess the numerical performance of AlphaCryo4D, we generated three large syn-
thetic heterogeneous cryo-EM datasets with signal-to-noise ratios (SNRs) of 0.05, 0.01 and
0.005. Each dataset includes 2 million randomly oriented single particles computationally
simulated from 20 hypothetical conformer models of the ~130-kDa NLRP3 inflammasome
protein (PDB ID: 6NPY) [56]. These conformers imitate the conformational continuum of
the NACHT domain rotating around the LRR domain over an angular range of 90◦ during
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inflammasome activation (Figure 2D) [56]. The particles for each conformer are uniformly
distributed in each dataset.

We conducted blind assessments on 3D classification and heterogeneous reconstruc-
tions of the simulated NLRP3 datasets by AlphaCryo4D, without providing any informa-
tion on particle orientations, translations, and conformational identities (Figure 2A–D and
Supplementary Figure S1). The 3D classification precision of a retrieved conformer was com-
puted as the ratio of the particle number of a correct class assignment (based on the ground
truth) versus the total particle number in the class. The results were then compared with sev-
eral alternative methods, including conventional maximum-likelihood-based 3D (ML3D)
classification in RELION [3,4,6], 3D variability analysis (3DVA) in cryoSPARC [2,11], and
deep generative model-based cryoDRGN [12]. In all blind tests by presetting the class
number to 20, AlphaCryo4D retrieved all 20 conformers and markedly outperformed
the alternative methods, with an average of 3D classification precision at 0.83, 0.82 and
0.65 for datasets with SNRs of 0.05, 0.01 and 0.005, respectively (Figures 2E and 3). By
contrast, all alternative methods missed two to seven conformers entirely and exhibited 3D
classification precisions in the range of 0.2–0.5 in general (Figure 2F–H and Figure 3A and
Supplementary Figures S2 and S3).
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Figure 3. Performance comparison of AlphaCryo4D with alternative 3D classification methods using
the simulated heterogeneous NLRP3 datasets of different SNRs. (A) 3D classification precision of
the simulated datasets by AlphaCryo4D (first column), AlphaCryo4D preprocessed by 5 Å low-pass
filtering instead of standardization (second column), 3DVA with two and three principal compo-
nents (PCs) in cryoSPARC (third and fourth columns), cryoDRGN (fifth column), heterogeneous
reconstruction in cryoSPARC (sixth column) and maximum-likelihood 3D classification in RELION
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(seventh column for directly classifying into 20 classes and eighth column for hierarchically classi-
fying into four classes, each further sub-classified into five classes). (B) 3D classification recall of
AlphaCryo4D in comparison to other methods. The recall of each state was calculated as the ratio
of true positive particles in all ground truth particles. In all methods, the class number was set to
20. The results of SNRs of 0.05 (the first row), 0.01 (the second row) and 0.005 (the third row) are
shown on three rows for side-by-side comparison. On the top of each panel, the symbols of µ and σ2

denote the mean and variance of precision, respectively, with the values of missing classes treated as
zeros. In the maximum-likelihood classification of RELION, both direct and hierarchical strategies
are compared in the study.

By increasing the preset class number to 25 or 30 which is more than the number of
ground-truth conformers, all tested methods appear to be improved in the precision of
3D classification marginally but also reduced in the recall of classification (defined as the
percentage of correctly assigned particles versus the number of ground-truth particles for a
conformer) (Supplementary Figure S4). In these cases, AlphaCryo4D still outperformed all
alternative methods considerably, with the highest average classification precision reaching
0.91 at the SNR of 0.05.

The 3D classification precision appears to be strongly correlated with the map quality
and resolution homogeneity across the density map (Figure 2E–P and Supplementary
Figure S1H). All density maps from AlphaCryo4D consistently show homogeneous local
resolutions (at 2.6–2.9 Å for SNR of 0.01) between the NACHT and LRR domains (Fig-
ure 2I,M and Supplementary Figures S1H, S2D,J and S3A). By contrast, all density maps by
the alternative methods show lower average resolutions and notably heterogeneous local
resolutions, with the NACHT domain exhibiting substantially lower resolution than that of
the LRR domain, causing blurred features, broken loops and invisible sidechains in NACHT
(Figure 2J–L,N–P and Supplementary Figures S2E–G and S3B–D). Thus, the significantly
improved 3D classification accuracy by AlphaCryo4D enables 4D reconstruction of the
conformational continuum at the atomic level.

Having tested AlphaCryo4D on the simulated datasets with evenly distributed con-
formers, we further generated a simulated dataset of 0.01 SNR with a non-uniform distri-
bution of the 20 conformers that follows a triangular wave function and presents a more
challenging scenario (Figure 4A). The application of AlphaCryo4D on this dataset exhibited
only a slight reduction in 3D classification accuracy compared to the results on the datasets
of evenly distributed conformers (Figure 4B–D). Increasing the preset class number to 25
or 30 appears to help improve the 3D classification accuracy and bring it back to a level
comparable to those obtained on the datasets of evenly distributed conformers (Figure 4E,F).
Moreover, the particle distribution computed by AlphaCryo4D appears to approximately
recapitulate the triangular wave function (Figure 4D–F), suggesting that AlphaCryo4D is
potentially capable of reconstituting the overall statistical distribution of the underlying
conformational continuum.
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Figure 4. Performance evaluation of 3D classification by AlphaCryo4D on the synthetic dataset
with non-uniform distribution of conformational continuum. (A) The non-uniform distribution
of 20 conformers of another simulated NLRP3 dataset at an SNR of 0.01 was used to examine the
performance of AlphaCryo4D. This dataset was utilized to calculate the pseudo-energy landscape
shown in panels (B,C) and its corresponding outcome of 3D classification by AlphaCryo4D shown in
panels (D–F), which tests the robustness of AlphaCryo4D in the case of non-uniform distributions
of the underlying conformational states. (B) Dimensionality reduction of resampled 3D volumes
and their corresponding feature maps from the simulated dataset by t-SNE. The colors of data
points indicate the ground truth of their corresponding 3D volumes. (C) Reconstruction of the
pseudo-energy landscape of the simulated NLRP3 dataset. (D–F) The number of correctly classified
particles in each class, the particle number of each class, the precision of 3D classification and the
corresponding recall of AlphaCryo4D blind tests using this simulated dataset when the class number
is set to 20 (D), 25 (E) and 30 (F).
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2.3. Analysis of Algorithm Mechanism

To understand how the 3D classification accuracy is improved, we analyzed the
algorithmic mechanism by ablating or replacing certain components of AlphaCryo4D
(Figure 5 and Supplementary Figure S1D–G). In total, we conducted 24 conditional tests
using 10 variations of algorithmic design by removing or replacing certain components
of AlphaCryo4D. First, by removing the entire component of deep manifold learning, the
distributions of high-precision 3D classes obtained by M-fold particle shuffling and voting
alone drop by ~60% relative to that from complete AlphaCryo4D processing (Figure 5D–F).
In these ablation experiments, the particle voting was achieved by counting the votes of a
particle against the same conformers classified by RELION via computing the Intersection-
over-Union (IoU) metric after the step of volume resampling. Similarly, by removing the 3D
deep residual autoencoder but keeping the manifold learning by t-SNE for pseudo-energy
landscape reconstitution, the distributions of high-precision 3D classes are reduced by ~15%
at the SNR of 0.005 (Figure 5P–R). The effect of accuracy degradation is less prominent at
a higher SNR (0.05 or 0.01), indicating that the unsupervised feature learning using deep
residual autoencoder promotes the tolerance of the algorithm against higher noise levels in
the data. Together, these ablation tests suggest that deep manifold learning plays a crucial
role in improving 3D classification accuracy with low SNR data.

Next, we replaced t-SNE with four other algorithms in the manifold learning step,
including two classic linear dimensionality reduction techniques, principal component
analysis (PCA) [13] and multidimensional scaling (MDS) [57], and two nonlinear dimension-
ality reduction algorithms, isometric mapping (Isomap) [58] and locally linear embedding
(LLE) [59]. We applied the four algorithms to reduce the dimensionality of the same sets of
resampled volume data. Although being capable of differentiating a portion of ground-
truth conformers, the resulting 2D mappings by the four techniques exhibit considerable
overlap between adjacent conformers and are incapable of distinguishing all 20 conformers
of ground truth, thus inevitably missing many conformers (Supplementary Figure S1D–G).
The PCA and Isomap missed approximately half of the ground-truth conformers, whereas
MDS and LLE both missed around 70% of the ground-truth conformers. The inferior per-
formance of these techniques is consistent with the original control experiments conducted
by the t-SNE developers [53].

Further, we conducted control experiments to evaluate the impact of particle voting on
the 3D classification accuracy by replacing the particle voting component with a clustering
strategy that directly classifies each particle to the cluster of the nearest clustering center
(Figure 1E). In this case, the distributions of high-precision 3D classes are reduced by ~15–
30% (Figure 5M–O). The reduction is more prominent at the lower SNR. This indicates that
particle voting considerably improves the 3D classification accuracy but is less impactful
than the component of deep manifold learning.

Last, by tracking the statistics of classification precisions step by step, we evaluated
how the 3D classification accuracy is improved over the intermediate steps of AlphaCryo4D
(Figure 5G–I). We found that the steps of particle shuffling, defining cluster boundaries on
the pseudo-energy landscapes and energy-based particle voting contribute to ~16%, ~20%
and ~40% improvements in the distributions of high-precision 3D classes, respectively.
Taken together, these results indicate that all components contribute to the improved
performance of AlphaCryo4D in 3D classification toward the atomic level. Neither deep
manifold learning nor particle voting alone is sufficient to achieve the present level of 3D
classification accuracy.
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Figure 5. Mechanistic characterizations of the improvement of 3D classification accuracy by Al-
phaCryo4D using the simulated NLRP3 datasets of three typical SNRs. Left, middle and right vertical
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columns show the precision analysis on the simulated datasets with SNRs of 0.05, 0.01 and 0.005,
respectively. In total, there are 21 conditional controls under six different algorithmic design varia-
tions being analyzed in panels (A–R). (A–C) Statistical distribution of 3D classification precision in
resampled 3D volumes without particle shuffling. (D–F) Statistical distribution of 3D classification
precision by implementing particle voting directly on the resampled 3D volumes without using deep
manifold learning. The procedure of 3-fold particle shuffling and volume resampling is identical to
AlphaCryo4D. (G–I) Distribution of 3D classification precision in resampled 3D volumes after 3-fold
particle shuffling in the intermediate step of AlphaCryo4D. (J–L) Distribution of 3D classification
precision in all resampled 3D volumes within voting boundaries on the pseudo-energy landscape
in the intermediate step of AlphaCryo4D. (M–O) Distribution of 3D classification precision after
distance-based 3D clustering in the absence of energy-based particle voting with all prior steps
identical to AlphaCryo4D. (P–R) Distribution of 3D classification precision after particle voting by
a modified AlphaCryo4D variation only without using deep residual autoencoder in the manifold
embedding step. (S–U) Distribution of 3D classification precision after energy-based particle voting
via a complete AlphaCryo4D procedure.

2.4. Visualizing Hidden Dynamics of the 26S Proteasome

The 26S proteasome is one of the most complex, dynamic, heterogeneous holoen-
zyme types of machinery that regulates nearly all aspects of cell physiology in
eukaryotes [25,27,60–62]. Visualizing atomic structures of nonequilibrium intermediates
or transition states connecting the major states of the functional proteasome in the act
of substrate degradation has been less successful [4,6,7,25,60]. To test this possibility, we
applied AlphaCryo4D to analyze a large experimental dataset of substrate-engaged hu-
man 26S proteasome (EMPIAR-10669), which comprises more than 3 million particles [25].
AlphaCryo4D was able to significantly enrich the number of visualized proteasome con-
formers to 64 using this dataset, which was previously used to determine the atomic
structures of seven proteasome states [25]. As the majority of the states were refined to
near-atomic resolution, they allowed us to obtain a more complete picture of the functional
dynamics of the proteasome at the atomic level.

To demonstrate that AlphaCryo4D can simultaneously improve 3D classification and
resolution of key dynamic features, we examine a representative case among numerous
improvements of solving the proteasome dynamics by AlphaCryo4D [26]. Here, we focus
on state EA2 of the substrate-engaged 26S proteasome, which is the initial state that a
substrate-conjugated ubiquitin moiety that binds the deubiquitylating enzyme RPN11
to prepare for substrate engagement and deubiquitylation. In this case, we expected to
use AlphaCryo4D to detect if an intermediate substrate binding to RPN11 precedes the
deubiquitylation step of the proteasome [25].

The previous reconstruction on state EA2 has shown that no substrate but ubiquitin
at a moderate resolution was bound to the RPN11 surface [25]. On the pseudo-energy
landscape of the sub-dataset corresponding to state EA2, we examined two conformational
clusters, designated EA2.0 and EA2.1, which were refined to 3.3 and 3.2 Å, respectively
(Figure 6A,E). Comparing these two density maps reveals subtle conformation changes in
the lid subcomplex against the base, although both show no substrate binding in the central
channel of the hexameric AAA-ATPase ring (Figure 6B). Markedly, state EA2.1 exhibits a
segment of substrate bound to the cryptic hydrophobic groove at the interface between
RPN11 and RPT4 near the active site of RPN11, whereas no substrate is observed at the
same site in state EA2.0 (Figure 6C). This polypeptide substrate segment has a length of
about 4 amino acids, which is comparable in size to many small-molecule compounds,
suggesting that AlphaCryo4D may be capable of classifying cryo-EM data toward very
small features relevant to drug discovery.
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(upper panel) [25]. (E) Gold-standard FSC of states EA2.0 and EA2.1 of 26S proteasome reconstructed 
by AlphaCryo4D. 

The conformation of state EA2.0 appears identical to that of the previously published 
state EA2 [25]. The resolution of the RPN11-bound, 8.5-kDa ubiquitin density in state EA2 
is around 6–9 Å, although the overall resolution of state EA2 was measured at 3.3 Å. Ap-
proximately half of the particles previously classified as EA2 were also classified as EA2.1, 
indicating the mixture of different conformers that caused the low-resolution feature of 
ubiquitin in previous studies [25]. Notably, this RPN11-bound ubiquitin in EA2.1 clearly 
shows higher resolution features consistent with 3.8 Å, with sufficiently separated β-

Figure 6. Resolution improvement of the dynamic components of the 26S proteasome by Al-
phaCryo4D. (A) Pseudo-energy landscape calculated on the regulatory particle of the proteasome
state EA2. Clusters EA2.0 and EA2.1 were determined on this pseudo-energy landscape, revealing
the states of substrate-unbound and substrate-bound RPN11, respectively. (B,C) Cryo-EM density
map of cluster EA2.0 superimposed with that of cluster EA2.1 from two orthogonal viewing angles.
Overall view, panel (B). Closeup view, panel (C). The lid subcomplex undergoes conformational
changes during substrate binding. Insert of panel (C) shows a closeup side-by-side comparison
of the two states. The red region denoted the substrate in the density map of the 26S proteasome
(Supplementary Video S1). (D) Quality and resolution improvement of local cryo-EM density map of
the RPN11-bound 8.5-kDa ubiquitin in state EA2.1 (lower panel) relative to the previously published
structure (upper panel) [25]. (E) Gold-standard FSC of states EA2.0 and EA2.1 of 26S proteasome
reconstructed by AlphaCryo4D.

The conformation of state EA2.0 appears identical to that of the previously published
state EA2 [25]. The resolution of the RPN11-bound, 8.5-kDa ubiquitin density in state
EA2 is around 6–9 Å, although the overall resolution of state EA2 was measured at 3.3 Å.
Approximately half of the particles previously classified as EA2 were also classified as EA2.1,
indicating the mixture of different conformers that caused the low-resolution feature of
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ubiquitin in previous studies [25]. Notably, this RPN11-bound ubiquitin in EA2.1 clearly
shows higher resolution features consistent with 3.8 Å, with sufficiently separated β-strands
(Figure 6D). It indicates that the RPT5 N-loop, C-terminal strand of ubiquitin and insert-
1 β-hairpin of RPN11 already form a four-stranded β-sheet prior to substrate insertion
into the proteasomal AAA-ATPase channel. These high-resolution features allow us to
confidently interpret state EA2.1 as a transient intermediate between states EA2 and EB
that were previously reported [25]. Moreover, EA2.1 was also observed in the USP14-
bound human proteasome in a recent study [63], further verifying this result. Altogether,
our extensive application of AlphaCryo4D to the experimental dataset demonstrates its
capability in exploring the hidden conformational space of substrate-engaged proteasome
at the atomic level, thus providing unprecedented insights into the molecular mechanism
of proteasome autoregulation as described in detail elsewhere [26].

2.5. Revealing Hidden Conformational Heterogeneity in the Pf80S Ribosome

We further evaluated the capability of AlphaCryo4D in detecting residual heterogene-
ity in a mostly homogeneous dataset of the Plasmodium falciparum 80S (Pf 80S) ribosome
bound to anti-protozoan drug emetine (EMPIAR-10028) [48]. The original cryo-EM analysis
of the Pf 80S ribosome dataset (105,247 particles) determined a major conformational state
and detected flexibility in the head region of the 40S small subunit, which was originally
unsolved [48]. Application of AlphaCryo4D to analyze this dataset reveals notable rota-
tion of the 40S in the Pf 80S ribosome. By reconstitution of the approximately continuous
pseudo-energy landscape using 79 density maps, we simultaneously identified two 40S-
rotated states (R3 and R4) and another state (R2) with a missing 40S head in addition to the
original conformational state (R1) located in the deepest energy well (Figure 7A,B). Notably,
AlphaCryo4D was able to maintain the original resolution of the major state at 3.2 Å, while
allowing the three new states R2, R3 and R4 to be refined to 3.6, 4.1 and 4.6 Å, respectively,
without using more data (Supplementary Figure S5).

On the pseudo-energy landscape, the distance between states R4 and R1 is longer than
that between states R3 and R1, indicating that a larger conformational change occurs in
state R4. Indeed, superimposing the density maps of states R3 and R1 together reveals
that the rotation of 40S is localized within its head region with concerted movement in the
central protuberance of 60S, whereas the rest of the 40S exhibits no obvious movement
(Figure 7F). By contrast, the entire 40S rotates above the 60S in state R4 relative to R1,
and this coincides with the intrinsic structural rearrangement within 60S near the central
protuberance and L1 stalk, which appears to also drive the 40S translation relative to the
60S (Figure 7G), indicating a different mode of intersubunit rotation.

Moreover, the reconstructions of R3 and R4 also identified differential rearrangements
of small structural elements, including the stepwise disappearance of an rRNA helix
and of the intersubunit bridge formed by the eL8 C-terminal helix, in line with previous
studies on the Pf 80S dynamics during translation (Figure 7C–E) [64]. Our analysis suggests
that the superficially simple rotation of the 40S subunit is a manifestation of complicated
conformational dynamics involving the entire Pf 80S ribosome. Given that the Pf 80S
ribosome was bound to the anti-protozoan drug visible in all new states (Supplementary
Figure S5E), the AlphaCryo4D-enabled analysis of structural dynamics at high resolution
opens the door to investigating the drug-modulated allosteric effect relevant to structure-
based therapeutic development [48].
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state R1 from three different viewing angles. The density of the 40S head region (red circles) rotated 
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continuous motion and discrete compositional heterogeneity in the yeast Saccharomyces 
cerevisiae pre-catalytic spliceosome (EMPIAR-10180) [49]. A previous study using focused 
classification has provided a multistate-averaged map of the pre-catalytic B complex 
spliceosome and speculated that the SF3b subcomplex might sample a continuum of con-
formations [49]. To characterize the pre-catalytic spliceosome dynamics, we resampled 
160 density maps using 327,490 particles to reconstitute its pseudo-energy landscape (Fig-
ure 8A), which allowed us to determine many intermediate states (S1–S9) representative 

Figure 7. Visualizing hidden conformational dynamics of the Pf 80S ribosome bound to the anti-
protozoan drug at high resolution by AlphaCryo4D. (A) Clusters R1-R5 on the pseudo-energy
landscape by AlphaCryo4D. Energy-based particle voting was conducted within each cluster to keep
particles of high reproducibility. (B) Comparison of the density maps of clusters R1 and R2. Cluster
R1 is the major state in the Pf 80S ribosome dataset, while cluster R2 accounts for the state missing the
head of 40S (red circles). The dynamic region of the density map is colored orange and the stable
region is colored blue. (C–E) Comparisons of states R1 and R4 (C), states R2 and R4 (D) and states R3
and R4 (E) reveal the differential appearance of the C-terminal helix of eL8 and an rRNA helix. Note
that the rRNA helix is only partially presented in state R3. (F) State R3 superimposed with state R1
from three different viewing angles. The density of the 40S head region (red circles) rotated relative
to the 60S. (G) State R4 superimposed with state R1 from three different viewing angles. The density
of the whole 40S (red circles) is rotated relative to the 60S (Supplementary Video S2).

2.6. Visualizing Conformational Continuum of the Yeast Pre-Catalytic Spliceosome

We next evaluated the applicability of AlphaCryo4D in simultaneously visualizing
continuous motion and discrete compositional heterogeneity in the yeast Saccharomyces cere-
visiae pre-catalytic spliceosome (EMPIAR-10180) [49]. A previous study using focused classi-
fication has provided a multistate-averaged map of the pre-catalytic B complex spliceosome
and speculated that the SF3b subcomplex might sample a continuum of conformations [49].
To characterize the pre-catalytic spliceosome dynamics, we resampled 160 density maps
using 327,490 particles to reconstitute its pseudo-energy landscape (Figure 8A), which
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allowed us to determine many intermediate states (S1–S9) representative of a continuous
motion of the SF3b and helicase subcomplexes as well as several compositionally distinct
states (S10–S14).
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Figure 8. Choreographing continuous inter-subunit motions of the yeast pre-catalytic spliceosome by
AlphaCryo4D. (A) Pseudo-energy landscape by AlphaCryo4D uncovering 14 clusters designated
as S1–S14. Clusters S1–S9 are related to the continuous rotational motion of the SF3b and helicase
subcomplexes of the pre-catalytic spliceosome, and the density maps of clusters S10–S14 are shown
in Supplementary Figure S6B. (B) The density map of the Spp381/Prp38/Snu23-missing state S13 is
superimposed with the density map of the state S4. The left inset shows a closeup comparison of
the density difference between states S13 and S4 around the subcomplex of Spp381/Prp38/Snu23.
(C) Cryo-EM density maps of clusters S1–S9. The top leftmost panel shows the superposition of
all nine density maps of S1 to S9. In the rest panels, the dynamic component of the density map
is colored red and the static component is colored blue. The red arrows highlight the rotational
and translational motions of the SF3b and helicase subcomplexes within the dashed outline. The
approximate continuous motion of the SF3b and helicase is illustrated in Supplementary Video S3.
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On the pseudo-energy landscape, the nine states S1–S9 representing the continuous
motions are intuitively located in adjacent clusters, forming a major MEP traversing the long
axis of the pseudo-energy landscape (Figure 8A,C). These states show both independent
movements of the SF3b and helicase, as well as concerted motions of the two subcomplexes
(Supplementary Figure S6A). For instance, a comparison between states S3 and S4 exhibits
that the SF3b and helicase move away from each other, whereas states S5 and S6 show
co-directional motions of both the SF3b and helicase. Interestingly, the Cus1 subunit in the
SF3b subcomplex appears to swing at the interface with the N-terminal helicase cassettes
of RecA-1 and RecA-2, implicating that part of conformational rearrangement is mediated
by the dynamic interface B between the SF3b and helicase [49].

In addition to mapping the continuous inter-subunit motion, AlphaCryo4D also reveals
the potential allosteric effect of local structural variation relevant to spliceosome activation.
Notably, a comparison between states S4 and S13 exhibits that the U2 snRNP and helicase
motions among these states appear to be allosterically coupled to the disappearance of the
Spp381, Prp38 and Snu23 densities in state S13 (Figure 8B). As the proteins Spp381, Prp38
and Snu23 are required for spliceosome activation [49], these coexisting conformers may
be important to understanding the intermediate steps of spliceosome activation. These
biologically important dynamic features have not been previously reported from the same
dataset [49]. Taken together, our analysis demonstrates that AlphaCryo4D is capable of
characterizing continuous conformational changes on a dataset with a moderate size.

2.7. Discovery of Hidden Assembly Intermediates of Bacterial Ribosome

In the last application, we used AlphaCryo4D to analyze a highly heterogeneous
dataset of the Escherichia coli 50S large ribosomal subunit (LSU) (EMPIAR-10076) [50]. This
dataset (131,899 particles) is known to be both compositionally heterogeneous and confor-
mationally dynamic in that the 50S LSU undergoes bL17-depleted intermediate assembly.
We first computed the overall pseudo-energy landscape of the ribosomal assembly using
119 density maps (Figure 9B). On this pseudo-energy landscape, the originally reported
five major states A–E were straightforwardly reproduced by energy-based particle voting
(Figure 9A–C). Obviously, state A containing both 50S and 30S subcomplexes is a rare state
distinct from other conformers (Figure 9A). The density map of state A reconstructed by
only 766 particles still retains enough details, benefiting from the strategy of energy-based
particle voting.

As the remaining particle numbers of states B, C, D and E were all adequate for deeper
classification, we then computed their zoomed-in pseudo-energy landscapes separately.
This allowed us to discover seven new conformational states (designated B1, B2, C5, D5,
E6, E7, E8) that have evaded all other methods (Figure 9D–K) [11,12,19,50], as well as all
13 previously reported sub-class conformers classified from this dataset (Supplementary
Figure S7) [12,50]. On the zoomed-in pseudo-energy landscape of state B, state B1 exhibits a
low occupancy of domain III as well as another new state D5 that is perhaps the least mature
LSU intermediate on the assembly pathway (Figure 9E,I). The rRNA helix 101 exhibits a
small rotation between states B2 and B3 (Figure 9E and Supplementary Figure S7B). The
differential occupancy of rRNA helix 63 and the movement of the uL1 stalk are observed in
states C5 and E6–E8 (Figure 9G,K). Among the sub-states derived from state E, the new
state (E7) with uL1 missing was reconstructed by only 357 particles (Figure 9K), which
was another rare state discovered via AlphaCryo4D that is only 0.3% of the entire dataset.
These results suggest that AlphaCryo4D is highly efficient in finding transient states of
extremely low abundance and in exploring the ‘dark’ conformers in the conformational
space of highly heterogeneous systems.
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by AlphaCryo4D. (K) Discovery of new subclass conformers in the major state E. Like C5, the new 
state E8 lacks the rRNA helix 63. Compared to the previously reported state E3 (Supplementary 
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Figure 9. Exploring hidden conformational space of the bacterial ribosomal assembly intermediates
by AlphaCryo4D. (A) Cryo-EM density map of state A determined by AlphaCryo4D. This state is
located far from other states on the pseudo-energy landscape shown in (B). (B) Global pseudo-energy
landscape of bacterial ribosomal assembly intermediates. Clusters A–E and L3–L6 were reconstructed
for further analysis. (C) Density maps of the major states B, C, D and E were reconstructed by
AlphaCryo4D. The density maps of these four states were refined using the particles of clusters B, C,
D and E, respectively, from the pseudo-energy landscape. (D) Zoomed-in pseudo-energy landscape
of the major state B. (E) New subclass conformers B1 and B2 of state B. Comparing to the original
state B (Supplementary Figure S7B), the new states B1 and B2 appear to miss Domain III and show
flexible rRNA helix 101, respectively, as discovered by AlphaCryo4D. (F) Zoomed-in pseudo-energy
landscape of the major state C generating clusters C1–C5. (G) A new state (C5) of C is determined by
AlphaCryo4D. The rRNA helix 63 was not observed in the density map of C5. (H) Clusters D1–D5
from the zoom-in pseudo-energy landscape of the major state D. (I) A newly discovered minor state
D5. Like the minor state B1 of the major state B, Domain III was not seen in the density map of D5. (J)
Clusters E1–E8 on the zoom-in pseudo-energy landscape of the major state E by AlphaCryo4D. (K)
Discovery of new subclass conformers in the major state E. Like C5, the new state E8 lacks the rRNA
helix 63. Compared to the previously reported state E3 (Supplementary Figure S7E), the uL1 stalk is
not found in subclass E7. Two new states, E2 and E6, with different conformational changes of the
uL1 stalk were discovered by AlphaCryo4D (Supplementary Video S4).
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3. Discussion

One primary objective of the AlphaCryo4D development is to simultaneously improve
reconstruction resolution and 3D classification accuracy without assumption on sample
behaviors, such as conformational heterogeneity, continuity, or chemical composition. Im-
portantly, AlphaCryo4D has recently been used to improve the state-resolving capacity of
time-resolved cryo-EM analysis to yield more than a dozen intermediate conformers of
USP14-regulated human proteasomes at atomic detail [63]. Because time-resolved cryo-EM
is often conducted on samples flash-frozen in the course of biochemical reactions, such
samples often contain a much greater degree of compositional and conformational hetero-
geneity that may be intuitively pertinent to the functional, lowly populated intermediate
states of the imaged systems. Thus, time-resolved cryo-EM in principle requires higher 3D
classification accuracy to disentangle many coexisting, low-abundance conformers toward
a high enough resolution [63]. This is a major aspect limiting the general application of
time-resolved cryo-EM, in which it is often a formidable challenge to make high-resolution
sense of time-resolved datasets. Thus, combining a method of high accuracy in 3D classifi-
cation with time-resolved cryo-EM may be practically desirable and present an emerging
paradigm in visualizing functional complex dynamics [63]. Several attempts have been
made recently to characterize the so-called ‘continuous motion’ of protein complexes using
cryo-EM data [11,12,19–22]. Nonetheless, it remains hypothetical that the conformational
space of protein complex dynamics must be continuous. This may be approximately sen-
sible in a classic picture of molecular mechanics but is not necessarily appropriate in the
theoretical framework of quantum mechanics. Thus, a structural ensemble discovered
by AlphaCryo4D is preferentially regarded as discrete approximations representing the
conformational space of fundamentally unknown continuity.

This study further substantiates the notion that the improved accuracy of 3D classifi-
cation is positively correlated with the resolution gain because misclassification reduces
achievable resolution for reconstructing highly dynamic conformations. Because of ex-
tremely low SNR, most objective functions in image similarity measurement and machine
learning algorithms tend to poorly perform or entirely fail on cryo-EM data. To date, no
methods have included any implicit metrics or strategies for validating 3D classification
accuracy in cryo-EM. We address this issue by introducing the M-fold particle shuffling
method and the energy-based particle voting algorithm in AlphaCryo4D that automatically
checks the reproducibility and robustness of the 3D classification. This allows users to
objectively reject non-reproducible particles and permits a maximal number of particles to
be assessed and classified in an integrative procedure based on uniform, objective criteria.
Our extensive tests suggest that the particle-voting algorithm synergistically enhances the
performance of deep manifold learning. Moreover, it can potentially rescue certain particles
that are prone to be misclassified if processed only once by deep manifold learning, thus
boosting the efficiency of particle usage without necessarily sacrificing the quality and
homogeneity of selected particles. This mechanism simultaneously optimizes the usage of
all available particles and their 3D classification accuracy for achieving higher resolution.

Our particle-shuffling and Bayesian resampling strategy are conceptually distinct from
the stochastic bootstrap method previously proposed for estimating 3D variance maps [65]
or performing 3D PCA [13] to detect conformational variability. One essential difference
lies in that our resampling approach requires that only particles of similar or identical
conformations are grouped together via likelihood-based similarity estimation instead of
being combined or resampled in a stochastic manner [1,18]. Another difference is that the
goal of M-fold particle shuffling is to improve the quality of the reconstituted pseudo-energy
landscape and to enable energy-based particle voting for the intrinsic cross-validation of 3D
classification. Furthermore, AlphaCryo4D does not assume any prior knowledge regarding
the conformational landscape, its continuity and topology, as well as chemical composition
of the macromolecular system. Our approach allows multiple consensus models being used
for optimizing the particle alignment during Bayesian resampling. This can theoretically
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deal with more complicated conformational dynamics when no stable core structure is
available to guide the consensus alignment over a single model.

Using a pseudo-energy landscape to represent the conformational variation has the-
oretical roots in the physical chemistry of protein dynamics. Extensive research tools
being built upon the energy landscape and transition-state theory allow comparison with
other complementary approaches, such as single-molecule florescence microscopy, and
nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulation. Particularly,
all-atom MD simulation with enhanced sampling techniques allows for the computa-
tion of the virtual energy landscape of kilodalton biomolecular systems over a limited
timescale often up to a millisecond [66,67]. Due to the limited capacity of supercomputing
resources, this approach is not yet commonly feasible for recapitulating large complex
conformational changes of megadalton biomolecular systems in their functional actions. By
contrast, AlphaCryo4D reconstitutes pseudo-energy landscape from experimental datasets
of megadalton molecular weight, which may sample significantly larger conformational
space over a functional course of much longer timescale up to minutes and even hours,
when it is used in conjunction with time-resolved cryo-EM [63]. With the continuous
growth of supercomputing capacity, it might become possible in the future for the two ap-
proaches to be compared directly and cross-validated for the results from each other, given
certain caveats being adequately dealt with, such as the appropriate calibration of energy
scale and authentic estimation of energy resolution. Alternatively, part of the enhanced
sampling techniques, such as the string method, has been integrated into the framework of
AlphaCryo4D. Thus, it should be feasible to borrow other enhanced sampling techniques
in the future development of AlphaCryo4D [66,67].

However, the primary goal of mapping pseudo-energy landscape in AlphaCryo4D
is to improve the accuracy of 3D classification rather than the pursuit of the authenticity
of characterizing free-energy landscape, owing to a limited energy resolution and non-
intuitive dimensionality reduction used for the mapping procedure. In addition, the pseudo-
energy landscape allows users to qualitatively examine kinetic relationships between the
adjacent conformers and potentially discover new conformations. Quantitatively deriving
biochemical kinetics from such a pseudo-energy landscape is not advised and may be
error-prone. We stress that the reconstitution of an authentic free-energy landscape from
cryo-EM data remains an open question rather than a solved one. While our method of
mapping 3D volumes to manifolds increases the sampling grain in approximating the
conformational space as compared to other methods directly mapping single particles
to the latent space [11,12,19], AlphaCryo4D trades off the fineness of sampling grain in
visualizing conformational space for resolution gain. In nearly all cases we examined,
AlphaCryo4D apparently still oversampled the conformational space at large in terms of
finding those conformational states that can potentially achieve high resolution.

The key steps of AlphaCryo4D processing add about 20% of computational costs in
addition to those commonly practiced steps, including initial consensus alignment and
final high-resolution refinement (see Section 4.15 below). We speculate that larger datasets
are generally required to fully exploit the advantages and potentials of cryo-EM in solving
heterogeneous structures, no matter which approach is used. The data size is expected to
proportionally scale with and match the degree of conformational heterogeneity to visualize
a full spectrum of conformational states at the atomic level. Thus, further optimization of
the algorithmic design and code-executing efficiency via software engineering will help to
reduce the computational costs and to make AlphaCryo4D more affordable for widespread
applications.

Several limitations of AlphaCryo4D are in order. First, its outcomes depend on the
success of the initial consensus alignment of all particles during particle shuffling and
volume resampling. Certain conformational dynamics or heterogeneity can interfere with
image alignment, in which case the performance of AlphaCryo4D will be restricted by
alignment errors after consensus refinement. This is a common problem for all existing
methods developed so far. Our tentative solution is to improve image alignment in a
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multi-reference refinement procedure. Failure in obtaining accurate alignment parameters
can lead to futile, erroneous estimation of conformational heterogeneity in the subsequent
steps no matter which methods are used.

Second, the use of t-SNE to visualize a pseudo-energy landscape poses both potential
advantages and limitations. The t-SNE algorithm can well preserve the local topology
of a pseudo-energy landscape but is not warranted to preserve global topology, which is
nonetheless a common limitation for existing manifold learning techniques. The geometry
of the estimated pseudo-energy landscape is inevitably influenced by the SNRs of cryo-EM
data; lower SNRs cause dispersion of local energy wells and thus the overall geometrical
distortion of the landscape (Supplementary Figure S1). A higher level of noise introduces
greater statistical bias in particle clustering into resampled 3D volumes and causes irrepro-
ducible particle ‘votes’. To alleviate this issue, the particle-voting algorithm is employed in
the final 3D classification of the local areas of energy minima on a pseudo-energy landscape,
which rejects particles with irreproducible votes.

Last, all existing approaches for visualizing a pseudo-energy landscape from cryo-EM data
suffer from the ‘curse of dimensionality’, because the dimensions of reaction coordinates related
to the conformational variation are expected to be very high in real space for a megadalton
macromolecular complex that includes hundreds of thousands of atoms [40–46]. Thus, the
reduction of dimensions prior to the visualization of a pseudo-energy landscape is necessary.
The reduced dimensions then lose intuitive physical meanings that differ from case to case.
In all cases of experimental and simulated datasets in this study, the reduced dimensions
by t-SNE appear to capture the most prominent conformational changes, analogous to
the principal components computed by PCA. Thus, dimensionality reduction to 2D by
t-SNE, as well as MEP searching on a 2D pseudo-energy landscape might limit its capability
in disentangling complex dynamics governed by many reaction coordinates. Further
investigations are required to understand how to map individual particles to pseudo-
energy landscape without trading off reconstruction resolution, to estimate pseudo-energy
landscape at higher dimensions, to preserve its global topology with high fidelity and to
fully automatize MEP solution.

In summary, the development of AlphaCryo4D and its applications in several impor-
tant biomolecular systems have demonstrated the feasibility of atomic-level visualization
of conformational space hidden in a non-equilibrium regime or corresponding to transient
transitions between different metastable states, particularly for biomolecular systems that
are too large or complex to be studied by all-atom MD simulations. Applications of this
approach to important therapeutic targets in the future might unlock atomic views of
cryptic or mobile sites for ligand discovery that otherwise remain invisible to alternative
techniques. Our studies of AlphaCryo4D provide essential mechanistic insights into the
computational problem of efficiently extracting atomic-level dynamics information from
cryo-EM data. We expect that AlphaCryo4D will become an important steppingstone
and inspire more efforts in leveraging machine learning algorithms to develop the next-
generation cryo-EM pipelines that overcome the aforementioned limitations and push the
envelope of visualizing functional dynamics of nonequilibrium biomolecular systems at
the atomic level.

4. Materials and Methods
4.1. M-Fold Particle Shuffling and Bayesian Resampling

A key philosophy of the AlphaCryo4D design is to avoid subjective judgment on
the particle quality and usability if it is not apparent false particles, such as ice contami-
nants, carbon edges and other obvious impurities. Deep-learning-based particle picking
in DeepEM v1.0 (Peking University, Beijing, China) [68] or other similarly performed soft-
ware is favored for data preprocessing prior to AlphaCryo4D. To prepare particle datasets
for AlphaCryo4D, an initial unsupervised 2D image classification and particle selection,
preferentially conducted by the statistical manifold-learning-based algorithm in ROME
v1.1.2 (Peking University, Beijing, China) [5], is necessary to ensure that no apparent false
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particles are selected for further analysis and that the data have been collected under an
optimal microscope alignment condition, such as optimized coma-free alignment. No
particles should be discarded based on their structural appearance during this step if they
are not apparent false particles. Any additional 3D classification should be avoided to
pre-maturely reject particles prior to particle shuffling and volume resampling in the first
step of AlphaCryo4D processing. Pre-maturely rejecting true particles via any 2D and 3D
classification is expected to introduce subjective bias and impair the native conformational
continuity and statistical integrity intrinsically existing in the dataset.

In raw cryo-EM data, 2D transmission images of biological macromolecules suffer from
extremely heavy background noise, due to the use of low electron dose to avoid radiation
damage. To tackle the conformational heterogeneity of the macromolecule sample of
interest in the presence of heavy image noise, the particle shuffling and volume resampling
procedure was devised to incorporate the Bayesian or maximum-likelihood-based 3D
clustering in RELION v2.1 or v3.0 (MRC, Cambridge, UK) [3]. To enable the particle-voting
algorithm in the late stage of AlphaCryo4D, each particle is reused M times during particle
shuffling to resample a large number of 3D volumes (Figure 1B). First, all particle images
are aligned to the same frame of reference in a consensus 3D reconstruction and refinement
in RELION [3] or ROME [5] to obtain the initial alignment parameters of three Euler angles
and two translational shifts. Optimization for alignment accuracy should be pursued to
avoid the error propagation to the subsequent steps in AlphaCryo4D. For a dataset with
both compositional and conformational heterogeneity, coarsely classifying the dataset to a
few 3D classes during initial image alignment, limiting the 3D alignment to a moderate
resolution, such as 10 Å or 15 Å during a global orientational search, progressing to small
enough angular steps in the final stage of consensus refinement, may be optionally exercised
to optimize the initial 3D alignment. Failure of initial alignment of particles would lead to
failure of all subsequent AlphaCryo4D analyses.

Next, based on the results of consensus alignment, in the particle-shuffling step, all
particles were divided into M + 1 groups, and M was set to an odd number of at least
3. Then the whole dataset was shuffled M + 1 times by removing a different group from
the dataset each time. Each shuffled dataset is classified into a large number (B) of 3D
volumes, often tens to hundreds, by the maximum-likelihood 3D classification algorithm
without further image alignment in RELION (with ‘skip-align’ option turned on). This
is necessary because the alignment accuracy often degrades when the sizes of 3D classes
decrease considerably. This step is repeated M + 1 times, each time on a shuffled dataset
missing a different group among the M + 1 groups. Because of M-fold particle shuffling, the
outcome of this entire process is expected to resample up to thousands of 3D volumes in
total (i.e., B (M + 1) > 1000). Each particle is used and contributed to the 3D reconstructions
of M volumes, which prepare it for the particle-voting algorithm to evaluate the robustness
and reproducibility of each particle with respect to the eventual 3D classification.

For processing a large dataset including millions of single-particle images, it becomes
infeasible even for a modern high-performance computing system to do the consensus
alignment by including all particles once in a single run due to the limitations of supercom-
puter memory and the scalability of the alignment software. To tackle this issue, the whole
dataset is randomly split into a number (D) of sub-datasets for batch processing, with each
sub-dataset including about one to two hundred thousand particles, depending on the
scale of the available supercomputing system. In this case, the initial reference should be
used for the consensus alignment of different sub-datasets to minimize volume alignment
errors in the later step. The total number of resulting resampled volumes becomes BD (M +
1) > 1000. This strategy can substantially reduce the supercomputer memory pressure and
requirement. In each sub-dataset, all particles were divided into M + 1 groups and subject
to the particle shuffling and volume resampling procedure as described above.
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4.2. Deep Residual Autoencoder for 3D Feature Extraction

The resampled volumes may still suffer from reconstruction noises and errors due to
variation of particle number, misclassification of conformers and limited alignment accuracy.
Thus, we hypothesize that unsupervised deep learning could help capture the key features
of structural variations in the resampled volumes and potentially enhance the quality of
subsequently reconstituted pseudo-energy landscapes for improved 3D classification. To
this end, a 3D autoencoder was constructed using a deep Fully Convolutional Network
(FCN) composed of residual learning blocks [51,52]. The architecture of the 3D autoencoder
consists of the encoder and the decoder, which are denoted as E and D, respectively
(Figure 1C). The relation between the output y and the input x of the network can be
expressed as y = D(E(x)), in which x is the input 3D density volume with the size of N3,
where N is the box size of the density map in pixel units. For reconstruction of the 3D
volumes and further optimization, the decoding output y should be in the same size and
range with the input data x. In this way, the framework of FCN is established to restore
the input volume, using the sigmoid function S(x) = 1/(1 + exp(−x)) as the activation
function of the decoding layer to normalize the value of y into the range (0, 1). Meanwhile,
all 3D density maps x are normalized with the following equation before input to the deep
neural network:

xijk :=
xijk − xmin

xmax − xmin
, i, j, k = 1, 2, . . . , N. (1)

where xmin and xmax are, respectively, the minimum and minimax value in all xijk.
The distance between the decoded maps and the input volumes can be used for

constructing the loss function to train the 3D kernels and bias of the networks. The
value distribution of the encoded 3D feature maps z = E(x) is expected to be an abstract,
numerical representation of the underlying structures in the volume data, which may
not necessarily have any intuitive real-space physical meanings. The neural network can
extract such abstract information in the prediction step, with no restriction on the feature
maps z in the expression of training loss. The loss function is then formulated as:

L(θ; x, y) =
1

N3

N

∑
i,j,k=1

‖xijk − yijk‖2 + λ‖θ‖2 (2)

where θ denotes the weights and bias of the network, and λ is the L2 norm regularization
coefficient. As the feature of the complex structure is difficult to be learned from the 3D
volume data, the value of λ is set to 0.001 in default to prevent overfitting in the applications
to experimental datasets. However, it is set to 0 in the tests on the simulated datasets (see
below).

To improve the learning capacity of the 3D autoencoder, residual learning blocks
containing 3D convolutional and transposed convolutional layers are employed in the
encoder and decoder, respectively. In each residual learning block, a convolutional layer
followed by a Batch Normalization (BN) [69] layer and an activation layer appears twice as
a basic mapping, which is added with the input to generate the output. The mathematical
expression of the lth block can be shown as:

yl = F (xl; θl) + xl
F (xl; θl) = C(C(xl))
C(xl) = a(b(c(xl)))

(3)

where xl and yl represent the input and the output of the block, respectively. F (xl ; θl)
denotes the basic mapping of the lth block parameterized by θl , and C(xl) is the sequential
operation of convolution or transposed convolution c, BN b and activation a. The rectified
linear unit (ReLU) function is used in all the activation layers but the last one. In addition,
the output of mapping function F (xl; θl) must have the same dimension as the input xl. If
this is not the case, the input xl must be rescaled along with F (xl; θl) using a convolutional



Int. J. Mol. Sci. 2022, 23, 8872 24 of 38

or transposed convolutional transformation c′(xl) with an appropriate stride value, the
parameters of which can be updated in the training step.

4.3. Autoencoder Training

To analyze a large number of volumes, we carefully trained the 3D deep residual
autoencoder to obtain suitable kernels and biases. First, parallel computation with multiple
GPUs has been implemented to reduce the training time. Then the parameters of the
network are optimized by the stochastic gradient descent Adam (Adaptive moment estima-
tion) algorithm, in which the gradients of the objective function L(θ; x, y) with respect to
the parameters θ can be calculated by the chain rule. Moreover, the learning rate is reduced
to one-tenth when the loss function does not decrease in three epochs based on the initial
value of 0.01. After training about 50 epochs, the best model is picked to execute the task of
structural feature extraction. Using the unsupervised 3D autoencoder, the feature maps
z = E(x) encoding the structural discrepancy among the 3D volume data can be extracted
automatically without any human intervention.

4.4. Autoencoder Hyperparameters

The recommended hyperparameters for the deep residual autoencoder architecture
are provided in Table 1. Although we expand the residual network (ResNet) into 3D,
we keep the original design rules of ResNet for constructing the 3D autoencoder [51,52].
The first and last convolutional layers have 5 × 5 × 5 filters (kernels). The remaining
convolutional layers have 3 × 3 × 3 filters. Because the cubic filter in the convolutional
layer is computationally expensive, only one 3D filter is used in each of the last three
convolutional layers in the encoder and of the first two and last transposed convolutional
layers in the decoder. To accommodate a large volume input, two filters are used in the
first three convolutional layers and in the third and fourth transposed convolutional layers.
Downsampling is directly performed by convolutional layers with a stride of 2. The output
dimension of encoding layers is set to be a quarter of the input dimension to avoid over-
compressing the feature maps. We employed six 3D convolutional layers in the encoder
and five transposed convolutional layers in the decoder based on the expected tradeoff
between the learning accuracy and training cost, which is roughly comparable to a 2D
ResNet with more than 200 layers with respect to the training cost. Lastly, one should
randomly inspect some feature maps to ensure that all hyperparameter setting works as
expected. If a feature map clearly shows no structural correspondence to its input volume
and exhibits strong noise or abnormal features, it might signal the existence of overfitting.
In this case, a non-zero value of λ in the L2 norm regularization should be empirically
examined to avoid overfitting.
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Table 1. Hyperparameters of the deep residual networks in the 3D autoencoder. Optimizer: Adam. Epochs: 50. Initial learning rate: 0.01. A factor of 0.1 and patience
of 3 means that the learning rate will times 0.1 (factor) if the loss function does not improve in 3 (patience) epochs.

Layer Name Output Size (Simulated
Datasets)

Output Size
(Proteasome)

Output Size
(pf80S Ribosome)

Output Size
(Spliceosome)

Output Size
(Bacterial Ribosomal Intermediates) Network Structure

Conv1 200× 200× 200 300× 300× 300 360× 360× 360 320× 320× 320 320× 320× 320 5× 5× 5, 2

Conv2_x
100× 100× 100 150× 150× 150 180× 180× 180 160× 160× 160 160× 160× 160

3× 3× 3, 2, stride 2
3× 3× 3, 2

Conv3_x 3× 3× 3, 2
3× 3× 3, 2

Conv4_x
50× 50× 50 75× 75× 75 90× 90× 90 80× 80× 80 80× 80× 80

3× 3× 3, 1, stride 2
3× 3× 3, 1

Conv5_x 3× 3× 3, 1
3× 3× 3, 1

Conv6_x
(encoding)

3× 3× 3, 1
3× 3× 3, 1

TransConv7_x
100× 100× 100 150× 150× 150 180× 180× 180 160× 160× 160 160× 160× 160

3× 3× 3, 1, stride 2
3× 3× 3, 1

TransConv8_x 3× 3× 3, 1
3× 3× 3, 1

TransConv9_x
200× 200× 200 300× 300× 300 360× 360× 360 320× 320× 320 320× 320× 320

3× 3× 3, 2, stride 2
3× 3× 3, 2

TransConv10_x 3× 3× 3, 2
3× 3× 3, 2

TransConv11 5× 5× 5, 1
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4.5. Manifold Embedding of Pseudo-Energy Landscape

To prepare for the pseudo-energy landscape reconstitution, each resampled 3D volume
was concatenated with its 3D feature map learned by the 3D autoencoder to form an
expanded higher-dimensional data point. Each expanded data point is either low-pass
filtered at a given resolution (5 Å in default setting) or standardized by the z-score method
prior to t-SNE processing:{

xijk :=
xijk−µx

σx
, i, j, k = 1, 2, . . . , N.

zijk :=
zijk−µz

σz
, i, j, k = 1, 2, . . . , N′.

(4)

in which µx and σx denote the mean and standard deviation of the 3D volume voxels
xijk with the box size of N, respectively. Similarly, µz and σz are the mean and standard
deviation of the 3D feature map voxels zijk with the box size of N′, respectively. All the input
data points were then embedded onto a low-dimensional manifold via the t-SNE algorithm
by preserving the geodesic relationships among all high-dimensional data [53]. During
manifold embedding, it is assumed that the pairwise similarities in the high dimensional
data space and low dimensional latent space follow a Gaussian distribution and a student’s
t-distribution, respectively. To find the low-dimensional latent variable of each data point,
the relative entropy, also called the Kullback-Leibler (KL) divergence, is used as an objective
function measuring the distance between the similarity distribution pij in the data space
and qij in the latent space:

KL(P ‖ Q) = ∑
i,j

pij log
pij

qij
(5)

which is minimized by the gradient descent algorithm with the momentum method [70].
The hyperparameter of t-SNE may be tuned to better preserve both local and global geodesic
distances (https://distill.pub/2016/misread-tsne/, accessed on 2 August 2022).

The idea of using concatenated data composed of both volumes and their feature maps
for manifold embedding is similar to the design philosophy of deep residual learning, in
which the input and feature output of a residual learning block are added together to be
used as input of the next residual learning block. Such a design has been demonstrated
to improve learning accuracy and reduce the performance degradation issues when the
neural network goes much deeper [51,52]. Although the 3D feature maps or the resampled
volumes alone can be used for manifold embedding, both appear to be inferior in 3D
classification accuracy (Figure 5). The concatenated format of input data for manifold
learning is potentially beneficial to the applications in those challenging scenarios, such as
visualizing a reversibly associated small ubiquitin protein (~8.6 kDa) of low occupancy by
the focused AlphaCryo4D classification [26].

After the manifold embedding by t-SNR, each 3D volume is mapped to a low-
dimensional data point in the learned manifold. The coordinate system, in which the
low-dimensional representation of the manifold is embedded, is used for reconstructing
a pseudo-energy landscape. The difference in the Gibbs free energy ∆G between two
states with classified particle numbers of Ni and Nj is defined by the Boltzmann relation
Ni/Nj = exp(−∆G/kBT). Thus, the free energy of each volume can be estimated using its
corresponding particle number:

∆∆Gi = −kBT ln
Ni

∑k Nk
(6)

where ∆∆Gi denotes the free energy difference of the data point with the classified particle
number of Ni against a common reference energy level, kB is the Boltzmann constant and T
is the temperature in Kelvin. The pseudo-energy landscape was plotted by interpolation of
the free energy difference in areas with sparse data. We suggest that linear interpolation is
used for the pseudo-energy landscape with loosely sampled areas to avoid overfitting by
polynomial or quadratic interpolation. For densely sampled pseudo-energy landscapes,

https://distill.pub/2016/misread-tsne/
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polynomial interpolation could give rise to a smoother pseudo-energy landscape that is
easier to be tackled by the string method for MEP solution (see below).

The coordinate system of the embedded manifold output by t-SNE is inherited by the
reconstitution of pseudo-energy landscape as reaction coordinates. They do not have an
intuitive physical meaning of length scale in real space. However, they can be viewed as
transformed, rescaled, reprojected coordinates from the real-space reaction coordinates
along which the most prominent structural changes can be observed. Alternatively, they can
be intuitively understood as being similar to transformed, reprojected principal components
(PCs) in principle component analysis (PCA). In the case of the 26S proteasome, the two
most prominent motions are the rotation of the lid relative to the base and the intrinsic
motion of the AAA-ATPase motor [25], which can be approximately projected to two
reaction coordinates. In real space, both motions are notably complex and in fact are
characterized by a considerable number of degrees of freedom, which are partially defined
by the solved conformers.

4.6. String Method for Finding Minimum Energy Path (MEP)

The string method is an effective algorithm to find the MEP on the potential energy
surface [54]. To extract the dynamic information implicated in the experimental pseudo-
energy landscape, an improved and simplified version of the string method has been
previously developed [55]. Along the MEP on the pseudo-energy landscape, the local
minima of interest could be defined as 3D clustering centers to guide the particle-voting
algorithm for 3D classification to generate high-resolution cryo-EM density maps (Figures
1D and 2C). The objective of the MEP identification in energy barrier-crossing events lies in
finding a curve γ having the same tangent direction as the gradient of energy surface ∇G.
It can be expressed as:

(∇G)⊥(γ) = 0 (7)

where (∇G)⊥ denotes the component of ∇G perpendicular to the path γ. To optimize this
objective function, two computational steps referred to as the ‘evolution of the transition
path’ and ‘reparameterization of the string’, are iterated until convergence within a given
precision threshold.

After initialization with the starting and ending points, in the step of evolution of the
transition path, the positions of interval points along the transition path were updated
according to the gradient of the free energy at the tth iteration:
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4.7. String Method Parameters

The string method of searching for a rational MEP on the pseudo-energy landscape
can only guarantee the solution of local optimum and is not capable of ensuring a solution
of global optimum [55]. The outcome of the string method depends on the initialization of
the starting and ending points of the MEP on the pseudo-energy landscape. If there are
too many local minima to sample along a long MEP, the string method could retrieve an
MEP solution that partly misses some local energy minima by going off the pathway. In
this case, the search for an expected MEP solution can be divided into several segments
of shorter MEPs connecting one another, with each MEP being defined by a closer pair
of starting and ending points, which travels through a smaller number of energy minima.
Another parameter affecting the MEP solution is the step size being set to explore the MEP
on pseudo-energy landscapes. Although a default value of 0.1 empirically recommended
may work in many cases, it may be helpful to tune the step size according to the quality
of the pseudo-energy landscape. The value of step size can be decreased if the computed
path runs out of the pseudo-energy landscape and can be increased if the path updates too
slowly during iterative searching by the string method.

4.8. Energy-Based Particle Voting Algorithm

The particle-voting algorithm was designed to conduct 3D classification, particle
quality control, reproducibility test and particle selection in an integrative manner. The
particle-voting algorithm mainly involves two steps (Figure 1D). First, we count the number
of votes for each particle mapped within each voting boundary. The particles voted for a
given voting boundary define a new 3D cluster approximately centered on a local energy
minimum of the pseudo-energy landscape. One vote is rigorously mapped to one copy of
the particle used in reconstructing a 3D volume and to no more than one 3D cluster on the
pseudo-energy landscape where the corresponding volume is located. Thus, each particle
can have M votes cast for no more than M 3D clusters. If the vote is mapped outside of any
3D cluster boundary, it becomes an ‘empty vote’ with no cluster label. Each non-empty vote
is thus labeled for both its particle identify and corresponding cluster identity. For each pair
of particles and cluster, we compute the total number (V) of votes that the cluster receives
from the same particle. Each particle is then assigned and classified to the 3D cluster that
receives V > M/2 votes from this particle (Figure 1D). Note that after particle voting, each
particle is assigned no more than once to a 3D class, with its redundant particle copies
removed from this class. This strategy only retains the particles that can reproducibly vote
for a 3D cluster corresponding to a homogeneous conformation, while abandoning those
non-reproducible particles with divergent, inconsistent votes.

4.9. Alternative Strategy of 3D Clustering without Particle Voting

Because the particle-voting algorithm imposes strong constraints on the reproducibility
of particle classification by deep manifold learning, some 3D classes might be assigned
with a small number of particles that are insufficient to support high-resolution recon-
struction. To remedy this limitation, an alternative, distance-based classification algorithm
was devised to replace the particle-voting algorithm when there are not enough particles
to gain the advantage of particle voting (Figure 1E). In this method, the distances of all
M copies of each particle to all 3D cluster centers on the pseudo-energy landscape are
measured and ranked. Then, the particle is classified into the 3D cluster of the shortest
distance. A threshold could also be manually preset to remove particles that are too far
away from any of the cluster centers. The distance-based classification method can keep
more particles, but it ignores the potential issue of irreproducibility of low-quality particles.
Thus, it is proven to be less accurate in 3D classification (Figure 5M–O). In other words, it
trades off the classification accuracy and class homogeneity to gain more particles, which is
expected to be potentially useful for small datasets or small classes. By contrast, the energy-
based particle-voting algorithm imposes a more stringent constraint to select particles of
high reproducibility during classification, resulting in higher quality and homogeneity
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in the classified particles, which is superior to the distance-based classification method
(Figure 5S–U).

4.10. Practical Consideration of Particle Shuffling and Voting Parameters

The parameter M determines the degree of implicit cross-validation of classification
reproducibility, as well as the sampling densities of the pseudo-energy landscape. To
establish reproducibility for 3D classification, M should be no less than 3. The variation
of M is not supposed to change the pseudo-energy landscape because it multiplies on
both denominator and enumerator in the Boltzmann relation and is canceled in the ratio
of particle densities in computing the free-energy differences. Increasing the M value
will allow more volumes to be resampled, which then leads to a higher sampling density
in computing the manifold of the pseudo-energy landscape and potentially enhances its
reconstitution quality. The default classification threshold M/2 is the minimal number of
votes for verifying the reproducibility of 3D classification. However, a higher threshold,
such as 2M/3, will give rise to more stringent criteria in cross-validation, with a tradeoff
of voting out more particles. The particle voting algorithm does not entirely eradicate
misclassified particles. However, increasing either M or the classification threshold could
theoretically have a similar impact and improve the conformational homogeneity, because
it gets less probable for a particle to be misclassified to the same cluster more times.

Several considerations may be applied to the choice of M and to set up particle shuffling
and voting. First, to obtain a high-quality pseudo-energy landscape, a thousand or more
resampled volumes are expected for datasets of more than 1–2 million particles. Second,
the average particle number per volume is expected to be no less than 5000 or more to
ensure that majority of volumes include sufficient particles for quality reconstructions.
The expected particle number per volume must increase if the average SNR per particle
is decreased. It may need to reach 10,000–20,000 or more for small proteins or lower SNR
datasets. Third, for a dataset of moderate size, M can be adjusted to a higher value to
mitigate the lack of image data for resampling.

4.11. Data-Processing Workflow of AlphaCryo4D

The following summarizes the complete procedure of AlphaCryo4D, with the detailed
Algorithm 1 rationale explained in the previous subsections.

Algorithm 1 AlphaCryo4D

Input: Single-particle cryo-EM dataset after initial particle rejection of apparent false particles.
Output: Pseudo-energy landscape, MEP, 3D class assignment of each particle.
Step 1. Resample many 3D volumes through particle shuffling, consensus alignment and

Bayesian clustering.

1. Split the particle dataset randomly to many sub-datasets, if necessary, in case of a large
dataset (e.g., >150,000 particle images), for batch processing of particle shuffling and volume
resampling. Otherwise, skip this step if the dataset is small enough (e.g., <150,000 particle
images).

2. For each sub-dataset, conduct a consensus alignment to generate initial parameters of Euler
angles and translations in RELION v2.1/v3.0 (MRC, Cambridge, UK) or ROME v1.1.2
(Peking University, Beijing, China) with one or more consensus models.

3. Divide each sub-dataset into M + 1 groups, shuffle the sub-dataset M + 1 times and each
time take a different group out of the shuffled sub-dataset, giving rise to M + 1 shuffled
sub-datasets all with different collections of particles.

4. Conduct 3D Bayesian classification on all the M + 1 shuffled sub-datasets to generate
hundreds of 3D volumes, making each particle contribute to M different volumes.

5. Execute steps (2) to (4) using the same initial model (low-pass filtered at 60-Å) for all
sub-datasets.
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Step 2. Extract 3D feature maps of all volume data with the 3D deep residual autoencoder.

1. Align all 3D volumes and adjust them to share a common frame of reference.
2. Initialize the hyper-parameters of the 3D autoencoder (Table 1).
3. Train the neural network with the 3D volume data to minimize the mean square error

between the decoding layer and the input by the Adam algorithm of an initial learning rate
of 0.01.

4. Extract the 3D feature maps of all volumes from the encoding layer.

Step 3. Embed the volume data to two-dimensional manifolds through the t-SNE algorithm,
compute the pseudo-energy landscape and find the MEP.

1. Calculate the pairwise similarities between volumes using their feature-map-expanded
volume vectors, and randomly initialize the low-dimensional points.

2. Minimize the Kullback–Leibler divergence by the Momentum algorithm to generate 2D
manifold embeddings with t-SNE.

3. Compute the pseudo-energy landscape from the manifold using the Boltzmann relation.
4. Initialize searching of the MEP with a straight line between given starting and ending points.
5. Find the optimal MEP solution using the string method.

Step 4. Classify all particles through the energy-based particle-voting algorithm.

1. Sample the clustering centers along the MEP and calculate the recommended clustering
radius.

2. Define the local energy minima as the 3D clustering centers and their corresponding cluster
boundary for particle voting.

3. For each particle, cast a labeled vote for a 3D class when a volume containing one of the M
particle copies is located within the voting boundary.

4. Count the number of votes of each particle with respect to each 3D class and assign the
particle to the 3D class that receives more than M/2 votes from this particle.

5. Refine each 3D density map separately to high resolution in RELION v2.1/v3.0 (MRC,
Cambridge, UK) or cryoSPARC v2.9+ (Structura Biotechnology Inc., Toronto, ON, Canada)
using particles classified into the same 3D classes.

4.12. Software Implementation

This section provides a brief account of the implementation of the AlphaCryo4D
prototype system. The source code is freely available at http://github.com/alphacryo4
d/alphacryo4d/ (accessed on 2 August 2022). The main programs were implemented
in the Python language. Some auxiliary scripts were written in the Shell language due
to its convenience. The implementation of AlphaCryo4D includes four modules, named
Resample, DeepFeature, ManifoldLandscape and ParticleVoting. Table 2 summarizes all major
scripts and key arguments in each module.

The programs of Bayesian resampling are provided in the folder of Resample. The kernel
programs in Bayesian resampling include randsf.py, resample.py and bigdata.py (Table 2). In
algorithm testing, RELION v2.1 or v3.0 (MRC, Cambridge, UK) is used in the consensus
refinement and initial class assignment [3]. To speed up numerical operations, the package
NumPy is called to perform mathematical calculations in the manner of vectorization. In
addition, files in the mrc format are processed by the library mrcfile. If necessary, memory-
mapped files are written into hard disks to break the memory limit at the cost of more
running time when processing big data.

http://github.com/alphacryo4d/alphacryo4d/
http://github.com/alphacryo4d/alphacryo4d/
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Table 2. Kernel code, key arguments and their interpretations of four modules in AlphaCryo4D.

Modules Kernel Code Key Arguments Interpretations Default Values

Bayesian resampling

randsf.py –star Star file name of all particles particles.star
–number Particle number of each batch 100,000

resample.py –fold Value of M in particle shuffling 1 3

bigdata.py –folder Folder name of 3D volumes ./maps_aligned/
–std Whether to standardize these 3D volumes True

3D deep
residual

autoencoder

run_resnet.py

–epoch Autoencoder training epochs 50
–batchsize Batch size of 3D volumes during training 8

–validationsize Validation data size of 3D volumes 800
–regularization L2 regularization coefficient 0

–gpu ID of GPU utilization 0,1,2,3

run_predict.py
–data Input 3D volumes data_dl.npy

–model Network model for feature extraction checkpoint/check.h5
–batchsize Batch size of 3D volumes during prediction Result/feature.npy

Manifold mapping

tsne_rd.py
–seed Random seed for reproducibility 0

–perplexity Perplexity of t-SNE 30.0
–niter Maximum iterations in t-SNE 1000

string_method.py

–range Maximum value of low-dimensional
coordinates on the energy landscape 100.0

–start Position around the start point of MEP −80.0–80.0
–end Position around the end point of MEP 80.0 80.0

–stepmax Maximum steps in the string method 100,000
–stepsize Step size of the string method 0.1

–tolerance Convergence condition in the string
method 10-7

–interpolate Interpolation method to plot energy
landscape linear

–kcenters Number of clustering centers along the
MEP 20

Particle
assignment

clustering.py –centers The npy file of clustering centers centers_k.npy

–radius Radius of the clustering boundary 30.0

post_and_f.sh th Threshold of particle voting 2

post_or_parallel.sh \ Code for distance-based classification \

dedup.sh \ Code for removal of duplicated particles in
the strategy of distance-based classification \

1 The star files of shuffled particles are employed for reconstruction of 3D volumes in RLEION.

The programs of feature extraction by 3D deep residual autoencoder are provided in
the folder of DeepFeature. The core programs to construct the 3D deep residual autoencoder
and extract features of dynamics are run_resnet.py and run_predict.py (Table 2). The 3D
deep residual neural network is built, trained and predicted by Keras with the backend of
TensorFlow v1.15.4 (Alphabet Inc., Mountain View, CA, USA) [71]. The package TensorFlow
can support the parallel computing of GPU to accelerate the computation, where the
running environment with Compute Unified Device Architecture (CUDA) is required.
Once the training of the 3D residual autoencoder is completed, the best and final network
model can be saved to files of the hdf5 format for further analysis.

The folder of ManifoldLandscape includes the programs tsne_rd.py and string_method.py
to map the manifold embedding of 3D volumes for energy landscape estimation (Table 2).
For t-SNE running in the step of manifold mapping, the package scikit-learn is imported
to call the API of manifold learning. Besides, both the low-dimensional embedding and
the energy landscape are plotted by the package matplotlib, which can export figures of
png or pdf format. The optional calculation of the string method can generate a npy file of
clustering centers along the MEP with the user-defined parameters.

The code in the folder of ParticleVoting is utilized for particle assignment in the final
3D classification using either energy-based particle voting (Figure 1D) or distance-based
classification (Figure 1E). The core programs include clustering.py and post_and_f.sh for
energy-based particle voting, post_or_parallel.sh and dedup.sh for distance-based classifica-
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tion (Table 2). Different from particle voting, the strategy of distance-based classification
can retain more particle images in final 3D classes by assigning each particle to its nearest
energy well without any particles being voted out. Most operations of particle assignment
to 3D classes are performed by reading and writing the star files of particle images in
parallel.

In addition, the computation of AlphaCryo4D generates multiple intermediate files
and resulting output files in each module. Table 3 summarizes the Input/Output (I/O)
convention of each module. The inputs and outputs of four modules are introduced with
their data file formats to meet the demand for specific analysis. For compatibility with other
operations in Python, most intermediate files are saved in the format of npy. AlphaCryo4D
also exports the star files of particle images of each conformational state to be readily
processed by RELION [3].

Table 3. Dependencies and I/O of four modules in AlphaCryo4D.

Dependencies Modules Folder Inputs Outputs

Python 3.7.1
TensorFlow 1.15.4

Keras 2.3.1
scikit-learn 0.24.0

mrcfile 1.2.0
NumPy 1.18.5

Matplotlib 3.3.3
RELION v2.1 or v3.0

ROME v1.1.2
EMAN2 v2.91

Bayesian resampling Resample Particle images
(star files and mrc format)

3D volumes
(star files and npy format)

3D deep residual
autoencoder DeepFeature 3D volumes

(npy format)
Feature maps
(npy format)

Manifold mapping ManifoldLandscape

3D volumes
(star files and npy format)

Energy landscape
(npy and pdf format)

Feature maps
(npy format)

Optional clustering
centers along the MEP

(npy format)

Particle voting ParticleVoting

Particle images
(star files and mrc format) 3D reconstructions

(star files and mrc format)Energy landscape
(npy format)

To configure the runtime environment for AlphaCryo4D, Python 3.7 (Python Software
Foundation, Wilmington, DE, USA) is needed with the available computing environment
and dependencies. The necessary dependent packages installed by conda and pip can be
configured by the files EnvConda.txt and EnvPip.txt provided in the source code, respec-
tively. Installation of RELION v2.1 or v3.0 and EMAN2 v2.91 (Baylor College of Medicine,
Houston, TX, USA) is required to run through certain steps before and after AlphaCryo4D
classification (Table 3) [3,72].

As an example, given the properly configured environment, the Python program, such
as run_resnet.py in the folder DeepFeature, can be applied using the sample command like:
python DeepFeature/run_resnet.py –batchsize 8 –validationsize 200 –regularization 0.001 –data
data_dl.npy –gpu 0,1,2,3

4.13. Blind Assessments with Simulated Datasets

Three simulated large datasets with the SNRs of 0.05, 0.01 and 0.005, each including 2
million particle images, were employed to benchmark AlphaCryo4D and to compare its
performance with alternative methods. For each synthetic dataset, the particles were com-
putationally simulated by projecting the 20 3D density maps calculated from 20 hypothetical
atomic models emulating continuous inter-domain rotation of the NLRP3 inflammasome
protein. The 20 atomic models were interpolated between the inactive NLRP3 structure
and its hypothetical active state, which was generated through homology modeling using
the activated NLRC4 structure (Figure 2D) [56]. The 20 atomic models represent sequential
intermediate conformations during a continuous rotation in its NATCH domain against its
LRR domain over an angular range of 90◦. The NATCH domain in each conformation is
thus rotated 4.5◦ over its immediate predecessor in the conformational continuum sequence;
100,000 simulated single-particle images per conformational state were generated with ran-
dom defocus values in the range of −0.5 to −3.0 µm, resulting in 2 million single-particles
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for each dataset of a given SNR. The defocus values were not blind to all comparative tests,
due to difficulty in determining accurate defocus values from single particle images of very
low SNRs. The pixel size of the simulated image was set to the same as the pixel size (0.84
Å) of the real experimental dataset of the NLRP3-NEK7 complex [56]. To emulate realistic
circumstances in cryo-EM imaging, Gaussian noises, random Euler angles covering half a
sphere and random in-plane translational shifts from −5.0 to 5.0 pixels were then applied
to every particle image.

Each simulated heterogeneous NLRP3 dataset was analyzed separately by Al-
phaCryo4D and used to characterize the performance and robustness of AlphaCryo4D
against the variation of SNRs. In the step of particle shuffling and volume resampling,
2,000,000 particles in the dataset of any given SNR were divided randomly into 10 sub-
datasets for batch processing. The orientation of each particle was determined in the
initial 3D consensus alignment in RELION, which did not change in the subsequent 3D
classification. In this step, the maximum number of iterations of the 3D alignment was set
up as 30, with the initial reference low-pass filtered to 60 Å. Three-fold particle shuffling
(indicated as × 3 below) was conducted on each sub-dataset for volume resampling. The
first round of maximum-likelihood 3D classification divided the input shuffled particle sub-
dataset into five classes, each of these classes was then further classified into eight classes.
This procedure was separately executed on all shuffled particle sub-datasets. The particle
shuffling and volume resampling generated 1372, 1489, and 1587 volumes by the datasets
with SNRs of 0.05, 0.01 and 0.005, respectively. These volume data were used as inputs
for deep residual autoencoder to compute low-dimensional manifolds and pseudo-energy
landscapes (Figures 1D and 2A–D and Supplementary Figures S1A,B). After searching
the MEP on the pseudo-energy landscapes by the string method, 20 cluster centers along
the MEP were defined by the local energy minima along the MEP by the approximately
equal geodesic distance between adjacent minima, which represent potentially different
conformations of the macromolecule (Supplementary Figure S1A–C). The particle-voting
algorithm was applied in every cluster to determine the final particle sets for all 3D classes.
For validation of the methodology and investigation of 3D classification improvement, we
labeled each resampled 3D volume with the conformational state that held the maximum
proportion of particles in the class and computed its 3D classification precision as the ratio
of the particle number belonging to the labeled class versus the total particle number in the
volume (Figures 2E and 3).

4.14. Comparisons with Alternative Methods

Using 3D classification precision as a benchmark indicator, the performance of Al-
phaCryo4D preprocessed by standardization or 5 Å low-pass filtering was compared with
several other methods: (1) the conventional maximum-likelihood-based 3D (ML3D) clas-
sification in RELION v3.0 (MRC, Cambridge, UK) [3,4,6] with and without a hierarchical
strategy, (2) the conventional heterogeneous reconstruction in cryoSPARC v2.9+ (Struc-
tura Biotechnology Inc., Toronto, ON, Canada) [2], (3) the 3DVA algorithm with two and
three principal components (PCs) in cryoSPARC v2.9+ [11] and (4) the deep generative
model-based cryoDRGN v0.3.1 (Massachusetts Institute of Technology, Cambridge, MA,
USA) [12]. A total of 24 comparative tests by these alternative methods have been con-
ducted blindly using the three simulated datasets, which include 6 million images in total.
In all our comparative tests on AlphaCryo4D and the alternative methods, the ground-truth
information of particle orientations, in-plane translations and conformational identities
were completely removed from the methods being tested and were not used for any steps
of data processing or training. The ground-truth conformational identities of particles were
only used as validation references to compute the 3D classification precisions of the blind
testing results.

For the tests using ML3D in RELION, we classified all particles directly into 20 classes
and hierarchically into 4 × 5 classes, which first divided the dataset into four classes, with
each class further classified into five sub-classes (Figure 3). To generate the initial model
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for RELION, 20 ground truth density maps were averaged and low-pass filtered to 60 Å
prior to ML3D; 30 iterations of ML3D classifications were then performed. For testing the
conventional discrete ab initio heterogeneous reconstructions in cryoSPARC, each synthetic
dataset was directly classified into 20 classes without providing any low-resolution refer-
ence model. For comparison with the 3DVA algorithm in cryoSPARC, we first conducted
the blind consensus alignment of the entire dataset to find the orientation of each particle.
Then the alignment and the mask generated from the consensus reconstruction were used
as inputs into the 3DVA calculation, with the number of orthogonal principal modes being
set to 2 or 3 in 3D classification. The 3D variability display module in the cluster mode was
used to analyze the results of 3D classification. For blind tests with cryoDRGN, a default
8D latent variable model was trained for 25 epochs. The encoder and decoder architectures
were 256 × 3, as recommended by the cryoDRGN developers [12]. The particle alignment
parameters prior to cryoDRGN training were obtained by the same blind consensus refine-
ment in RELION used for other parallel tests. The metadata of 3D classification precisions
as well as the 3D density maps from all the algorithms applied to the three simulated
datasets were collected to conduct the statistical analysis (Figures 2–5).

4.15. Computational Costs

Although the computational cost of AlphaCryo4D is potentially higher than the con-
ventional approach, it does not appear to increase drastically and likely falls in an affordable
range, while reducing the average cost of computation per conformational state (Table 4). In
a nutshell, we can have a brief comparison of the computational efficiency of the simulated
2 million image dataset with an SNR of 0.01. In the step of 3D data resampling, we split the
dataset into 20 subsets, which contained 100,000 particles each. The 3D consensus align-
ment of all 2,000,000 particles costs about 75 h using eight Tesla V100 GPUs interconnected
with the high-speed NVLink data bridge in an NVIDIA DGX-1 supercomputing system.
Within each subset, the 3D Bayesian classification for one leave-one-group-out dataset cost
about 2.5 h using 320 CPU cores (Intel Xeon Gold 6142, 2.6 GHz, 16-core chip), so the total
time spent in one subset was about 10 h using 320 CPU cores in an Intel processor-based
HPC cluster. In addition, it spent about 3 h extracting features via a deep neural network
using eight Tesla V100 GPUs of the NVIDIA DGX-1 system. In comparison to about 160 h
cost in traditional classification methods, this approach costs about 213 h using eight Tesla
V100 GPUs and 320 CPU cores. As shown in Table 4, the majority of the computational cost
was spent on the steps of consensus alignment and high-resolution refinement, but not on
the steps of machine learning which adds overall only ~20% of the complete data process-
ing time. We have recently optimized the ML3D code-executing efficiency for CPU-based
clusters in a new version of ROME v1.1.2 [5] to speed up the consensus alignment by three-
to six-fold, which will be described in detail elsewhere. Taken together, the computational
cost of AlphaCryo4D is well justified, considering the output of more high-resolution
conformers yielded by the procedures. In fact, in a recent study combining AlphaCryo4D
with time-resolved cryo-EM [63], the actual data processing time was comparable to a
similarly large dataset [25], while obtaining twice more high-resolution conformers.

Table 4. Approximate computational time of AlphaCryo4D (grey boxes) on the simulated 2-million
image dataset with the SNR of 0.01 and three experimental datasets.

Particle Number
Consensus

Alignment by
RELION (h)

3D Volumes
Resampling (h)

Autoencoder
Training (h)

Manifold
Learning (h)

High-Resolution
Refinement by

RELION (h)
Simulated dataset

with the SNR of 0.01 2,000,000 75 10 3 15 110

Yeast Spliceosome
(EMPIAR-10180) 327,490 \ 48 4 0.1 30

Pf 80S Ribosome
(EMPIAR-10028) 105,247 80 30 2 0.1 70

Bacterial Ribosome
(EMPIAR-10076) 131,899 160 38 4 0.2 105
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4.16. Applications to the Experimental Cryo-EM Dataset of the Human 26S Proteasome

The substrate-engaged human 26S proteasome dataset (EMPIAR-10669) [25] includes
3,254,352 RP-CP particles (combined with particle images from both the doubly capped
and singly capped proteasomes) in total, with the super-resolution counting mode pixel
size of 0.685 Å and the undecimated box size of 600 × 600 pixels. The substrates of the
26S proteasome first appear in the state EA2. In this focused study, 147,108 particles of EA2
were utilized for computing the specific pseudo-energy landscape with 40 volumes. The
alignment of these particles was firstly refined with a 19S mask. M = 3 particle shuffling
was then conducted to resample the 3D volumes with a soft mask of 19S. By clustering
on the pseudo-energy landscape and particle voting, two classes containing 99,043 and
47,389 particles were generated for high-resolution refinement using RELION v3.0, which
were designated state EA2.1 and EA2.0, respectively. The density map of state EA2.0 exhibits
a conformation identical to state EA2 in the previous report [25].

4.17. Applications to the Experimental Cryo-EM Dataset of the Pf80S Ribosome

The Pf 80S ribosome dataset (EMPIAR-10028) contains 105,247 particle images. First,
the alignment of all particles was refined with a global mask in RELION. To resample
enough 3D volumes for the pseudo-energy landscape, we set M = 7 in the particle shuffling
step, resulting in 79 volumes in total with a global mask and 15 Å resolution limit in the
expectation step. Moreover, the regularization coefficient was set to 0.001 when training
the 3D residual network with this small dataset. All volumes were then low-pass filtered
at 5 Å prior to manifold embedding. Five clusters were obtained from the pseudo-energy
landscape, which had 66,035, 21,482, 9922, 6424, and 657 particle images, respectively, after
voting. All these clusters were refined independently using RELION v3.0.

4.18. Applications to the Experimental Cryo-EM Dataset of the Yeast Pre-Catalytic Spliceosome

The pre-catalytic spliceosome dataset (EMPIAR-10180) with the particle number of
327,490 shows high conformational dynamics. The consensus alignment of these particles
in the original dataset was used in the first step. M = 7 particle shuffling was utilized to
resample 160 volumes with a soft global mask and 15 Å resolution limit in the expectation
step. The regularization coefficient of 0.001 was set to train the 3D Autoencoder with this
dataset. All volumes were then low-pass filtered at 5 Å prior to manifold embedding.
Based on the pseudo-energy landscape, we obtained 14 classes with the particle number of
15,749, 17,703, 27,522, 13,820, 20,841, 14,989, 16,377, 22,047, 25,049, 21,327, 18,949, 6157, 9790
and 36,878 after voting. Each class was refined independently using RELION v3.0.

4.19. Applications to the Experimental Cryo-EM Dataset of the Bacterial 50S Ribosomal
Intermediates

The 131,899 particle images of the 50S ribosomal large subunit (EMPIAR-10076) are
highly heterogeneous. We refined the alignment of all particles with a global mask of the
50S using RELION v3.0. In the first step, 119 resampled volumes were utilized to calculate
the pseudo-energy landscape. M = 7 particle shuffling was conducted to generate these
volumes without any mask. The regularization coefficient of 0.001 was set when training
the deep neural network. All volumes were then low-pass filtered at 5 Å prior to manifold
embedding. Then the first pseudo-energy landscape resulted in nine clusters with the
particle number of 766 (A), 15,129 (B), 1236, 322, 670, 22,037, 25,445 (D), 33,976 (E) and 25,115
(C), respectively. For the clusters of states B–E, four zoom-in pseudo-energy landscapes
were then computed to discover more sub-states with 46, 56, 66 and 72 resampled volumes,
respectively. In the zoom-in pseudo-energy landscape calculation, M = 7 was set in particle
shuffling for resampling 3D volumes with a global mask and 20 Å resolution limit in
the expectation step. Then the regularization coefficient of 0.001 was used to train the
deep residual network. All volumes were then low-pass filtered at 5 Å prior to manifold
embedding. After particle voting, the pseudo-energy landscape of state B resulted in three
sub-clusters with particle numbers of 3494, 3600 and 7803. The state C pseudo-energy
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landscape resulted in five sub-clusters with the particle numbers of 2444, 7442, 711, 7633 and
5557. The state D pseudo-energy landscape resulted in five sub-clusters with the particle
numbers of 6231, 8785, 2123, 3718 and 4092. Moreover, the pseudo-energy landscape of
state E resulted in eight sub-clusters with the particle numbers of 4783, 1588, 5891, 3620,
7352, 5265, 357 and 2241. All these clusters were refined using RELION v3.0.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms23168872/s1.
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