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Working memory (WM) allows goal-relevant information to be encoded and maintained in mind, even when the contents of WM are
incongruent with the immediate environment. While regions of heteromodal cortex are important for WM, the neural mechanisms
that relate to individual differences in the encoding and maintenance of goal-relevant information remain unclear. Here, we used
behavioral correlates of two large-scale heteromodal networks at rest, the default mode (DMN) and frontoparietal (FPN) networks,
to understand their contributions to distinct features of WM. We assessed each individual’s ability to resist distracting information
during the encoding and maintenance phases of a visuospatial WM task. Individuals with stronger connectivity of DMN with medial
visual and retrosplenial cortex were less affected by encoding distraction. Conversely, weaker connectivity of both DMN and FPN
with visual regions was associated with better WM performance when target information was no longer in the environment and
distractors were presented in the maintenance phase. Our study suggests that stronger coupling between heteromodal cortex and
visual–spatial regions supports WM encoding by reducing the influence of concurrently presented distractors, while weaker visual
coupling is associated with better maintenance of goal-relevant information because it relates to the capacity to ignore task-irrelevant
changes in the environment.
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Introduction
Working memory (WM) allows us to hold information
actively in mind (Baddeley and Hitch 1974; Baddeley
1983; Baddeley 1992) and supports multiple facets of
complex behavior including the ability to learn about
and comprehend the world around us and to perform
numerical calculations and reasoning tasks (Waltz et al.
1999; Geary et al. 2004; Gathercole et al. 2019). It also pro-
vides the workspace in which naturally occurring spon-
taneous thoughts emerge, especially those with social
episodic features (Teasdale et al. 1993; Teasdale et al.
1995; Smallwood et al. 2009; Smallwood et al. 2013; Turn-
bull, Wang, Schooler, et al. 2019; Turnbull, Wang, Murphy,
et al. 2019). The behavioral flexibility that WM conveys
is thought to depend on two distinct processes: this
system’s capacity to encode goal-relevant information
during period of external focus (Myers et al. 2017; Lewis–
Peacock et al. 2018; Van Ede et al. 2019) and its role in
maintaining internal representations with current rele-
vance even as the external world changes (Konstantinou
et al. 2014; McNab and Dolan 2014; Lorenc et al. 2021). It

has been argued that the ability to encode appropriate
information in the environment depends on a process
of attentional control that allows task-relevant mate-
rial to be encoded and distractions to be suppressed
(Gazzaley et al. 2005), while the maintenance of these
representations may depend on the ability to decouple
cognition from the external environment, reducing the
interference between the ongoing mental content and
incongruent external information (Smallwood 2013).

Individual differences in distractor resistance ability
are strongly predictive of WM capacity, which varies sub-
stantially between individuals (Vogel et al. 2005; McNab
and Dolan 2014; Feldmann-Wüstefeld and Vogel 2019).
Moreover, resistance to interference is thought to draw
on externally and internally oriented cognitive processes
during encoding and maintenance, respectively: the abil-
ity to ignore task-irrelevant distracting information pre-
sented together with target information during encoding
and the capacity to maintain information in mind during
a delay while irrelevant information is presented (McNab
and Dolan 2014; McNab et al. 2015). These components
vary independently across individuals; they both make
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a unique contribution to WM capacity while controlling
for performance in the absence of distraction (McNab
and Dolan 2014), consistent with the view that separable
neurocognitive mechanisms underpin these aspects of
WM capacity.

It is widely recognized that regions of heteromodal
cortex in the prefrontal and parietal cortex are important
for WM (Veltman et al. 2003; McNab and Klingberg 2008;
Gazzaley and Nobre 2012). For example, regions of the
frontoparietal control network (FPN) are implicated in
the maintenance of current goals (Cole et al. 2013) and
support the top-down regulation of sensory processing to
aid selective encoding and maintenance of goal-relevant
information (Curtis and D’Esposito 2003; Gazzaley and
D’Esposito 2007; Gazzaley and Nobre 2012). Activation of
this control network increases with the amount of to-be-
remembered information (Braver et al. 1997; Manoach
et al. 1997; Jansma et al. 2000; Veltman et al. 2003;
Narayanan et al. 2005), and it functionally couples with
visual regions that selectively process relevant informa-
tion during the encoding of visual inputs (Chadick and
Gazzaley 2011). Prefrontal control regions are also impli-
cated in the active maintenance of target information in
the face of irrelevant distractors (Roberts et al. 1994; Chao
and Knight 1998; Sakai et al. 2002; Jha et al. 2004; Fere-
does et al. 2011; Konstantinou et al. 2014; Robison et al.
2018), and they are active when participants anticipate
maintaining relevant information in WM while ignoring
irrelevant information in the environment (McNab and
Klingberg 2008). In addition, the functional decoupling of
control sites from the sensory cortex during WM mainte-
nance could minimize interference from irrelevant stim-
uli (Clapp et al. 2010).

More recently, studies have implicated the default
mode network (DMN) in situations that depend on WM
(for a review, see Smallwood et al. 2021). For example,
the DMN has a well-established role in spontaneous
thought (Mason et al. 2007; Christoff et al. 2009), when
attention is focused on input from memory (Poerio et al.
2017; Wang et al. 2020) and the cortical processing of
information from the external environment is reduced
(Smallwood et al. 2008; Kam et al. 2011; Baird et al. 2014).
Moreover, the DMN is associated with task situations
in which memory can guide cognition, such as the
application of task rules and information from previously
presented stimuli (Crittenden et al. 2015; Vatansever,
Menon, et al. 2017; Murphy, Wang, et al. 2019; Wang,
Gao, et al. 2021). Earlier studies showed that the DMN is
often anticorrelated with regions implicated in cognitive
control (Fox et al. 2005)—and this pattern is associated
with better performance on challenging externally
presented tasks (Lawrence et al. 2003; McKiernan et al.
2003; Čeko et al. 2015; Hearne et al. 2015). However,
both DMN and FPN can exhibit greater activation when
decision-making depends on the retrieval of information
from memory, in comparison to judgments made on
the basis of perceptual input; moreover, better 1-back
performance is associated with increased DMN activity,

relative to 0-back performance (Spreng et al. 2014;
Konishi et al. 2015; Murphy et al. 2018; Murphy, Wang,
et al. 2019). These findings suggest a role of DMN
in internal memory representation, which might be
relevant to both the formation and maintenance of
the contents of WM. In line with this view, a recent
study revealed the functional role of this network in the
maintenance of goal-relevant information in a semantic
task (Wang et al. 2021), and studies have also shown
DMN works together with control regions to support
goal-directed WM tasks (Spreng et al. 2010; Elton and Gao
2015; Hearne et al. 2015; Piccoli et al. 2015; Vatansever,
Manktelow, et al. 2017). For example, one study found
an anticorrelation between the DMN and control regions
only during the maintenance phase of WM in the absence
of external input, and functional coupling between
these networks during both encoding and retrieval
phases of WM (Piccoli et al. 2015). DMN regions can
also increase their connectivity with control regions
to support increasing cognitive demands (Vatansever,
Manktelow, et al. 2017); moreover, stronger coupling
of DMN regions with other DMN and visual regions is
linked to better WM performance (Hampson et al. 2006;
Vatansever, Manktelow, et al. 2017).

The capacity of these heteromodal networks to be
perceptual coupled and decoupled might be a key fea-
ture of WM: The functional coupling with perceptual
systems might enable the selective encoding of goal-
relevant information, while perceptual decoupling might
be important for the maintenance of these internal rep-
resentations, since it has been argued that perceptual
decoupling helps to reduce the interference from exter-
nal inputs (Smallwood 2013). In the current study, we
therefore used functional neuroimaging to examine the
neurocognitive mechanisms that contribute to individ-
ual differences in distractor resistance ability in visu-
ospatial WM, focusing on the role of heteromodal cortex
and the patterns of coupling and decoupling it can form
with the visual cortex. The task design is described in
(Fig. 1). In brief, participants were asked to remember
the positions of target stimuli presented with or without
distractors, to hold this information in mind, and then
decide whether a target had been shown in the position
indicated by a question mark or not. Distractors were
either presented simultaneously with the targets during
the encoding phase of the WM task or during the main-
tenance phase, after the targets disappeared. Contempo-
rary evidence suggests that heteromodal systems exert
their influence on cognition in part through their links
to other regions of cortex, including sensory systems
(e.g., Smallwood 2013; Zhang et al. 2019; Li et al. 2021).
Accordingly, our study aimed to delineate the neural
basis of individual differences in the ability to hold goal-
relevant information in mind in the face of distraction.
We tested four intersecting hypotheses: 1) individual
differences in the connectivity of heteromodal systems
will relate to differences in distractor resistance in the
WM task; 2) these effects might not be restricted to FPN,
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associated with cognitive control, but might extend to
DMN given emerging evidence of the role of this network
in memory-guided cognition; 3) connectivity of these
heteromodal systems might relate to encoding and main-
tenance phases of the task in different ways; and 4)
more specifically, sensory coupling and decoupling of
FPN and/or DMN may separate these task stages. The
ability to encode relevant information may be associated
with stronger perceptual coupling of heteromodal cortex
while the maintenance of information in WM during the
presentation of irrelevant information in the external
world may depend on the capacity of FPN and/or DMN to
function independently of external input. In this way, our
study aimed to extend our understanding of individual
differences in the ability to hold goal-relevant informa-
tion in mind.

Materials and Methods
Participants
In all, 135 undergraduate and postgraduate students
were examined in this study (age range 18–25 years,
mean age ± standard deviation (SD) = 20.92 ± 2.45, 56
males). All were right-handed native English speakers
and had normal or corrected-to-normal vision. None
of them had any history of neurological impairment,
diagnosis of learning difficulty, or psychiatric illness. All
provided written informed consent prior to taking part
and received a monetary reward for their participation.
No power calculation was performed to determine this
sample size; instead, all usable data from an existing
dataset were included in the analysis. Data from three
participants were removed due to excessive head motion
(i.e., mean head motion >0.4 mm). The final sample
therefore consisted of 132 participants. In this study,
participants took part in a resting-state scan and on
subsequent days completed a battery of questionnaires
and tasks focusing on memory and mind-wandering,
which were outside the scope of this study (e.g., Wang
et al. 2017; Vatansever, Bzdok, et al. 2017; Zhang et al.
2019). Ethical approval was obtained from the Research
Ethics Committees of the Department of Psychology and
York Neuroimaging Centre, University of York, and all
research was performed in accordance with the relevant
guidelines/regulations.

Behavioral Assessment
The experiment consisted of one session of a computer-
based WM task previously used by McNab and Dolan
(2014). Participants were asked to remember the posi-
tions of three red circles (target stimuli) presented on a
circular grid of 16 squares, with or without distraction
(two yellow circles), and respond to a probe stimulus (a
question mark) which asked them to indicate whether
a red target circle had been shown in the position indi-
cated (a yes/no response). The session included three
conditions, with 30 trials of each condition presented in

pseudorandom order. In the No Distraction (ND) condi-
tion (Fig. 1A), participants were asked to remember the
locations of three red target circles, and no yellow distrac-
tor circles were presented at any stage. In the Encoding
Distraction (ED) condition (Fig. 1B), two yellow distractor
circles were shown together with the three red target
circles. One of the yellow distractor circles was always
in a position adjacent to a target position. In the Delay
Distraction (DD) condition (Fig. 1C), two yellow distractor
circles were shown during the WM delay period. One
of the yellow distractor circles was always in a position
adjacent to a target position. In all of these conditions,
the to-be-remembered items were limited to three (i.e.,
three red target circles), since it has been shown that
this set size could effectively establish distractor resis-
tance effects during both the encoding and maintenance
phases of WM (indicating separate ED and DD mecha-
nisms; McNab and Dolan 2014). In addition, sticking to a
set size of three allowed us to avoid potential confounds
of strategy because with set size varying, at some point, it
becomes easier for participants to remember the number
of empty spaces in the grid rather than the number of to-
be-remembered targets.

For each condition, the trial started with a blue fixation
presented for 1 s in the center of the screen. Then red
target circles (and yellow circles in the ED condition)
were displayed for 1 s followed by a delay period of 3 s.
During this delay period, a circular grid of 16 squares was
shown, and two yellow distractor circles were presented
in the DD condition, 0.5 s after the red target circles
had disappeared. Each trial ended with a question mark
presented either in or adjacent to one of the target posi-
tions for 2 s, 3 s after the target stimuli had disappeared.
Participants were asked to give a yes/no response to
indicate whether the probe was in a position that had
been occupied by a red target circle. The circular grid
remained on the screen throughout each trial. Targets
were positioned such that no more than two targets
were in adjacent positions. Half of the trials in each
condition required a “yes” response, and in both the ED
and DD conditions, half of the trials that required a “no”
response had the probe presented in the position of a
distractor.

To estimate each individual’s WM performance in each
condition, WM performance was estimated with the K
value, using a standard formula (Cowan 2001; Vogel et al.
2005); K = S (H—F), where K is WMC, S is the number of to-
be-remembered target items (i.e., 3), H is the observed hit
rate, and F is the false alarm rate. This formula essentially
assumes that if an observer can hold in memory K items
from an array of S items, then the probed item that
changed should be one of the items being held in memory
on K/S trials, leading to correct performance on K/S of
the trials on which an item changed. Importantly, it uses
the false alarm rate to correct for guessing performance,
leading to a more precise estimation of WM performance.
Consequently, the maximum K value is 3 for each
condition, and for each participant we calculated three
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Figure 1. Task illustration of (A) no distraction (ND), (B) encoding distraction (ED), and (C) delay distraction (DD) trials. Participants were asked to
maintain the locations of red targets; on encoding distractor trials, these targets were presented together with task-irrelevant yellow stimuli, while
on delay distraction trials, the yellow distractors were presented after encoding, when the target information was no longer on the screen. Working
memory (WM) performance was estimated with the K value for each condition, using a standard formula K = Number of to-be-remembered items ∗
(Hit rate − False alarm rate) (Cowan 2001; Vogel et al. 2005). To assess each individual’s ED and DD resistance abilities, we used regression analysis to
estimate the residual in WM performance in the ED condition after accounting for WM performance in the DD condition (regression model: ED = α +β

DD), and the residual in WM performance in the DD condition after accounting for WM performance in the ED condition (regression model: DD = α +β

ED). The estimated ED and DD residuals were used as main explanatory variables after accounting for shared variance between them, since these scores
represent unique variance associated with ignoring that type of distraction.

K values: one for the ND condition, one for the ED
condition, and another for the DD condition.

To confirm our previous findings that ED and DD make
a unique contribution to WM, we performed a regres-
sion analysis. In this regression, WM performance in the
ED and DD conditions was used to predict WM in the
ND condition. We used the regression model ND = α +β1

ED + β2 DD, where ND, ED, and DD represent K values

for the ND, ED, and DD conditions respectively, α is the
intercept and β1 and β2 are the regression coefficients.
As K values for both ED and DD conditions were included
in the model, we could examine the unique contribution
of each to WM measure of ND performance. Following
this approach, we used regression analysis to estimate
ED and DD resistance ability for each participant (N = 135;
also see Ashton et al. 2020; McNab and Dolan 2014). For



Zhang et al. | 3963

ED resistance ability, we used the residual in WM per-
formance in the ED condition after accounting for WM
performance in the DD condition, using the regression
model ED = α + β DD, where K values for the ED condition
were taken as the dependent variable while K values for
the DD condition were the predictor. Similarly, for DD
resistance ability we used the residual in WM perfor-
mance in the DD condition after accounting for WM per-
formance in the ED condition using the regression model
DD = α + β ED, where K values for the DD condition were
the dependent variable while K values for the ED condi-
tion were used as a predictor. In these regression models,
the residuals for both ED and DD conditions were esti-
mated for each individual by calculating the differences
between the observed K value and the predicted K value
for each condition (i.e., Residual = Observed K value—
Predicted K value), since the residual for each observed
K value for each condition indicates the variance that is
left over in the data; that is, the variability that could
not be explained by the other type of WM distraction. In
this way, our measures of ED and DD resistance ability
represent the unique variance associated with ignoring
that type of distraction, controlling for shared variance
associated with WM for relevant stimuli and instructions
to ignore yellow circle distractors.

Neuroimaging Data Acquisition
Structural and functional data were acquired using a
3T GE HDx Excite magnetic resonance imaging (MRI)
scanner utilizing an eight-channel phased array head
coil at the York Neuroimaging Centre, University of York.
Structural MRI acquisition in all participants was based
on a T1-weighted 3D fast spoiled gradient echo sequence
(repetition time (TR) = 7.8 s, echo time (TE) = minimum
full, flip angle = 20◦, matrix size = 256 × 256, 176 slices,
voxel size = 1.13 mm × 1.13 mm × 1 mm).

A 9-min resting-state fMRI scan was used, recorded
using single-shot 2D gradient-echo-planar imaging
(TR = 3 s, TE = minimum full, flip angle = 90◦, matrix
size = 64 × 64, 60 slices, voxel size = 3 mm × 3 mm × 3 mm,
180 volumes). During resting-state scanning, participants
were instructed to focus on a fixation cross with their
eyes open and to keep as still as possible, without
thinking about anything in particular. The resting-state
data were collected first, followed by the collection of
behavioral task data outside the scanner, so that mea-
sures of intrinsic connectivity could not be influenced by
task performance.

Neuroimaging Data Preprocessing
Preprocessing was performed using the CONN-fMRI
functional connectivity toolbox, Version 18a (http://www.
nitrc.org/projects/conn; Whitfield-Gabrieli and Nieto–
Castanon 2012), based on Statistical Parametric Mapping
12 (http://www.fil.ion.ucl.ac.uk/spm/). Participants’
motion estimation and correction were then carried
out through functional realignment, and unwarping
and potential outlier scans were identified using the

Artifact Detection Tool (ART) toolbox (https://www.
nitrc.org/projects/artifact_detect). Structural images
were segmented into gray matter, white matter, and
cerebrospinal fluid tissues and normalized to the
Montréal Neurological Institute (MNI) space with the
unified segmentation and normalization procedure
(Ashburner and Friston 2005). Functional volumes
were slice-time (bottom-up, interleaved) and motion-
corrected, skull-stripped, and coregistered to the high-
resolution structural image, spatially normalized to the
MNI space using the unified-segmentation algorithm,
smoothed with an 8 mm FWHM Gaussian kernel.

Preprocessing steps automatically create three first-
level covariates: a realignment covariate containing the
six rigid-body parameters characterizing the estimated
subject motion for each participant, a scrubbing covariate
containing the potential outliers scans for each partici-
pant (all outlier volumes were identified through the arti-
fact detection algorithm included in CONN, with conser-
vative settings: Scans for each participant were flagged
as outliers based on scan-by-scan change in global sig-
nal above z = 3, subject motion threshold above 0.5 mm,
differential motion and composite motion exceeding 95%
percentile in the normative sample), and a covariate
containing quality assurance (QA) parameters (i.e., the
global signal change from one scan to another and the
framewise displacement, a measure of how much the
participant moved from one scan to another) for each
participant. Realignment parameters, potential outlier
scans, signal from white matter and cerebrospinal fluid
masks, and effect of rest (i.e., an automatically esti-
mated trend representing potential ramping effects in
the BOLD time series at the beginning of the sessions)
were then included as nuisance parameters into the
model in the denoising step of the CONN toolbox. Using
the implemented anatomical CompCor approach com-
ponents (Behzadi et al. 2007), all of these effects were
removed within a general linear regression model to
increase the signal-to-noise ratio in functional images
(Chai et al. 2012). Functional images were then band-
pass filtered (0.008–0.09 Hz) to constrain analyses to low-
frequency fluctuations. A linear detrending term was
also applied, eliminating the need for global signal nor-
malization (Murphy et al. 2009; Chai et al. 2012). Global
signal regression was not performed because CompCor
can account for subject movement effects and other
sources of noise in the BOLD signal (Behzadi et al. 2007;
Muschelli et al. 2014).

ROI Selection and Resting-State fMRI Analysis
Our seeds were derived from two large-scale network
maps (similar to Beaty et al. 2021; Evans et al. 2020;
Lee et al. 2021), allowing us to assess how variation in
intrinsic connectivity from whole distributed networks
relates to WM performance. These maps were defined
by Yeo et al. (2011) using a seven-network parcellation of
1000 resting-state scans: We examined 1) DMN, which
is implicated in the heteromodal aspects of memory

http://www.nitrc.org/projects/conn;
http://www.nitrc.org/projects/conn;
http://www.fil.ion.ucl.ac.uk/spm/
https://www.nitrc.org/projects/artifact_detect
https://www.nitrc.org/projects/artifact_detect


3964 | Cerebral Cortex, 2022, Vol. 32, No. 18

representations (Spreng et al. 2009; Andrews-Hanna
et al. 2010; Margulies et al. 2016), and 2) FPN, which
plays a central role in cognitive control (Cole et al. 2013).
While we had specific hypotheses about coupling and
decoupling of these networks from visual cortex, given
we examined performance on a visual–spatial task, we
did not constrain our analysis to visual cortex, since there
might also be decoupling from other primary systems
suited to encoding locations in space, such as motor
cortex (e.g., Postle et al. 2000), as well as decoupling from
external visual attention regions (e.g., Yantis et al. 2002).
These types of perceptual decoupling might relate to
better distraction resistance during the maintenance
phase, since they could also reduce distraction from
the external environment to benefit active maintenance
in WM. In addition, it has been shown that internet-
work connectivity within DMN is related to better
WM performance (Hampson et al. 2006; Vatansever,
Manktelow, et al. 2017): For this reason, our network
seed regions were not masked during the analysis—
it remained possible to observe within-network con-
nectivity changes in our whole-network seed-to-voxel
analysis.

Our analysis obtained whole-brain maps that described
the strength of functional connectivity of each voxel in
the brain with the seed network, to explore associations
between task performance and the intrinsic connectivity
of DMN and FPN. In a first-level analysis, we extracted
the residual BOLD time series (i.e., the BOLD time series
after preprocessing and denoising steps) from selected
ROIs in each subject, and calculated the mean across the
voxels within each network seed for each time point. To
obtain the seed-based connectivity map for each subject,
the Pearson’s correlation coefficient between the time
series of each voxel in the brain and the mean time series
of the seed ROI was calculated by applying bivariate
correlation and hemodynamic response function (hrf)
weighting, which offers additional protection against
transient effects in the BOLD signal at the beginning of
scanning. The resulting correlation was entered into the
connectivity map at the location of each voxel. This was
repeated for all of the voxels in the brain (i.e., including
the voxel within the seed region), resulting in a whole-
brain connectivity map. Then correlation coefficients
were converted to normally distributed scores using
Fisher’s transform for second-level GLM analysis. For
this second-level analysis, the explanatory variables
(EVs) were entered into a GLM, including the ability
to resist encoding distractors (i.e., the residual WM
performance in the ED condition after accounting for
performance in the DD condition) and the ability to resist
distractors presented during the delay (i.e., the residual
WM performance in the DD condition after accounting
for performance in the ED condition). In this way, the
intrinsic connectivity patterns relating to each aspect of
distractor resistance ability accounted for performance
in the other condition.

We used two-sided tests to determine significant
clusters, which allowed us to simultaneously exam-
ine patterns of both stronger and weaker functional
connectivity. We defined the following contrasts of
interest for each seed to examine the main effects of
each experimental condition, and the contrasts between
conditions (“ED > DD resistance ability”, and “DD > ED
resistance ability”). Group-level analyses in CONN
were thresholded at a “height” or “cluster-defining”
threshold of P < 0.005 (two-sided tests) to define a series
of nonoverlapping clusters, and among this resulting
suprathreshold map, only clusters with a cluster-size
FWE corrected P < 0.05 were identified. These group-level
differences were examined using a GLM. We also applied
the Bonferroni correction to account for the fact that
we included two models (FPN and DMN). Consequently,
the cluster-size FWE corrected P-value accepted as
significant was <0.025. All figures were created using
BrainNet Viewer (http://www.nitrc.org/projects/bnv/; Xia
et al. 2013).

Prior to data analysis, all behavioral variables were z-
transformed and outliers more than 2.5 SDs above or
below the mean were identified. These outlying values
were imputed with the cutoff value (i.e., ±2.5 SDs above
or below the mean).

Data and Code Availability Statement
Neuroimaging data at the group-level statistical t maps
are openly available in Neurovault at https://neurovault.
org/collections/9355/. The conditions of our ethical
approval do not permit public archiving of the raw
data because participants did not provide sufficient
consent. Researchers who wish to access the data should
contact the Research Ethics and Governance Committee
of the York Neuroimaging Centre, University of York,
or the corresponding authors. Data will be released to
researchers when this is possible under the terms of the
GDPR (General Data Protection Regulation).

Results
Behavioral Results
Values for WM performance for each of the conditions
and zero-order correlations are shown in Table 1. Per-
formance declined with the inclusion of distractors, and
a one-way ANOVA revealed a significant effect of con-
dition, F(2,262) = 6.02, P = 0.003. Post hoc paired t-tests
revealed a statistically significant difference between the
K values from the ND and DD conditions, t(131) = 3.62,
uncorrected P < 0.001, but not between the ND and ED
conditions, t(131) = 1.68, uncorrected P = 0.10, or between
the two distraction conditions, t(131) = 1.72, uncorrected
P = 0.09. The small difference between these conditions in
our study is consistent with a previous study which used
the same paradigm (McNab and Dolan 2014). Though
the absolute difference between conditions is small, we
focus here on individual differences across conditions.

http://www.nitrc.org/projects/bnv/;
https://neurovault.org/collections/9355/
https://neurovault.org/collections/9355/
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Table 1. Mean working memory performance (K) for each condition and the results of Pearson correlations between K values for each
condition.

No distraction Encoding distraction Delay distraction

Mean working memory performance (K value ± SD) 2.72 ± 0.29 2.67 ± 0.34 2.62 ± 0.36

Results of the Pearson correlation between K values for each condition (R)
No distraction 0.50∗∗∗ 0.51∗∗∗

Encoding distraction 0.43∗∗∗

∗∗∗
P < 0.001.

Table 2. Results for regression model with ED and DD as predictors.

Predictor Adjusted R2 Standardized
beta

Coefficients
standard error

P value 95% CI for B Partial
correlation

Lower bound Upper bound

ED 0.34 0.34 0.07 <0.001 0.16 0.42 0.36∗∗∗

DD 0.36 0.06 <0.001 0.16 0.42 0.37∗∗∗

Note: CI = Confidence interval.
∗∗∗

P < 0.001. Note: The results of partial correlations show the strength and direction of the correlation of each predictor (i.e., the
K values for the ED or DD conditions) with the K values for the ND condition, while controlling for the effect of the other predictor variable.

In addition, these K values of ND, ED, and DD conditions
positively correlated with each other (see Table 1).

Using the regression model: ND = α + β1 ED +β2 DD,
where ND, ED, and DD represent K values for the ND, ED,
and DD conditions, respectively; α is the intercept; and
β1 and β2 are the regression coefficients, we confirmed
previous findings showing a unique contribution of
ED and DD performance to WM in the absence of
overt distraction (McNab and Dolan 2014; McNab et al.
2015). As shown by Table 2, ED and DD performance
together significantly predicted WM (adjusted R2 = 0.34,
F(2,129) = 34.93, P < 0.001). Both K values for ED and
DD conditions significantly and uniquely predicted
WM, while controlling for performance in the other
condition (ED: standardized β = 0.34, P < 0.001; DD:
standardized β = 0.36, P < 0.001). Also, in line with our
previous findings, these were positive associations,
indicating that greater distractor resistance is associated
with better WM performance. Contrary to our previous
findings (McNab and Dolan 2014), a significant positive
correlation was seen between K values for ED and DD
conditions (partial correlation controlling for K values
for the ND condition, r = 0.24, P = 0.006), reflecting shared
variance between ED and DD resistance performance.
Therefore, we used the estimated ED and DD residuals
after accounting for WM performance in the other
type of distraction condition as our main explanatory
variables (i.e., obtained using the regression analyses
described in the Behavioral Assessment); these variables
represent unique variance associated with ignoring each
type of distraction. The residuals in K values for the
ED and DD conditions were positively correlated with
K values for the ND condition (ED: r = 0.31, P < 0.001;
DD: r = 0.32, P < 0.001; see Fig. 2A,B), suggesting unique
contributions of these aspects of distractor resistance to
WM performance.

Resting-State Functional Connectivity
Results for the FPN Seed

We found that FPN connectivity was related to individual
differences in DD resistance ability. Participants with
weaker intrinsic connectivity at rest between FPN and
visual areas, including precuneus and lateral occipital
cortex, were less likely to be affected by distractors
presented during the delay (cluster-size P-FWE value
<0.001 at height threshold P < 0.005 and cluster-size
P-FWE value = 0.003 at height threshold P < 0.001; all
of these cluster-size P-FWE values were the Bonferroni
corrected for two seeds). These findings are shown in
(Fig. 3A) and suggest a role for perceptual decoupling
in allowing the FPN to be involved in maintenance of
the contents of WM. Of those voxels within this cluster
that fell within the large-scale networks defined by
Yeo et al. (2011), 82% were within the visual network,
12% were within dorsal attention network, and 6% fell
within DMN (see Fig. 3B). Meta-analytic decoding of this
functional connectivity map using Neurosynth yielded
terms associated with visual processing, such as “visual”,
“objects”, and “navigation” (see Fig. 3C). Together, this
pattern of results suggests that participants who showed
better ability to ignore distractors during a WM delay
period had greater decoupling of FPN from visual areas.

There were no significant associations between FPN
connectivity and individual differences in ED resistance
ability. This absence of effects during the encoding phase
of WM might relate to the internal–external functional
distinction of FPN subsystems (Dixon et al. 2018), as
suggested by our supplementary analyses. Greater func-
tional decoupling of DMN from the FPN subsystem asso-
ciated with external cognition (and anticorrelated with
the DMN) was associated with better ability to resist
encoding distraction (see Supplementary Fig. 1 in Sup-
plementary Materials). This greater separation between

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab459#supplementary-data
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Figure 2. Positive associations between WM performance in the ND condition and (A) ED resistance ability (the residual in ED K values after accounting
for DD K values), (B) DD resistance ability (the residual in DD K values after accounting for ED K values). The positive associations indicate that greater
distractor resistance is associated with better WM performance. Each point indicates a single participant, with some data points superimposed. The
error lines on the scatterplot indicate the 95% confidence estimates of the mean.

external FPN and DMN might allow DMN to better sup-
port internal representations of target information dur-
ing the encoding phase. In addition, both this external
control subnetwork and the FPN subnetwork linked to
internal aspects of cognition (i.e., the regulation of intro-
spective processes) exhibited greater functional decou-
pling from visual areas, including lateral occipital cor-
tex and precuneus cortex, for individuals with better
DD resistance ability (see Supplementary Figs 1 and 2
in Supplementary Materials), resembling the decoupling
pattern identified for our main FPN network seed. This
converging evidence reveals the important functional
role of perceptual decoupling of FPN in supporting better
maintenance of target information in the face of irrele-
vant external information.

Results for the DMN Seed
Main effects of distractor resistance ability

The intrinsic connectivity of DMN was associated with
both encoding and delay distractor resistance ability in
different ways. Participants with better ED resistance
ability had stronger connectivity from DMN to retrosple-
nial cortex (see the left red column in Fig. 4A; cluster-
size P-FWE value <0.001 at height threshold P < 0.005
and cluster-size P-FWE value = 0.003 at height threshold
P < 0.001; all of these cluster-size P values were Bonfer-
roni corrected for two seeds). Of those voxels within this
identified cluster that fell within large-scale networks
defined by Yeo et al. (2011), 69% were within DMN, and
31% were within the visual network (see the left panel
of Fig. 4B). Meta-analytic decoding of this functional con-
nectivity map using Neurosynth yielded terms associ-
ated with DMN, such as “episodic” and “autobiograph-
ical memory” (see Fig. 4C). In contrast, for individuals
with better DD resistance ability, DMN showed weaker
connectivity with lingual gyrus within primary visual
cortex (see the blue panel in Fig. 4A; cluster-size P-FWE
value = 0.038 Bonferroni corrected for two seeds at height

threshold P < 0.005; no significant cluster identified at
height threshold P < 0.001 - The absence of visual decou-
pling of DMN at this more stringent threshold might
reflect a Type II error since visual decoupling of FPN and
DMN are similar at a lower cluster-forming threshold of
P < 0.005). Of those voxels within this identified cluster
that fell within large-scale networks defined by Yeo et al.
(2011), 100% were within the visual network (see the
right panel of Fig. 4B). Meta-analytic decoding of this
functional connectivity map using Neurosynth yielded
terms associated with visual processing, such as “visual”
and “faces” (see Fig. 4D). In summary, participants who
were able to better encode the locations of targets despite
concurrently presented distractors had stronger connec-
tivity of DMN to retrosplenial cortex associated with the
representation of spatial location; furthermore, partici-
pants who were better able to ignore distractors during
the maintenance phase had stronger decoupling of DMN
from primary visual areas.

The results above revealed that FPN had weaker intrin-
sic connectivity with medial visual areas for individuals
with better DD resistance ability, while stronger connec-
tivity of DMN with medial visual areas was associated
with better ED resistance ability. In order to establish if
there were opposing yet overlapping patterns of intrinsic
connectivity in medial visual cortex related to resistance
to distractors presented during the encoding and delay
periods, we overlapped these two maps. Both effects
were significant in medial visual areas, including pre-
cuneus and supracalcarine cortex (see Fig. 5). Of the vox-
els within this overlap map, 82% were within the visual
network, and 18% were within DMN (see the pie chart in
Fig. 5). Stronger coupling of DMN to medial visual cortex
is associated with good WM performance when targets
are presented concurrently with distractors, while func-
tional decoupling of FPN from the same visual region is
associated with the ability to resist distractors presented
in the delay period.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab459#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab459#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab459#supplementary-data
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Figure 3. Functional connectivity of FPN linked to DD resistance ability. (A) Regions in blue showed weaker connectivity with the FPN seed for participants
with better DD resistance ability. All maps are cluster-corrected using a height threshold of P < 0.005 (cluster-size P-FWE < 0.05). The scatterplot shows
the relationship between intrinsic connectivity with FPN (beta values) in the identified cluster and DD resistance scores. The error lines on the scatterplot
indicate the 95% confidence estimates of the mean. Each point describes each participant. (B) The pie chart illustrates the percentage of voxels in the
identified cluster that fell within the large-scale networks defined by Yeo et al.’s (2011) 7-network parcellation, disregarding voxels that did not fall
within any of the Yeo networks. (C) Meta-analytic decoding of this functional connectivity map using the Neurosynth database revealed a number of
terms associated with visual processing, such as “visual”, “objects”, and “navigation”. DA = Dorsal attention; VA = Ventral attention; LOC = Lateral occipital
cortex; L = Left hemisphere; R = Right hemisphere.

Direct contrast between varieties of distractor resistance

Stronger intrinsic connectivity between DMN and regions
of retrosplenial cortex, precuneus, posterior cingulate
cortex, and lingual gyrus was associated with better
resistance to encoding distraction relative to delay dis-
traction (see Fig. 6A; cluster-size P-FWE value <0.001 at
both height threshold of P < 0.005 and P < 0.001; all of
these cluster-size P values were Bonferroni corrected
for two seeds). Of those voxels within this identified
cluster that fell within large-scale networks defined by
Yeo et al. (2011), 60% were within DMN and 40% were
within the visual network (see Fig. 6B). Meta-analytic

decoding of this functional connectivity map using Neu-
rosynth yielded terms associated with DMN, such as
“episodic memory” and “autobiographical memory”, and
also terms associated with spatial processing, such as
“navigation” (see Fig. 6C). This pattern of results suggests
that participants who were better able to ignore distrac-
tors presented simultaneously with targets, compared
with distractors presented in a delay period, had stronger
connectivity of DMN to both DMN and visual regions.
There was no stronger connectivity relating to better DD
resistance ability compared with ED resistance ability.
We also did not find any significant effects in the FPN
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Figure 4. Functional connectivity of DMN linked to distractor resistance ability at encoding and delay. (A) The regions in red showed stronger connectivity
with the DMN seed in participants with better distractor resistance during encoding, while the regions in blue showed weaker connectivity with the DMN
seed in individuals with better distractor resistance during the delay. All maps are cluster-corrected using a height threshold of P < 0.005 (cluster-size
P-FWE < 0.05). The scatterplots present the relationship between intrinsic connectivity with DMN (beta values) in the identified clusters and behavioral
performance (i.e., encoding and delay distractor resistance ability). The error lines on the scatterplots indicate the 95% confidence estimates of the
mean. Each point describes each participant. (B) The pie charts illustrate the percentage of voxels in the identified clusters that fell within the large-scale
networks defined by Yeo et al.’s 7-network parcellation (2011), disregarding voxels that did not fall within any of the Yeo networks. (C, D) Meta-analytic
decoding of these functional connectivity maps using the Neurosynth database revealed a number of terms associated with the DMN, such as “episodic”
and “autobiographical memory”, for the connectivity map linked to ED resistance ability, and a number of terms related to visual processing, such as
“visual” and “faces”, for the connectivity map linked to DD resistance ability. L = Left hemisphere; R = Right hemisphere.
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Figure 5. Overlay of results in medial visual cortex. The positive DMN connectivity effect related to ED resistance ability was overlapped with the negative
FPN connectivity effect related to DD resistance ability in medial visual cortex, by identifying common voxels with t values >2.86 (i.e., t threshold at
the height threshold of P < 0.005) in both connectivity maps. The figure highlights voxels present in both clusters, while the pie chart illustrates the
percentage of voxels in both clusters that fell within the large-scale networks defined by Yeo et al.’s 7-network parcellation (2011), disregarding voxels
that did not fall within any of the Yeo networks. L = Left hemisphere.

connectivity patterns in this direct contrast of these two
conditions.

Discussion
The ability to resist distracting information is a key
determinant of WM, helping individuals encode and
maintain goal-relevant information in mind (Vogel
et al. 2005; McNab and Dolan 2014). Since this capacity
involves both encoding information in the environment
and maintaining mental contents in the face of dis-
tracting and task-irrelevant sensory changes, individual
differences in WM capacity may relate to the diverse
ways in which regions of heteromodal cortex can couple
with and decouple from perceptual systems. Here, we
identify the patterns of intrinsic connectivity that are
associated with individual differences in these distinct
components of WM. Using a visuospatial WM task, we
assessed the capacity of participants to ignore distractors
presented at encoding (Encoding Distraction; ED) or
in a delay period (Delay Distraction; DD). Individual
differences in these two aspects of distractor resistance
ability related to the functional connectivity of two
heteromodal networks—FPN, which plays a central
role in cognitive control (Cole et al. 2013), and DMN,
which is implicated in stimulus-independent thought
and memory-guided decision-making (e.g., Konishi et al.
2015; Murphy, Wang, et al. 2019). Individuals with better
ED resistance ability had stronger connectivity of DMN
with retrosplenial cortex and medial visual areas. In
contrast, for individuals with better DD resistance ability,
FPN had stronger disconnection from lateral occipital
cortex and overlapping medial visual areas, while DMN
showed stronger decoupling from primary visual areas.
Stronger intrinsic connectivity of DMN with medial
visual areas and retrosplenial cortex might support the
ability to separate target and distractor locations during
encoding, while greater decoupling of both FPN and DMN
from visual processes might support the maintenance of
target locations in the face of visual distractors presented
during a delay period.

Our study builds on existing evidence that both the
FPN and DMN are implicated in WM (Gazzaley and
D’Esposito 2007; McNab and Klingberg 2008; Duncan
2010; Gazzaley and Nobre 2012; Konishi et al. 2015;

Murphy et al. 2018). Control processes within FPN sup-
port both the encoding and maintenance of task-relevant
information (Zanto et al. 2011; Gazzaley and Nobre
2012), especially when distractors can interfere with
target representation (Chao and Knight 1998; McNab and
Klingberg 2008; Konstantinou et al. 2014). Additionally,
DMN is involved in the internal representation of self-
generated states (Mason et al. 2007; Christoff et al.
2009; Konu et al. 2021) and task-relevant information
(Crittenden et al. 2015; Vatansever, Menon, et al. 2017;
Murphy et al. 2018; Wang et al. 2021). Our results
complement these studies by highlighting the important
role that these systems play in different features of
WM through their coupling and decoupling with regions
involved in perceptual processing.

We established that stronger connectivity between
DMN and medial parietal and visual areas, including
retrosplenial cortex, was associated with an enhanced
ability to resist distracting information concurrently
presented with targets, indicating a role in efficient
encoding of information into WM. Meta-analytic evi-
dence (see Fig. 4) supports the view that medial parietal
cortex is implicated in aspects of cognition supported by
internal memory representations (for a review, see Leech
and Smallwood 2019); retrosplenial cortex, in particular,
plays a role in spatial memory and navigation (Maguire
2001; Epstein 2008; Czajkowski et al. 2014; Ekstrom
et al. 2017), with stronger connectivity between this site
and DMN associated with better spatial performance
(Sulpizio et al. 2016). This region is also implicated in
the retrieval of episodic and autobiographical memory
(Svoboda et al. 2006; Kaboodvand et al. 2018) and is linked
to detailed focus during self-relevant processing (Murphy,
Poerio, et al. 2019). Retrosplenial cortex is proximal to
both medial visual regions and areas of medial parietal
cortex associated with internally oriented cognition: Our
cluster extended across both of these regions, perhaps
reflecting the requirements of the task to transform
visual codes into spatial representations. Given these
findings, stronger connectivity of DMN with retrosplenial
cortex might allow participants to better distinguish
the spatial locations of targets from nontargets, thus
aiding more efficient or more selective encoding of target
information in the face of concurrent distractors placed
in nearby locations.
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Figure 6. Results of direct contrast between varieties of distractor resistance. (A) Regions of higher connectivity with the DMN seed were associated
with better resistance to encoding distraction relative to delay distraction. All maps are cluster-corrected using a height threshold of P < 0.005 (cluster-
size P-FWE < 0.05). The scatterplot shows the relationship between average DMN connectivity (beta values) in the identified cluster and behavioral
difference scores relating to ED > DD resistance ability. The error lines on the scatterplot indicate the 95% confidence estimates of the mean. Each
point describes each participant. (B) The pie chart illustrates the percentage of voxels in the identified cluster that fell within the large-scale networks
defined by Yeo et al.’s 7-network parcellation (2011), disregarding voxels that did not fall within any of the Yeo networks. (C) Meta-analytic decoding
of this functional connectivity map using the Neurosynth database revealed a number of terms associated with DMN, such as “episodic memory” and
“autobiographical memory”, and also terms related to spatial processing, such as “navigation”. RSC = Retrosplenial cortex; PCC = Posterior cingulate
cortex; L = Left hemisphere; R = Right hemisphere.

The capacity to ignore distractors presented during a
delay, rather than concurrently with targets, was associ-
ated with a different pattern of connectivity (i.e., percep-
tual decoupling), supporting a long-standing psycholog-
ical hypothesis that the capacity to decouple attention
from perception helps to maintain internal representa-
tions (Smallwood 2013). Functional decoupling of both
FPN and DMN from visual cortex was related to bet-
ter distractor resistance during target maintenance, yet
these effects were localized to different visual areas. FPN
showed decoupling from LOC alongside medial visual
regions, while DMN was decoupled from primary visual
cortex. Primary visual cortex acts as a perceptual gate
allowing visual inputs to be perceived and forwarded to
higher regions (see Fig. 4D; Tong 2003; Kok and de Lange

2014; Zhang et al. 2021). During target maintenance,
decoupling of DMN from primary visual regions might
reduce interference from visual stimuli in the immediate
environment (Chadick and Gazzaley 2011). In contrast,
lateral and medial visual cortex might be essential for
internally directed aspects of mental states, given that
memory retrieval involves access to encoded visual fea-
tures (e.g., Fletcher et al. 1996; Rubin and Greenberg
1998; Greenberg and Rubin 2003); stronger activation of
these areas was associated with better autobiographical
memory retrieval in a recent study (Zhang et al. 2020).
Consequently, decoupling of FPN from medial and lateral
visual areas might reflect reduced higher-level process-
ing of distracting visual inputs. FPN plays a key role in
maintaining relevant information in the face of delay
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distraction (Sakai et al. 2002; Jha et al. 2004; Feredoes
et al. 2011); moreover, Clapp et al. (2010) found decou-
pling of control sites from sensory cortex was linked to
less distraction during WM maintenance, in line with our
findings. The top-down regulation of perceptual regions
by control sites is thought to support the encoding of
visual information (Gazzaley and D’Esposito 2007; Gaz-
zaley and Nobre 2012)—participants with stronger cou-
pling between FPN and medial and lateral visual cortex
might conceivably have more difficulty avoiding visual
encoding during periods when presented items are task-
irrelevant.

These findings provide converging evidence about
the important role that perceptual decoupling of het-
eromodal cortex plays in supporting the maintenance
of goal-relevant information in the face of distracting
information in the environment. More generally, our
study is important for understanding why states of self-
generated thought detract from the efficient processing
of external information—sensory decoupling of regions
of heteromodal cortex may help limit distractors in
working memory. Viewed from this perspective, self-
generated thought may lead to poor performance
on external tasks because the integrity of this state
depends upon reducing the influence of perceptual
inputs (Smallwood 2013). Our results also demonstrate
that opposing yet overlapping patterns of connectivity
are associated with different processes important for
visual WM: visual coupling is associated with better
encoding, yet visual decoupling is associated with better
maintenance, in line with the distinct contributions of
encoding and delay distractor resistance in cognitive
studies (McNab and Dolan 2014). Going beyond WM
performance, recent studies have shown that functional
connectivity of DMN regions to visual cortex can support
visually mediated tasks, while visual decoupling of DMN
is important for internally oriented cognition (Zhang
et al. 2019, 2020). The different phases of the WM
task we examined are similarly biased toward external
cognition (for visual encoding) and internal cognition
(maintenance through the delay period). The balance
of functional coupling and decoupling between hetero-
modal and visual cortex might therefore influence the
extent to which cognition supports fine-grained visual
distinctions in the external world (e.g., between target
and distractor locations) as opposed to the veridical
maintenance of information in mind, while ignoring
distracting perceptual events. More generally, our study
provides important support for contemporary accounts
of the way in which heteromodal cortex contributes
across multiple cognitive domains through interactions
with other brain regions (Smallwood et al. 2021).

Although our study clearly establishes that coupling
and decoupling of heteromodal cortex are differentially
important during encoding and maintenance of informa-
tion in WM, it nevertheless leaves open several important
questions. 1) Our study is unable to pinpoint whether
the effects are directly related to distractor resistance or
instead reflect indirect effects on WM capacity. For exam-

ple, better encoding distractor performance in partici-
pants with stronger visual coupling might be a result of
more selective encoding of task-relevant information or
instead could reflect stronger or more detailed encoding.
Similarly, visual decoupling effects might be associated
with better maintenance of target information or more
successful retention of spatial information distinguish-
ing target and nontarget locations. Nevertheless, our sup-
plementary analysis highlights a general contribution of
these patterns of perceptual coupling and decoupling to
encoding and maintenance of target information, since
they were also correlated with WM without distraction
(see Supplementary Fig. 3 in Supplementary Materials).
2) This investigation used a constant WM load and highly
predictable presentation of distractors, and consequently
it does not establish whether these coupling and decou-
pling connectivity patterns are modulated by these fac-
tors. 3) While our study examines how individual differ-
ences in intrinsic connectivity relate to different features
of WM, it cannot reveal how connectivity dynamically
changes during task performance, between encoding,
delay, and decision phases. We might expect participants
with the strongest task performance to selectively couple
heteromodal DMN and FPN networks to visual cortex
during encoding and then decouple these networks dur-
ing the delay period. A task-based fMRI study of the
same paradigm could test this hypothesis. 4) Moreover,
our resting-state fMRI data reflect spontaneous fluc-
tuations in blood oxygenation level-dependent (BOLD)
signals, rather than a task-induced state that is directly
related to the processing of stimuli or online memory
function. Therefore, the link between heteromodal-to-
visual intrinsic connectivity and individual differences
in distraction resistance ability reflects a neurocognitive
trait, not a state. 5) Finally, resistance to irrelevant items
during WM encoding has been linked to the basal ganglia
(McNab and Klingberg 2008); this subcortical effect was
not identified here.

In conclusion, we found that 1) the intrinsic connec-
tivity of heteromodal systems (both DMN and FPN) was
related to visuospatial WM performance; 2) that different
patterns of connectivity were linked to individual differ-
ences during encoding and maintenance phases of the
task; and 3) that functional coupling and decoupling of
visual cortex was associated with these distinct stages.
Perceptual coupling was associated with better distractor
resistance during encoding, while perceptual decoupling
was associated with better distractor resistance during
the maintenance of internal target representations.

Supplementary Material
Supplementary material can be found at Cerebral Cortex
online.
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