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Macroporous single phase hydroxyapatite (HA) and biphasic HA/β-tricalcium phosphate
with 33% post-sinter hydroxyapatite (HA/β-TCP) were combined with 25 or 125 μg recom-
binant human transforming growth factor-β3 (hTGF-β3) to engineer a super activated biore-
actor implanted in orthotopic calvarial and heterotopic rectus abdominis muscle sites and
harvested on day 30 and 90. Coral-derived calcium carbonate fully converted (100%) and
partially converted to 5 and 13% hydroxyapatite/calcium carbonate (5 and 13% HA/CC)
pre-loaded with 125 and 250 μg hTGF-β3, and 1:5 and 5:1 binary applications of hTGF-β3:
hOP-1 by weight, were implanted in the rectus abdominis and harvested on day 20 and
30, respectively, to monitor spatial/temporal morphogenesis by high doses of hTGF-β3.
Bone formation was assessed on decalcified paraffin-embedded sections by measuring
the fractional volume of newly formed bone. On day 30 and 90, single phase HA implants
showed greater amounts of bone when compared to biphasic specimens; 5 and 13%
HA/CC pre-loaded with 125 and 250 μg hTGF-β3 showed substantial induction of bone for-
mation; 250 μg hTGF-β3 induced as yet unreported massive induction of bone formation
as early as 20 days prominently outside the profile of the macroporous constructs. The
induction of bone formation is controlled by the implanted ratio of the recombinant mor-
phogens, i.e., the 1:5 hTGF-β3:hOP-1 ratio by weight was greater than the inverse ratio.
The unprecedented tissue induction by single doses of 250 μg hTGF-β3 resulting in rapid
bone morphogenesis of vast mineralized ossicles with multiple trabeculations surfaced by
contiguous secreting osteoblasts is the novel molecular and morphological frontier for the
induction of bone formation in clinical contexts.
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INTRODUCTION
Nature relies on common but limited conserved molecular
mechanisms tailored to provide the emergence of special-
ized tissues and organs. The bone morphogenetic/osteogenic
proteins (BMPs/OPs), members of the transforming growth
factor-β (TGF-β) supergene family (Wozney et al., 1988),
are an elegant example of Nature’s parsimony in program-
ming multiple specialized functions deploying several mole-
cular isoforms with minor variation in amino acid motifs
within highly conserved carboxy-terminal regions (Reddi, 1997,
2000; Miyazono et al., 2001; Ripamonti, 2006a; Lander,
2007).

BMPs/OPs singly induce de novo endochondral bone forma-
tion in extraskeletal heterotopic sites of rodents as a recapitulation
of embryonic development (Reddi, 1994, 1998, 2000; Ripamonti,
2006a). The molecular cloning of the BMPs/OPs (Wozney et al.,
1988; Özkaynak et al., 1990) and the results obtained in numerous
pre-clinical studies in mammalian species including non-human
primates (Reddi, 2000; Ripamonti, 2004, 2006a) have prematurely
convinced molecular biologists, tissue engineers, and skeletal
reconstructionists alike to believe that a single recombinant human
bone morphogenetic protein would result in clinically acceptable

tissue induction and morphogenesis (Friedlaender et al., 2001;
Govender et al., 2002).

This theoretical potential has not been translated to accept-
able results in clinical contexts. Clinical trials of craniofacial and
orthopedic applications such as mandibular reconstruction and
sinus-lift operations have indicated that supra physiological doses
of a single recombinant human protein are needed to induce often
unacceptable tissue induction whilst incurring significant costs
without equivalence to autogenous bone grafts (Ripamonti et al.,
2006, 2007a, 2009a; Garrison et al., 2007; Mussano et al., 2007).

The need for alternatives to the recombinant human BMPs/OPs
is now felt more acutely following the reported complications and
performance failure associated with the clinical use of recombinant
hBMP-2 (Carragee et al., 2011a,b). Additional concerns are the
apparent association of high doses of hBMP-2 with malignancies
(Fauber, 2011a). Because of the often substandard regeneration
of clinical defects implanted with hBMPs/OPs, similar if not infe-
rior to autogenous bone grafts (Garrison et al., 2007; Mussano
et al., 2007; Ripamonti et al., 2007a), we now need to finally ask
the provocative question: are the bone morphogenetic proteins
the only initiators of the induction of bone formation in clinical
contexts?
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The osteoinductive prerogative, originally solely assigned to
naturally derived and recombinantly produced BMPs/OPs, has
been extended to the three mammalian TGF-β isoforms them-
selves. The three mammalian TGF-β isoforms are determinant of
a prominent endochondral osteoinductivity in heterotopic intra-
muscular sites of the non-human primate Papio ursinus (Ripa-
monti et al., 1997, 2000a, 2008; Ripamonti and Roden, 2010).
Using the insoluble collagenous bone matrix as carrier, the TGF-β3

isoform induces rapid and substantial endochondral bone forma-
tion in the rectus abdominis muscle of P. ursinus (Ripamonti et al.,
2008).

We now describe the induction of bone formation by a variety
of macroporous calcium phosphate-based constructs implanted
in heterotopic intramuscular rectus abdominis and orthotopic
calvarial sites of P. ursinus to engineer a super activated bone
bioreactor by the hTGF-β3 isoform for the rapid induction of
bone formation in pre-clinical and clinical contexts. We fur-
ther report that the ratio by weight of the binary application
of hTGF-β3 and hOP-1 is a critical parameter that controls the
synergistic induction of bone formation. The reported unprece-
dented tissue induction and morphogenesis by single doses of
250 μg hTGF-β3 indicate the novel molecular and morpholog-
ical frontier for the induction of bone formation in clinical
contexts.

MATERIALS AND METHODS
PRIMATES MODELS FOR TISSUE INDUCTION AND MORPHOGENESIS
Eight clinically healthy adult Chacma baboons P. ursinus were
selected from the non-human primate colony of the University
of the Witwatersrand, Johannesburg. Selection criteria, diet, and
housing conditions were as described (Ripamonti, 1991a,b). The
adult non-human primate P. ursinus is ideally suited for the study
of comparative bone physiology and repair with relevance to
humans (Schnitzler et al., 1993; Ripamonti et al., 2001). Research
protocols were approved by the Animal Ethics Screening Commit-
tee of the University and conducted according to the Guidelines
for the Care and Use of Experimental Animals prepared by the
University and in compliance with the National Code for Animals
Use in Research, Education, and Diagnosis in South Africa (Public
Services Department, 1990).

OSTEOGENIC SOLUBLE MOLECULAR SIGNALS
Recombinant human transforming growth factor-β3 (hTGF-β3)
and recombinant human osteogenic protein-1 (hOP-1) were
obtained from Novartis AG (Basel, Switzerland) and Creative Bio-
molecules/Stryker Biotech (Hopkinton, MA, USA), respectively.
Stock solutions of hTGF-β3 were prepared in 20% ethanol 100 mM
acetic acid, pH 4.5, to a final volume of 200 μl with 25 and
125 μg hTGF-β3 dispensed by micro-pipetting onto the macro-
porous constructs. Stock solutions of hOP-1 were prepared in
5 mM hydrochloric acid to a final concentration of 0.625 μg/μl
and applied to selected macroporous devices as described above.
For the binary application studies, 5 μg TGF-β3 were added to
25 μg hOP-1 (1:5 ratio) and made up to a final volume of
200 μl. An inverse binary combination (5:1, i.e., 25 μg TGF-β3:
5 μg hOP-1) was prepared and applied to selected macroporous
devices.

DESCRIPTION AND SPECIFICATION OF CALCIUM PHOSPHATE-BASED
MACROPOROUS CONSTRUCTS FOR HETEROTOPIC AND ORTHOTOPIC
IMPLANTATION
Single phase hydroxyapatite constructs
Single phase hydroxyapatites with a calcium-to-phosphorus molar
ratio of 1.67 were prepared via a solid state reaction between
Merck tricalcium phosphate and Univar calcium hydroxyapatite
at 1000˚C (Ripamonti et al., 2007b). For all the macroporous con-
structs, macro pores were formed by the inclusion of stearic acid
spheres 0.7–1.0 mm in diameter with the bioceramic powder being
pressed, and melted out during sintering, leaving interconnected
open macro pores with a series of repetitive concavities through-
out the specimens with defined radii of curvatures and diameters
ranging from 700 to 1400 μm (Ripamonti et al., 2007b). The
micro porosity of the specimens ranged from 40% (single phase
hydroxyapatite) to 36% (biphasic hydroxyapatite/β-tricalcium
phosphate; Ripamonti et al., 2007b).

Hydroxyapatite/β-tricalcium phosphate macroporous constructs
Hydroxyapatite and β-tricalcium phosphate powders were com-
bined to form batches with pre-sinter HA/β-TCP content ratio
(wt %) of 50/50. Macroporous samples were pressed from pow-
ders containing stearic acid spheres of between 0.7 and 1.0 mm in
diameter to construct porous disks 25 mm in diameter by 4 mm
in thickness for orthotopic calvarial and heterotopic intramuscu-
lar implantation (Ripamonti et al., 2007b). Samples were sintered
pressureless in air for 1 h at 1020˚C; sintering resulted in post-
sinter constructs of 33.3% hydroxyapatite/β-tricalcium phosphate
(HA/β-TCP; Ripamonti et al., 2007b). The post-sinter HA/β-TCP
phase content ratios of the biphasic bioceramic constructs were
determined by the semi quantitative XRD-based Chung (1974)
method. The measurements revealed a decrease in HA intensity
relative to the known pre-sinter HA contents, with an associated
increase in β-TCP intensity (Nilen and Richter, 2008).

Coral-derived macroporous calcium carbonate/calcium phosphate
constructs
Three macroporous hydroxyapatite replicas of the calcium car-
bonate exoskeletal macrostructure of the sea coral of the genus
Goniopora were prepared by hydrothermal chemical exchange
with phosphate to the protocol specification (Interpore Inter-
national, Irvine, CA, USA; Ripamonti, 1991a; Ripamonti et al.,
1992, 1993; Shors, 1999). Calcium carbonate coral-derived con-
structs were subjected to complete conversion to hydroxyapatite
(100% HA); limited conversion to hydroxyapatite resulted in
calcium carbonate constructs with 5 and 13% hydroxyapatite-
coating, respectively, and designated as 5 and 13% calcium car-
bonate/hydroxyapatite constructs (5 and 13% HA/CC; Ripamonti
et al., 1992, 2009b).

For orthotopic calvarial implantation, single phase hydroxyap-
atite (single phase HA) and biphasic hydroxyapatite/β-tricalcium
phosphate (HA/β-TCP) constructs (Council for Scientific and
Industrial Research, Materials Science and Manufacturing, Pre-
toria, South Africa) were sintered into macroporous disks, 25 mm
in diameter by 4 mm in thickness (Ripamonti et al., 2007b); the
contra-lateral calvarial implantation design for the allocation of
the treatment variables is illustrated in Figure 1A.
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FIGURE 1 | Surgical models and implantation designs in the Chacma

baboons Papio ursinus for tissue induction and morphogenesis by

calcium phosphate-based macroporous constructs implanted in

orthotopic calvarial and heterotopic rectus abdominis intramuscular

sites. (A) A calvarial Latin square block design resulted in the rotational
allocation of macroporous disks of single phase (single phase HA) and
biphasic hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) constructs
solo or pre-loaded with 25 and 125 μg human transforming growth
factor-β3 (hTGF-β3) within a total of 24 calvarial defects in four animals
with a balanced distribution between anterior and posterior regions of
the calvaria (Ripamonti, 2006a; Ripamonti et al., 2007b). (B–D)

Heterotopic intramuscular rectus abdominis model and implantation

designs in eight adult Chacma baboons P. ursinus. (B) Heterotopic
implantation of 4 disks 25 mm in diameter 3.5/4 mm in thickness and 4
cylinders 12 mm in diameter in 4 P. ursinus for a total of 32 specimens in
the rectus abdominis muscle. (C) Intramuscular rectus abdominis
implantation of 12 coral-derived calcium carbonate-based macroporous
constructs fully converted to hydroxyapatite (100% HA/CC), and partially
converted to 5 and 13% hydroxyapatite (5 and 13% HA/CC) pre-loaded
with 125 and 250 μg hTGF-β3 implanted in two adult P. ursinus and
harvested on day 20. (D) Intramuscular rectus abdominis implantation in
two adult P. ursinus of 4 13% and 4 5% partially converted HA/CC
constructs pre-loaded with binary applications of hTGF-β3: hOP-1 at 5:1
and 1:5 ratios and harvested on day 30.
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For heterotopic rectus abdominis implantation, HA/β-TCP
samples were sintered as macroporous constructs of disks 25 mm
in diameter by 3.5/4 mm in thickness, and as cylindrical rods 9 mm
in diameter by 20 mm in length (Figure 1B). Coral-derived cal-
cium carbonate/hydroxyapatite constructs 5 and 13% conversion
to hydroxyapatite (Ripamonti et al., 1992, 2009b) as well as fully
converted specimens were also implanted in the rectus abdominis
muscle of the baboon (Figures 1C,D).

The heterotopic rectus abdominis and orthotopic calvarial
models of tissue induction and morphogenesis by osteoin-
ductive biomimetic matrices have been described in detail
(Ripamonti, 1991a,b, 2006a; Ripamonti et al., 1992, 1993,
2007b, 2009b). Biomimetic matrices for orthotopic implanta-
tion (in four animals) were combined with doses of hTGF-
β3 (Figure 1A). Single phase HA or biphasic HA/β-TCP disks
were treated with 0, 25, and 125 μg hTGF-β3. A total of
16 disks were implanted, i.e., four per animal as shown in
Figure 1A.

A total of 32 biomimetic matrices for heterotopic implan-
tation (in four animals, initially) were combined with 25 and
125 μg hTGF-β3 (Figure 1B). After preliminary morphological
results of biphasic HA/β-TCP implants, samples of fully converted

coral-derived CC/HA and partially converted 5 and 13% CC/HA
constructs were combined with high doses of hTGF-β3 as shown
in Figure 1C, and implanted heterotopically in an additional two
animals. A total of 16 heterotopic binary applications of hTGF-β3

and hOP-1 were applied at ratios of 1:5 and 5:1 by weight and
implanted in the rectus abdominis muscle of an additional two
P. ursinus animals (Figure 1D). Previous data reporting macrop-
orous devices implanted without morphogens were used as con-
trols (Ripamonti, 1991a; Ripamonti et al., 1992, 1993, 1999, 2007b,
2009b).

Tissue harvest, histology, and histomorphometry
Thirty and 90 days after implantation of orthotopic calvarial and
heterotopic intramuscular biomimetic matrices, anesthetized ani-
mals were euthanized with an intravenous overdose of sodium
pentobarbitone. Anesthetized animals were subjected to bilateral
carotid perfusion with buffered saline followed by 10% buffered
formalin and harvesting of specimens with surrounding calvaria as
described (Ripamonti et al., 1992, 1993, 1999, 2007b, 2009b; Ripa-
monti, 2006a). The four additional P. ursinus animals, implanted
with coral-derived CC/HA combinations, were euthanized on day
20 and 30, respectively.

FIGURE 2 | Orthotopic single phase hydroxyapatite constructs

harvested on day 30 and the induction of bone differentiation by

25 and 125 μg recombinant human transforming growth factor-β3

(hTGF-β3). (A,B) Low and high power views of the induction of bone
formation within concavities of the macroporous spaces (blue arrow) as

initiated by 25 μg hTGF-β3 on day 30. (C) Induction of bone formation
(white arrows) by 125 μg hTGF-β3 within the macroporous spaces of a
single phase HA construct. (D) Hypercellular osteoblastic activity of the
newly formed bone (white arrow) tightly attached to the single phase
HA substratum.
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Calvarial specimen blocks were cut along the sagittal one-
third of the implanted defects, and further fixed in 10% buffered
formalin; orthotopic and heterotopic blocks were decalcified
in a formic and hydrochloric acid solution and processed for
paraffin embedding. Serial sections cut at 4 μm were stained
by the Goldner’s trichrome method and examined using an
Olympus Provis AX70 Research Microscope (Olympus Opti-
cal Company, Tokyo, Japan). Using the point-counting tech-
nique (Parfitt, 1983), a calibrated Zeiss integration Platte II
with 100 lattice points was used to calculate the fractional vol-
ume of each of the following histological components: newly
formed bone, fibrovascular tissue (including marrow) and the
implanted scaffold (Ripamonti et al., 1992, 1993, 1999, 2001,
2007b, 2009b).

Sections were analyzed at a magnification of 4× with the
Zeiss graticule superimposed over five sources selected for Histo-
morphometry (Ripamonti, 1991a,b, Ripamonti et al., 1992, 1993,
1999, 2001, 2007b, 2009b). Each source represented a field of
7.84 mm2. Morphometry was performed on two calvarial sections
per implant, approximately 0.5–3 mm apart. Transversely cut
decalcified heterotopic specimens were analyzed by superimpos-
ing the Zeiss graticule over two sources of two serial sections per
specimens as described (Ripamonti, 1991a,b; Ripamonti et al.,
1992, 1993, 1999, 2001, 2007b, 2009b). The calculations were
expressed in mean percentage values. Using GraphPad Prism™
computer software for statistical analyses (GraphPad Software Inc.,
San Diego, CA, USA), the mean values, standard deviation and
standard error were calculated and bar graphs plotted (Ripamonti
et al., 2009b). p-Values were calculated by one-way analysis of
variance (ANOVA). Significant differences were detected by Bon-
ferroni’s and Dunnet’s multiple comparison tests (Ripamonti et al.,
2009b).

RESULTS
HISTOLOGY AND HISTOMORPHOMETRY
Orthotopic implants: single phase HA implants – 30 and 90 days
Untreated single phase HA orthotopic specimens showed lack of
bone formation with minimal bone by conduction at the cal-
varial interfaces (<2%). Specimens treated with 25 and 125 μg
hTGF-β3 showed limited induction of bone formation by day
30 (Figures 2 and 3); the induction of bone, though minimal
on day 30, had occurred along concavities of the macroporous
spaces (Figure 2). By day 90, control specimens showed the
induction of bone formation across the macroporous constructs
(21.66 ± 0.60%) though preferentially endocranially with mini-
mal bone formation pericranially below the temporalis muscle
(Figures 4A,B). On day 90, single phase HA pre-loaded with 25
and 125 μg hTGF-β3 resulted in a dose-dependent increase of bone
induction (46.29 ± 6.3 vs. 74.40 ± 3.4%), respectively (Figures 4
and 5). A significant difference (p < 0.01), as detected by Dunnet’s
multiple comparison test, was noted for control vs. single phase
HA pre-loaded with 125 μg hTGF-β3 (Figure 5). Newly induced
bone by the hTGF-β3 isoform was characterized by numerous
contiguous rows of well rounded osteoblasts surfacing the newly
induced bone within the macroporous spaces of the implanted
substrata (Figures 4E,F).

Orthotopic implants: biphasic HA/β-TCP-HA 33% implants – 30 and
90 days
Control specimens of biphasic HA/β-TCP showed albeit min-
imal (Figure 3), the induction of bone formation classi-
cally forming within concavities of the macroporous sub-
stratum (Figure 6). Newly formed bone protruded within
the macroporous spaces covered by numerous contiguous
osteoblasts (Figure 6B). On day 30, scattered islands of newly

FIGURE 3 | Distribution of newly formed bone, fibrovascular tissue and residual scaffold material in orthotopic implants 30 days after implantation of

single phase HA and biphasic HA/β-TCP macroporous constructs loaded with 0 (control), 25 and 125 μg hTGF-β3.
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FIGURE 4 | Induction of bone formation by orthotopic calvarial implants

of single phase HA harvested on day 90. (A,B) Low and high power views
of untreated single phase HA showing bone formation endocranially (dark
blue arrow) (A) and within macroporous space (B). (C,D) Induction of bone

formation across the macroporous spaces by a single phase HA pre-treated
with 25 μg hTGF-β3. (E,F) High power views of macroporous spaces treated
with 125 μg hTGF-β3. Multiple osteoblasts (dark blue arrows) surfacing the
newly formed bone.

formed woven bone formed in specimens pre-treated with
25 μg TGF-β3 (4.68 ± 3.5%) Figures 6E,F), though bone was
not detected in specimens pre-treated with 125 μg TGF-β3

(Figure 3).
On day 90, control macroporous biphasic HA/β-TCP con-

structs induced 27.24 ± 1.27% bone (Figures 5 and 7). The
newly formed bone was distributed throughout the macro
porous spaces of the specimens. Single phase HA implants

showed greater amounts of bone formation when com-
pared to biphasic implants (Figure 5). Biphasic HA/β-TCP
implants with 25 and 125 μg TGF-β3 induced 33.57 ± 1.88
and 27.00 ± 0.73% bone, respectively (Figures 5 and 8).
Both types of implants, with or without hTGF-β3, showed
pronounced vascularization and cellular activity, including
macrophages and multinucleated cells attached to the implanted
matrices.
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FIGURE 5 | Distribution of newly formed bone, fibrovascular tissue and

residual scaffold material in orthotopic implants 90 days after

implantation with 0 (control), 25 and 125 μg hTGF-β3 in single phase HA

and biphasic HA/β-TCP macroporous constructs. Significant differences
(*p < 0.01), as detected by Dunnet’s multiple comparison test, were noted for
control vs. SPHA treated with 125 μg hTGF-β3.

Heterotopic implants: rods and disks of sintered macroporous
HA/β-TCP – HA 33% – 30 and 90 days
On day 30, 25 and 125 μg hTGF-β3-treated macroporous con-
structs showed prominent vascularization throughout the speci-
mens. Macroporous rods loaded with 125 μg hTGF-β3 resulted in
greater bone formation (19.61 ± 5.44%) when compared with the
disk-shaped implants (7.96 ± 6.39%; Figure 9). Islands of chon-
drogenesis were seen along the outer rim of the implanted con-
structs, extending into the porous spaces (not shown). On day 90,
newly formed bone was prominently seen surrounding the hTGF-
β3-treated matrices extending into the macroporous spaces of both
rods and disks. Of note, bone formed predominantly at the periph-
ery of the implanted scaffolds, with minimal bone if any in the
center of the pre-loaded constructs (Figure 10). Central macrop-
orous spaces showed lack of bone formation with fibrovascular
invasion and multinucleated cells attached to the surface con-
cavities. When evaluated within the macroporous spaces, 125 μg
hTGF-β3 resulted in less bone formation (rods: 27.49 ± 1.07%;
disks: 25.00 ± 1.00%) when compared to 25 μg hTGF-β3 (rods:
35.92 ± 2.42%; disks: 32.25 ± 2.25%; Figure 11).

Heterotopic implants: fully converted coral-derived HA/CC, 5%
HA/CC, and 13% HA/CC – 20 and 30 days
Implants treated with 125 and 250 μg hTGF-β3 showed large
areas of newly formed bone prominently extending to the
periphery of the implanted macroporous constructs with min-
imal induction of bone within the macroporous spaces of the
implanted matrices (Figures 12 and 13). Fully converted macro-
porous coral-derived constructs showed almost identical results
when pre-loaded with 125 or 250 μg hTGF-β3 (31.68 ± 1.31 and
31.27 ± 0.12%, respectively; Figure 14). 5% HA/CC implants
treated with 125 and 250 μg hTGF-β3 showed a dose-dependent
increase of bone formation, 21.47 ± 1.34 vs. 33.18 ± 5.91%,
respectively (Figure 14).

Rapid and substantial induction of bone formation had
occurred in specimens pre-loaded with 250 μg hTGF-β3. There
was extensive spatial/temporal tissue induction and morphogene-
sis by day 20 with large mineralized ossicles well outside the profile
of the implanted matrix with multiple trabeculation of newly
formed mineralized bone (Figure 13). Newly formed trabecu-
lae were covered by contiguous rows of well rounded osteoblasts;
low power digital images indicated the in vivo rapid induction of
large masses of bone (Figure 13) even greater than the previously
reported massive induction of the synergistic induction of bone
formation at a ratio of 1:20 by weight of hTGF-β1 and hOP-1,
respectively (Ripamonti et al., 1997).

The induction of bone by binary applications of hTGF-β3 and
hOP-1 at 1:5 ratio by weight was greater than the quantity of bone
in specimens pre-loaded with the inverse ratio of 5:1. 5% HA/CC,
treated with the 1:5 ratio, yielded 38.30 ± 8.88% bone compared
with 18.23 ± 8.41% at the 5:1 ratio (Figure 15). Statistically greater
amounts of bone (p < 0.05), as detected by Bonferroni’s multiple
comparison test, were generated in 13% HA/CC as compared to
5% HA/CC specimens with the hTGF-β3: hOP-1 at the 1:5 ratio
than the inverse ratio (38.51 ± 3.60 vs. 7.70 ± 2.02%, respectively;
Figure 15).

DISCUSSION
Regenerative medicine is the grand multidisciplinary challenge of
molecular, cellular, and evolutionary biology requiring the inte-
gration of tissue biology, tissue engineering, developmental and
experimental surgery to trigger de novo and ex novo induction of
tissues and organs of the mammalian body (Sampath and Reddi,
1981, 1983; Khouri et al., 1991; Reddi, 1998, 2000; Viola et al.,
2003).

The need for alternatives to recombinant hBMPs/OPs is now
felt more acutely after the reported complications and perfor-
mance failure in clinical contexts (Carragee et al., 2011a,b; Fauber,
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FIGURE 6 | Induction of bone formation by orthotopic calvarial biphasic

hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) harvested on day 30.

(A,B) Low and high power views of untreated HA/β-TCP construct showing
bone formation pericranially (light blue arrows) (A) within macroporous
spaces (A,B). (C,D) Induction of bone formation within concavities (arrows) of

the macroporous spaces of untreated HA/β-TCP constructs; the induction of
bone forms exclusively within the concavities of the implanted substratum
(blue arrows) (E,F) High power views of macroporous spaces treated with
125 μg hTGF-β3 with multiple osteoblasts surfacing the newly formed bone
(dark blue arrows).

2011b). Contrary to study in rodents and lagomorphs, hetero-
topic implantation of recombinant hTGF-β3 reconstituted with
insoluble and inactive collagenous bone matrix, induces rapid and
substantial bone formation in the non-human primate P. ursinus
(Ripamonti et al., 2008, 2009a).

We have shown that sintered HA/β-TCP and coral-derived
macroporous constructs combined with doses of the mammalian

hTGF-β3 form a super activated bioreactor inducing rapid and
substantial bone formation. Of note, bone had predominantly
formed at the periphery of the implanted super activated bio-
mimetic constructs. The peripheral induction of tissue morpho-
genesis prominently characterized the induction of bone for-
mation by high doses of the recombinant protein. Peripheral
tissue induction also characterized coral-derived bioreactors
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FIGURE 7 | Induction of bone formation by untreated orthotopic

calvarial biphasic hydroxyapatite/β-tricalcium phosphate (HA/β-TCP)

harvested on day 90. (A) Low power view showing the induction of

bone formation across the macroporous spaces (dark blue arrows). (B,C)

High power views of newly formed bone within macro porosities of the
substratum.

pre-loaded with binary applications of the recombinant mor-
phogens. Provocatively, binary applications of hOP-1 and hTGF-
β1 or platelet-derived TGF-β1 and hTGF-β3 synergize to induce
massive ossicles in orthotopic calvarial and heterotopic rectus
abdominis intramuscular sites (Ripamonti et al., 1997, 2010;
Duneas et al., 1998). Of note, the temporal/spatial distribution
of bone formation is rapid with the induction of large expanded
and corticalized ossicles outgrowing the rectus abdominis intra-
muscular space and orthotopically, the pericranial calvarial space
(Ripamonti et al., 1997, 2010; Duneas et al., 1998).

Responding mesenchymal stem cells, either myoblas-
tic/pericytic of striated muscle or osteoprogenitor pericranial stem
cells surrounding the implanted scaffolds, rapidly transform to

the synergistic induction of bone formation. TGF-β1 and TGF-β3

pre-loaded collagenous bone matrix as carrier singly or in binary
application with hOP-1 induce rapid bone formation, with lim-
ited if any tissue formation in the central void-like areas of the
newly formed ossicles (Ripamonti et al., 1997, 2010; Duneas et al.,
1998).

In previous studies using three different doses of the hTGF-β1

isoform combined with the 25 μg selected dose of hOP-1, syn-
ergy was found to be optimal at a ratio of 1:20 by weight of
hTGF-β1:hOP-1, respectively (Ripamonti et al., 1997). We have
previously reported that regeneration of cartilage and bone in
postnatal life shares common cellular and molecular mechanisms
with embryonic bone development, and that the “memory” of
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FIGURE 8 | Induction of bone formation by orthotopic calvarial

biphasic hydroxyapatite/β-tricalcium phosphate (HA/β-TCP)

pre-treated with 25 (A,C,E) and 125 μg (B,D,F) human recombinant

transforming growth factor-β3 (hTGF-β3) harvested on day 90.

Induction of bone formation with prominent pericranial osteogenesis
(magenta arrows) by 125 μg hTGF-β3.

developmental events in embryo can be redeployed and recapit-
ulated postnatally by the application of morphogens’ combina-
tion (Ripamonti et al., 1997). Changing the morphogen ratio,
as reported in the present experiment, substantially alters the
impetus of the morphogenetic cascade; the inversion of hTGF-
β3 vs. hOP-1 ratios significantly reduces the induction of bone
formation. Synergistic interactions amongst secreted morphogens
are a general principle adopted in embryonic development, later
invocated in postnatal life. Synergistic synchronous expression of

related gene products tightly controlled by threshold levels of
finely tuned secreted morphogens, engineers morphogenesis of
specialized tissues and organs.

By day 20, in specimens pre-loaded with 250 μg hTGF-β3, there
was extensive spatial/temporal tissue induction and morphogen-
esis. Large mineralized ossicles formed well outside the profile
of the implanted matrix with multiple trabeculation of newly
formed mineralized bone. Newly formed trabeculae were covered
by contiguous rows of plump osteoblasts. The rapid induction and
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FIGURE 9 | Distribution of newly formed bone, fibrovascular tissue and residual scaffold material in heterotopic implants, 30 days after implantation

with 25 and 125 μg hTGF-β3, in biphasic HA/β-TCP rods and disks.

corticalization of the newly formed heterotopic ossicles is due to
the rapid transformation of all available responding stem cells at
the periphery of the implanted carriers, either insoluble collage-
nous bone matrix (Ripamonti et al., 1997; Duneas et al., 1998)
or macroporous calcium phosphate-based constructs (Ripamonti
et al., 2010), including the present experiments. The recruitment
and transformation of all the available responding stem cells at the
periphery of the implanted bioactive matrices result in the rapid
induction of bone formation outside the profile of the implanted
macroporous constructs. The rapid peripheral induction further
delays differentiating stem cells migration within the central areas
of the macroporous spaces. This results in limited if any bone for-
mation within the center of the implanted macroporous constructs
when evaluated on day 30 and 90. Different doses of the hTGF-
β3 isoform are responsible for variation in the temporo/spatial
induction of bone formation; 250 and 125 μg hTGF-β3 resulted in
greater peripheral induction of bone formation when compared
to 25 μg hTGF-β3 which resulted in greater bone induction within
the macroporous spaces owing to the less chemotactic inductive
signal of less amounts of the recombinant protein.

High doses of the recombinant morphogen showed the pro-
nounced induction of bone formation well outside the profile of
the implanted macroporous scaffolds. The morphological results
imply that the ligand attached to the most peripheral regions of
the implanted macroporous constructs rapidly sets into motion
the ripple-like cascade of bone differentiation. This is potenti-
ated and expanded as a wave throughout the surrounding spaces
by the invading rich capillary network with paravascular myoen-
dothelial/pericytic stem cells available for rapid differentiation and
transformation toward osteoblastic cell lines under the power-
ful osteogenic soluble signal of the hTGF-β3 protein. Indeed the
invading rich vascular and paravascular “niches” with accompa-
nying progenitor stem cells (Kovacic and Boehm, 2009) provide

stem cells to “feel their way into organogenesis,” paraphrasing the
concept that cells feel and respond to the stiffness of their substrata
(Disher et al., 2005).

The extensive osteoinduction could also be explained by des-
orption of the morphogen from the implanted macroporous con-
structs. Desorption as suggested in previous experiments in the
primate after the generation of large islands of heterotopic ossi-
fication away from the implanted collagenous matrix as carrier
(Ripamonti et al., 1996, 2000b). Similarly, desorption of the hTGF-
β3 with subsequent diffusion of the recombinant protein within
the newly formed highly vascularized matrix including type IV
collagen and laminin might have provided an ideal microenvi-
ronment for cell differentiation and induction of tissue formation
(Trueta, 1963; Reddi, 1984; Duneas et al., 1998). Whether such an
extended range of action is due to a diffusion gradient or to the
initiation of a sequential chain of cellular induction (Slack, 1987;
Lander, 2007) cannot be deduced from the available data.

Of interest, the morphological induction of bone formation by
125 μg hTGF-β3 is somehow equal when delivered by either insol-
uble collagenous bone matrix (Figure 10A) or macroporous cal-
cium phosphate-based constructs (Figure 10B), i.e., well enlarged
ossicles forming outside the profile of the implanted matrix promi-
nently growing between the ventral fascia and the muscular tissue
of the rectus abdominis muscle. This suggests that the biological
activity of 125 μg hTGF-β3 is not best delivered by either collage-
nous matrix or coral-derived macroporous constructs; Figures 12
and 13 clearly indicate that the delivery system for the hTGF-β3

isoform needs to contend with the most powerful chemotactic and
inductive activities inherent to the third mammalian TGF-β iso-
form, which rapidly induces large amount of bone spatially away
from the site of the implanted morphogen.

Hyper cellular osteoblastic activity, osteoid synthesis, angio-
genesis, and capillary sprouting characterize the newly formed
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FIGURE 10 | Morphological induction of bone formation by the human

recombinant transforming growth factor-β3 (hTGF-β3) irrespective of the

matrix carrier used as delivery system. Equivalence of the generated
constructs either by insoluble collagenous bone matrix (Ripamonti et al.,
2008) (A) or macroporous biphasic hydroxyapatite/β-tricalcium phosphate
(HA/β-TCP) (B) with bone formation prominently expanding outside the profile
of the implanted macroporous cylinder (blue arrows) pre-treated with 25 μg
hTGF-β3. Enlarged ossicles extending within the rectus abdominis muscle

generated by either 125 μg hTGF-β3 (A) or 25 μg hTGF-β3 (B). (C–E) High
power views of newly induced bone by 25 μg hTGF-β3 within the macro
porosity of the implanted substratum. (F) Disk of biphasic HA/β-TCP construct
delivering 25 μg hTGF-β3 with hypercellular activity within the macro porous
spaces. (G,H) High power views showing transitional morphological features
from the peripheral remodeled trabeculation (blue arrows) to a more
cellular/woven bone-like induction progressing toward the center of the
macroporous construct (magenta arrows).
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FIGURE 11 | Distribution of newly formed bone, fibrovascular tissue and

residual scaffold material in heterotopic implants, 90 days after

implantation of biphasic hydroxyapatite/β-tricalcium phosphate

(HA/β-TCP) rods and disks pre-loaded with 25 and 125 μg hTGF-β3.

heterotopic ossicles by the hTGF-β3 isoform (Ripamonti et al.,
2008). Together with the induction of prominent osteogenesis with
mineralization in mandibular defects of P. ursinus (Ripamonti,
2006b), the induction of large corticalized mineralized ossicles in
the rectus abdominis muscle with large void-like spaces within the
newly generated tissues (Ripamonti et al., 2008, 2009a), has sug-
gested that the hTGF-β3 isoform is the most powerful osteogenic
gene product so far tested in non-human primates. It is likely
that the associated expression of osteogenic gene products upon
the implantation of the mammalian TGF-β isoforms particularly
type IV collagen mRNA (Duneas et al., 1998) further enhances
the bone induction cascade (Ripamonti et al., 1997, 2000a, 2008;
Ripamonti and Roden, 2010). The temporal window during which
TGF-β1 mRNA is expressed upon implantation of doses of hOP-1
both heterotopically and orthotopically in P. ursinus is manda-
tory for the induction of optimal osteogenesis (Ripamonti, 2005).
This has been unambiguously demonstrated by the endochon-
dral osteoinductivity of the mammalian TGF-β isoforms in non-
human primates (Ripamonti et al., 1997, 2000b, 2008; Ripamonti
and Roden, 2010). We have previously indicated that the hTGF-
β3 isoform may regulate the expression of the homologous but
molecularly different BMPs/OPs, acting upstream of the bone
morphogenetic proteins which may initiate the induction of bone
formation (Ripamonti et al., 2008; Ripamonti and Roden, 2010).

Regenerative medicine in clinical contexts is on a different scale
altogether when compared to animal models that may not ade-
quately translate and reproduce morphogen-related therapeutic
responses in Homo sapiens. Tissue engineering is a field of tremen-
dous promises particularly after successful pre-clinical studies
including non-human primate species (Ripamonti et al., 2001,
2006, 2007a). Importantly however novel methods and procedures
dramatically shown in animal models have not yet been translated
in clinical contexts (Ripamonti et al., 2006, 2007a; Garrison et al.,
2007; Mussano et al., 2007). In spite predictions to the contrary

(O’Keefe and Mao, 2011), ultimately it is still doubtful whether
tissue engineering will emerge as a winning medical technology or
abruptly fail (Williams, 2006).

Presently, the use of recombinant hBMP-2 and hOP-1 in clini-
cal contexts is in the balance (US Food and Drug Administration,
2008; Department of Justice, 2009; Williams et al., 2010; Centre for
Devices and Radiological Health, 2011; Fauber, 2011a,b), and the
US suppliers for both proteins are currently under US federal and
FDA investigations. The recombinant proteins are now no longer
available for use in clinical contexts (US Food and Drug Admin-
istration, 2008; Department of Justice, 2009; Williams et al., 2010;
Centre for Devices and Radiological Health, 2011; Fauber, 2011a).
The possible association of high doses of hBMP-2 with malignan-
cies is now additionally under scrutiny (Fauber, 2011a). There is an
acute need for morphogen-related bone tissue engineering partic-
ularly after the current FDA investigations into hOP-1 and hBMP-2
(US Food and Drug Administration, 2008; Department of Justice,
2009; Williams et al., 2010; Centre for Devices and Radiological
Health, 2011; Fauber, 2011a). To establish a robust method to engi-
neer a calcium phosphate-based bone bioreactor for heterotopic
induction of bone formation, macroporous calcium phosphate-
based constructs were implanted with relatively high doses of the
hTGF-β3 isoform in heterotopic sites of the rectus abdominis mus-
cle in P. ursinus. The addition of the hTGF-β3 isoform constructed
a bone bioreactor that enabled the rapid formation of heterotopi-
cally induced ossicles with significant induction of bone formation
outside the profile of the implanted biomimetic matrices.

CONCLUSION
Orthotopic applications of hTGF-β3 induced statistically signifi-
cant larger volumes of bone at 90 days when loaded onto macro-
porous single-phase hydroxyapatites as compared to biphasic
HA/TCP constructs. Binary applications of hTGF-β3 and hOP-1
on coral-derived HA/CC macroporous carriers in heterotopic sites
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FIGURE 12 | Fully converted coral-derived calcium carbonate

constructs (100% HA/CC) pre-treated with 125 μg human recombinant

transforming growth factor-β3 (hTGF-β3), implanted in the rectus

abdominis muscle of Papio ursinus and harvested on day 20 after

heterotopic implantation. (A,B) Induction of bone formation by the

hTGF-β3 isoform with substantial bone forming outside the macroporous
construct prominently extending within the rectus abdominis muscle.
(C–F) High power views showing multiple woven bone trabeculation
covered by contiguous osteoblasts across the rectus abdominis muscle
(D) with bone extending within the macro porous spaces.

produced larger amounts of bone at a ratio of 1:5 than the inverse
ration in both 5 and 13% conversions’ specimens. The promi-
nent induction of bone formation by 250 μg hTGF-β3 has been
translated in clinical contexts to treat a large mandibular defect
in a pediatric patient (Ripamonti and Ferretti, 2012). Long term

follow up will confirm whether these early results will translate into
a complete reconstruction of the avulsed mandibular segment, and
to confirm that the implanted 250 μg hTGF-β3 per gram of dem-
ineralized human bone matrix is the novel dose required for bone
tissue regeneration in clinical contexts.
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FIGURE 13 | Significant as yet unreported prominent osteogenesis

predominantly localized outside the profile of the implanted

coral-derived partially converted 5% HA/CC macroporous construct (A)

pre-treated with 250 μg recombinant transforming growth factor-β3

(hTGF-β3) extending within the rectus abdominis muscle 20 days after

heterotopic implantation. (D) Middle-power view showing the rapid

expansion of the newly formed bone within the rectus abdominis muscle by
250 μg hTGF-β3. (B) Partially converted 13% HA/CC macroporous construct
pre-treated with 125 μg hTGF-β3 showing the induction of bone formation
outside the implanted macroporous construct (C,E). Middle-power views
showing multiple trabeculation of newly formed woven bone also invading the
macroporous spaces.
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FIGURE 14 | Distribution of newly formed bone, fibrovascular tissue and residual scaffold material in heterotopic implants, 20 days after implantation

with 125 and 250 μg hTGF-β3, in coral-derived hydroxyapatite/calcium carbonate (HA/CC) fully converted (F/C), 5 and 13% conversion.

FIGURE 15 | Distribution of newly formed bone, fibrovascular tissue and

residual hydroxyapatite/calcium carbonate (HA/CC) material in

heterotopic implants, 30 days after implantation with binary application

of hTGF-β3: hOP-1 at 1:5 and 5:1 ratio by weight in coral-derived HA/CC

implants with 5 and 13% conversion. Significant differences (p < 0.05), as
detected by Bonferroni’s multiple comparison test, were noted for HACC
5% + hTGF-β3:OP-1 (1:5) and HACC 13% + hTGF-β3:OP-1 (1:5) compared to
the inverse ratio (5:1).
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