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Abstract: For the protection of Protected Geographical Indication (PGI) Sunite lamb, PGI Sunite lamb
samples and lamb samples from two other banners in the Inner Mongolia autonomous region were
distinguished by stable isotopes (δ13C, δ15N, δ2H, and δ18O) and two local modeling approaches. In
terms of the main characteristics and predictive performance, local modeling was better than global
modeling. The accuracies of five local models (LDA, RF, SVM, BPNN, and KNN) obtained by the
Adaptive Kennard–Stone algorithm were 91.30%, 95.65%, 91.30%, 100%, and 91.30%, respectively.
The accuracies of the five local models obtained by an approach of PCA–Full distance based on
DD–SIMCA were 91.30%, 91.30%, 91.30%, 100%, and 95.65%, respectively. The accuracies of the
five global models were 91.30%, 91.30%, 91.30%, 100%, and 91.30%, respectively. Stable isotope
ratio analysis combined with local modeling can be used as an effective indicator for protecting PGI
Sunite lamb.

Keywords: local modeling; protected geographical indication; Sunite lamb; stable isotopes;
machine learning

1. Introduction

Sunite sheep were formed in the special ecological environment of Sunite grassland
through long-term natural selection and artificial selection. They enjoy natural herbage
and pure water in the ecological environment of natural grassland without pollution, and
feed on more than 400 kinds of natural herbage, such as Allium mongolicum regel, Allium
polyrhizum turcz, and Stipa capillata. It is this good ecological environment and primitive
and extensive feeding mode that afford Sunite lamb with excellent quality and flavor [1,2].
Sunite lamb was awarded protected geographical indication (PGI) status in China in 2008.
PGI Sunite lamb originates from the Sunite Right Banner and Sunite Left Banner, and it
recognizes its high-quality reputation and characteristic flavors. Therefore, PGI labeling
guarantees the origin and quality of food products, minimizing food safety risks, and
ensures consumer confidence for the declaration of origin on this commodity [3].

In order to protect the PGI products, researchers have put forward a fingerprint
tracing method, that is, using chemical parameters to build the fingerprint of geographical
indication products [4] and comparing it with the fingerprint of the testing sample to
determine whether the testing sample is the geographical indication product. At present,
the chemical parameters used in the traceability of animal-origin food include stable
isotopes [5], mineral elements [6], fatty acid content [7,8], amino acid content [9], and
metabolites [10]. Stable isotopes are commonly used to characterize geographical origin
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information and to describe agricultural products’ origin information, where δ2H and
δ18O can be used to distinguish altitude, δ15N can be used to determine the type of grazing
vegetation, and δ13C can determine the type of animal feed [11]. In addition, δ34S is related
to rainfall in the geological environment and traditional industrial emissions, so it indicates
the geographical characteristics of animal food. Sr is obtained from the decay of 87Rb, and
its stable isotope abundance is mainly affected by geological conditions and rock ages. Sr
has good applications in plant-derived-food tracing [12], but it is limited in tracing the
origin of animal food due to its low content in animal bodies [13].

Thus, the stable isotope ratios can be used to distinguish PGI Sunite lamb from
different origins. Stable isotopes have been applied to determine the origin of different
animal-origin foods, such as beef [14], lamb [15,16], milk and dairy products [17], and
marine products [18]. In 2007, Camin et al. [19] measured δ13C, δ15N, δ2H, δ18O, and
δ34S in crude lamb protein from 13 European regions, and achieved correct classification
rate of original grouping and cross validation of 78.7% and 77.6%, respectively. This
indicated the feasibility of using stable isotopes to distinguish the geographical origin of
lambs. However, the information of the samples Camin et al. [19] tested was complex, such
as samples collected in different years from the same region, and samples collected in the
same year for different feeding methods from the same region, meaning that the sample set
covered a wide range of variations, which led to the model’s lower predictive performance.
On the other hand, the wide range of variations in the sample set may cover samples that
will appear in the future; that is to say, it is conducive to improve the prediction ability of
the model for unknown samples. Additionally, smaller sample difference coverage also
leads to lower predictive performance. In the study by Sun et al. [5], the similarities of feed
types, agricultural practice, and environment in two regions accounted for the overlapping
of lamb samples from these two regions in the Inner Mongolia autonomous region. In
subsequent studies, in order to improve the prediction ability of the geographical origin
model, not only was the increase of chemical parameters considered, but also the coverage
of sample differences.

In previous research on food traceability, the global modeling method was used to
establish the discriminant model, that is, to create a model from all data sets that cover the
whole space [20]. However, a good traceability model requires that the sample set should
cover as wide a range as possible and avoid the appearance of samples with as similar
chemical information as possible. In addition, the number of samples in the model should
not be too large, so as to avoid the increase in interference information along with the
increase in information, which will reduce the prediction performance of the model [21].
In fact, in the field of the near-infrared spectrum, scholars have focused on the coverage
and representativeness of the sample set [22–24]. In a large sample set, there is a nonlinear
relationship between response Y and all predictors X to varying degrees, and a sample
set with a linear relationship can be obtained based on distance similarity. This is local
modeling, where a set of local model data is created from all data sets according to certain
rules, each covering a subspace [20]. Local modeling includes two rules; one is selecting
the local model data set based on spatial similarity, and the other is selecting the most
representative data subset based on the uniform design principle. Abhinav et al. [25] used
the small spectral library obtained by a local modeling scheme based on spatial similarity
to predict the soil property parameters of samples, which improved the prediction accuracy
of soil properties compared with global modeling. This local modeling scheme referred to
predicting the response of the samples by finding the most similar samples from existing
databases. The similarity here was based on distance measures, such as the Euclidean
distance, the covariance distance, the correlation distance, the surface difference spectrum,
the information distance, optimized principal component Mahalanobis distance, and local
linear embedding. Additionally, sampling representative samples can ensure that the
chemical parameter characteristics and property range of the sample set can better cover
the chemical parameter properties of unknown samples and improve the prediction ability
of the unknown samples. In 2017, Palou et al. [26] proposed a strategy for calibration set
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selection of biodiesel/diesel samples based on principal component analysis (PCA) and
the Kennard–Stones algorithm, and the results showed that, by using this methodology,
the models could keep their robustness over time. In the future, local modeling should be
more applied in the discrimination of the geographical origin of agricultural products.

In order to better discriminate PGI Sunite lamb from other origins using stable isotopes
(δ13C, δ15N, δ2H, and δ18O) and machine learning, we proposed two local modeling ap-
proaches to optimize the sample set. It is worth mentioning that this is the first exploration
of the protection of PGI Sunite lamb, and also a new application of local modeling in origin
identification. The two local modeling approaches were (a) the Adaptive Kennard–Stone
(AKS) algorithm and (b) an approach of PCA–Full Distance (FD) based on Data-Driven
Soft Independent Modeling of Class Analogy (DD–SIMCA). The AKS algorithm was used
to select the most representative data subset based on a uniform design principle, and the
approach of PCA–FD based on DD–SIMCA was used to select the local model data set
based on spatial similarity. It should be emphasized here that global modeling and local
modeling in this study refer to the selection of data set coverage space, and the establish-
ment of the discriminant model still depends on machine learning. The machine learning
methods used in this work are linear discriminant analysis (LDA), random forests (RF),
support vector machine (SVM), back-propagation neural network (BPNN), and k-nearest
neighbor (KNN) classification. Based on the confusion matrix, we compared the predictive
performance of the traceability models established by the five machine learning methods.

2. Proposed Two Local Modeling Approaches
2.1. Adaptive Kennard–Stone (AKS)

AKS is an adaptive sample selection method based on the Kennard–Stone algorithm,
and its advantage is that it can determine the optimal sample set. The idea of AKS is to
provide a uniform spatial design for the selection of the most representative samples from
the known sample set. It ensures that the chemical parameters and property range of the
sample set can better cover that of the unknown samples, and improves the prediction
ability of the unknown samples. To our knowledge, there was only one report related to
AKS application in the near-infrared spectrum [23]. At present, AKS has not been reported
in the discrimination of the geographical origin of agricultural products, but Kennard–Stone
(KS) has been reported [27].

The D-optimal criterion [28] was used as the criterion to select the samples. The
minimum variance in the model could be achieved by selecting the right number of
samples included in S that maximize log[Det(MN)]. The log[Det(MN)] can be represented
as the information of the selected sample set. The one we chose was the subset with the
most information per sample, which was given by log[Det(MN)], where MN = STS/N,
Det is the determinant of the matrix, and S is the principal component score matrix of the
selected sample set. The number of principal components was pc. Figure 1 shows the steps
for obtaining the optimal sample set [23].

2.2. An Approach of PCA–Full Distance (FD) Based on Data-Driven Soft Independent Modeling of
Class Analogy (DD–SIMCA)

The measurement of similarity used to be based on Euclidean distance, Mahalanobis
distance, principal component analysis Euclidean distance (PCA–ED), and principal com-
ponent analysis Mahalanobis distance (PCA–MD). Both distances can be calculated in the
original variable space and in the principal component space. In the principal component
space, the correlation between variables is eliminated, simplifying the data information
and making it superior to the original variable space. The Euclidean distance is the straight
line distance between two points, and it is affected by the data distribution, noise, and
characteristic metrics. Unlike the Euclidean distance, the Mahalanobis distance introduces
a covariance matrix, and implements coordinate rotation and data compression, which
makes Mahalanobis distance not affected by data distribution and feature dimensions [29].
However, these distance threshold choices were hard, often selected several times, and
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then compared the predictive ability of the model of the selected multiple sample sets. It
took time and effort to achieve this, but the best sample set might not be found. Moreover,
the whole process could not be visualized, making it harder to understand. Based on the
understanding of DD–SIMCA, we found that PCA–FD integrated the advantages of MD
and ED, the operation process was simple, and the results were visible. Therefore, we
proposed an approach of PCA–FD based on DD–SIMCA. As far as we know, an approach
of PCA–FD based on DD–SIMCA to screen the samples has not been reported.
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Each element of the data cloud can be presented as a sum of two vectors: a vector that
lies in the subspace (a projection) and a vector transversal to the hyperplane (a residual).
The lengths of these vectors are important indicators that characterize a sample position
with respect to the subspace (model). These statistics are often referred to as the leverage
and the residual variance. In DD–SIMCA, they are termed as the score distance (SD) and
the orthogonal distance (OD) correspondingly, which are used to define the critical limits
of the classification model [30]. SD is equal to the squared Mahalanobis distance from the
model center to one sample within the score subspace, and OD is the squared Euclidean
distance from one sample to the model subspace. FD is affected by parameters related to
SD and OD (See Formula (1)), as shown below.

FD =
Nh × SD

SD0
+

Nq × OD
OD0

(1)

where Nh and Nq are the degrees of freedom (DOF) for SD and OD, and SD0 and OD0
are the means of SD and OD of all the samples [31], respectively. PCA–FD integrated
the advantages of MD and ED and eliminated the effects of data distribution and feature
dimensions. Moreover, the approach of PCA–FD based on DD–SIMCA simplified the
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operation and could be visualized. As shown in Figure S1, the abscissa and ordinate of
the acceptance plot were the parameters associated with SD and OD, respectively, and the
boundary lines of regulars and outliers are given. The red line and the green line were
available on the figure, and the yellow line was added later. The red line is the boundary of
the outliers, and samples above the bounds are outliers; the green line is the boundary of
regulars, and samples below the bounds are regulars; the points in the middle area of the
green line and the red line are extremes; the yellow line is FD. The FD on the same line is
the same, and the larger the FD, the farther the yellow line is away from the base point. You
can obtain all samples inside the strip centered on the testing sample (a black triangular),
such as a custom bound of

FD1 < FD one testing sample < FD2 (2)

where the border values, FD1 and FD2, have certain rules. Samples between the two yellow
lines are the screened samples.

As a measure of similarity, FD was used to select samples similar to one testing sample
from the original sample set to solve the nonlinear problem of large-sample data modeling.
This approach greatly simplifies the threshold selection process, and part of the process
is visualized.

3. Predictive Performance of the Model

The predictive performance of the model in our work based on the confusion matrix
includes the sensitivity, specificity, accuracy, and kappa coefficient (these measures were
calculated for each method based on the test data set). The confusion matrix summarizes
the results of a classification method. For a binary classification, when we determine that
class 1 is positive, the schematic table of the confusion matrix is shown in Table 1.

Table 1. The schematic table of the confusion matrix.

Confusion Matrix
Predicted Class
Class 1 Class 2

Actual class
Class 1 True positive (TP) False negative (FN)
Class 2 False positive (FP) True negative (TN)

In this study, instead of negative and positive, the classes were “non-PGI lamb” and
“PGI Sunite lamb”, respectively. For example, TN is the number of non-PGI lamb in the
test data set correctly classified as non-PGI, and FN is the number of PGI Sunite lamb
incorrectly classified as non-PGI. The sensitivity, specificity, accuracy, and kappa coefficient
are defined as follows:

sensitivity =
TP

TP + FN
(3)

speci f icity =
TN

TN + FP
(4)

accuracy =
TP + TN

TP + TN + FP + FN
(5)

kappa =
P0 − Pe
1 − Pe

(6)

where P0 (P0 = accuracy) indicates the accuracy of the model, and
Pe (Pe = (TP+FN)×(TP+FP)+(TN+FN)×(TN+FP)

(TP+TN+FP+FN)2 ) is the expected proportion of lamb correctly

classified by chance.
Sensitivity is the proportion of actual PGI Sunite lamb that is correctly classified as PGI

Sunite lamb. Specificity is the proportion of actual non-PGI lamb that is correctly classified
as non-PGI lamb. Accuracy is the ratio of true positive and true negative samples to the
total number of testing samples, which reflects the overall accuracy. If the proportion of
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one class of samples is not dominant in all classes of samples, then its high error rate has
little influence on the accuracy. In this case, the accuracy does not carry much meaning,
and the Kappa coefficient can better reflect the discrimination effect. The Kappa coefficient
can better reflect the consistency of actual classification and predict classification. The
evaluation result of the Kappa coefficient is divided into three grades [32]: excellent
(Kappa > 0.75), good (0.40 < Kappa ≤ 0.75), and poor (Kappa ≤ 0.40). As long as the
accuracy of one class is low, the Kappa coefficient will decrease.

4. Materials and Methods
4.1. Materials

Lamb samples (n = 116) were collected from 4 banners in two cities of China’s Inner
Mongolia autonomous region (Table S1), where the Sunite Right Banner and Sunite Left
Banner are the specified regions of PGI Sunite lamb, located in Xilin Gol League; Abaga
Banner also belongs to Xilin Gol League, east of Sunite Left Banner; Siziwang Banner
belongs to Ulanqab City, west of Sunite Right Banner (Figure 2). The lamb samples from
each banner came from the same abattoir and were collected from the right hind leg. The
samples were from 5–8-month-old grazing sheep. The fresh mutton (50 g) was dried to a
constant weight and then pulverized through a 100 mesh. The sample was mixed with a
chloroform/methanol (2:1, v/v) solution at 1:5, vortexed for 10 min, and centrifuged at
5000 rpm for 5 min, and the supernatant was discarded [33]. Then, the previous degreasing
step was repeated twice, the supernatant was discarded, and the solid was retained and
lyophilized to obtain a defatted dry matter (DDM) for the determination of stable isotopes.
These samples were stored at −20 ◦C for subsequent analysis.
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4.2. Stable Isotope Analysis

For the stable isotope analysis of δ13C and δ15N, DDM and other international refer-
ence materials (USGS40, USGS43, and USGS62) were weighed into tin capsules (5 × 8 mm)
and then introduced into an elemental analyzer (Flash 2000, Thermo, Waltham, MA,
USA), converting the entire material into carbon dioxide and nitrogen gas analyzed
by an isotope ratio mass spectrometer (Delta V Advantage of Thermo, Waltham, MA,
USA). The calibration of δ13C and δ15N was analyzed with USGS40 (δ13C = −26.39‰,
δ15N = −4.5‰ air N2), USGS43 (Indian Hair, δ13C = −21.28‰, δ15N = 8.44‰), and USGS62
(caffeine, δ13C = −14.79‰, δ15N = 20.17‰).

For the stable isotope ratio analysis of δ2H and δ18O, DDM and international reference
materials (Caribou Hoof, Kudu Horn, and EMA P2) were weighed into silver capsules
(4 × 6 mm) along with other international reference materials and introduced into the
elemental analyzers (Flash 2000, Thermo, Waltham, MA, USA). The reactor packing was a
glassy carbon reactor and silver wool. The elements hydrogen and oxygen in the samples
were converted into H2 and CO at 1380 ◦C via pyrolysis with glass carbon. The gas was
transferred to an isotope ratio mass spectrometer (Delta V Advantage, Thermo, Waltham,
MA, USA). The calibration of δ2H and δ18O was analyzed with CBS (Caribou Hoof Stan-
dard, δ2H = −197.00‰, δ18O = 3.80‰), KHS (Kudu Horn Standard, δ2H = −54.10‰,
δ18O = 20.3‰), and B2205 (EMA P2, δ2H = −87.80‰, δ18O = 26.90‰).

The results of the isotope analysis were expressed as δ (‰), and the formula was

δ (‰) =
Rsample − Rstandard

Rsample
× 1000 (7)

where R sample and R standard are the isotope ratios of the sample and the international
reference material, respectively. The references of δ13C, δ15N, δ2H, and δ18O were Vienna–Pee
Dee Belemnite (V–PDB), Air, Standard Mean Ocean Water (SMOW), and SMOW, respectively.

4.3. Statistical Analysis

All of the samples (N = 116) were divided into a training set and a testing set (4:1).
Due to the uneven sample size in the four regions, stratified random sampling was adopted
to avoid contingency, and samples in each region were divided into 4:1. The training set
samples (N = 93) were used for modeling, and the testing set samples (N = 23) were used
to evaluate the prediction ability of the model. The training set data were imported into
R Studio and the training set subset (N < 93) was obtained by the AKS algorithm. After
that, the training set subset used five machine learning methods (LDA, RF, SVM, BPNN,
and KNN) to establish the geographical origin discriminant model, and finally used the
confusion matrix of testing set samples to evaluate the predictive performance of the model.

One sample (called Pi, i = 1, 2, 3, . . . , 23) in the testing set (N = 23) and the training
set samples (N = 93) was imported into DD–SIMCA in Microsoft Excel (SIMCA template-
xlsb) to obtain the FD of all samples (N = 93), and the training subset was appropriately
selected centering on the FD of Pi. Then, import the training set subset into R Studio and
use the 5 machine learning methods to build a one-time local model for Pi. Repeat the
above operation 23 times, and obtain 5 confusion matrices. The evaluation method of the
model was consistent with the evaluation method of the training set subset obtained by the
AKS algorithm.

All of the training set samples (N = 93) were imported into R Studio, and 5 machine
learning methods were used to establish the geographical origin discriminant model. The
evaluation method of the model was consistent with the evaluation method of the training
subset obtained by the AKS algorithm.

In order to compare the changes before and after screening the training set samples
(N = 93), we analyzed the main characteristics of the global lamb isotope libraries and
local lamb isotope libraries obtained by the AKS algorithm. SPSS was used to conduct an
independent-samples T-test to analyze the significance between the two groups (PGI Sunite
lamb and non-PGI lamb), produce box diagrams to intuitively see the significance, conduct
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exploratory analysis (mean value, standard deviation, and histogram), and produce the 3-
dimensional scatter plot to observe the spatial distribution of the sample set. Furthermore, to
know the difference of lamb between different regions, we performed a descriptive analysis
of all data (N = 116) (Table S2). Additionally, we drew a 3D–score plot of the global lamb
isotope library and local lamb isotope library according to geographical origin (Figure S2).

The statistical software packages R, SPSS 25.0 (SPSS Inc., Chicago, IL, USA), and a
chemometric tool employed in Excel were used. AKS was written by our laboratory using
R language.

5. Results and Discussions
5.1. Training Subset Obtained by Two Local Modeling Approaches

In this work, the training subset was obtained by two local modeling approaches:
(a) AKS and (b) the approach of PCA–FD based on DD–SIMCA. Based on the AKS algo-
rithm, a line chart (Figure S3) was drawn using the log[Det(MN)] value as the ordinate and
number of samples as the abscissa. As shown in Figure S3, when the number of samples
was 40, the maximum log[Det(MN)] value appeared, and the corresponding S subset was
the best training set subset. Chen et al. [23] used AKS to screen the near-infrared spectrum
library of plant alkali, and 49 samples were selected from 85 samples for constructing the
PLS model. The sample size was also half of the original data. However, Chen et al. [23]
continued to sample the near-infrared spectrum library of the aqueous solution and selected
37 samples out of 38 samples to construct the PLS model [23]. This shows that the capacity
of the training subset was not related to the capacity of the training set, but was only related
to the information contained in the training subset, namely the log[Det(MN)] value. When
the maximum log[Det(MN)] value is not reached, the log[Det(MN)] value increases with
the increase in the number of samples. When the maximum log[Det(MN)] value is reached,
the log[Det(MN)] value decreases as the sample size increases.

According to the approach of PCA–FD based on DD–SIMCA, 23 targeted training
subsets were obtained with a sample size between 20 and 47. When screening data, we
found that, when the FD of Pi (Figure S1a) deviated from the central position of FD of all
data (N = 93), the discriminant effect of the model established by the data set with a small
sample size (20 ≤ N < 35) was better, and that when the FD of Pi (Figure S1b) close to
the central position of FD of all data, the discriminant effect of the model established by
the data set with a medium sample size (35 ≤ N < 50) was better. This may be related to
the principle of screening. This method selected samples within the linear range of Pi for
modeling based on similarity [22]. The linear range was probably related to the position
of the FD of Pi in the FD of all of the data. In the future, this finding will continue to be
verified in order to summarize the screening rules.

To sum up, during sample screening, it is necessary to follow the screening principles
and consider the data characteristics to select data with an appropriate sample size. In this
work, with two local modeling methods, half or less of the original sample size could be
used to obtain the same model effect as the original data.

5.2. Main Characteristics of the Lamb Isotope Libraries

Taking the training set subset (N = 40) obtained by AKS and the training set (N = 93)
as an example, the main characteristics of the local and global lamb isotope libraries were
compared. Table 2 lists the mean, the standard deviation, and the ranges spanned by the
samples and Figure 3 shows the corresponding distribution histograms. For the mean
of δ13C, δ2H, and δ18O, the local lamb isotope library was smaller than the global lamb
isotope library. For the standard deviation of δ13C, δ15N, δ2H, and δ18O, the local lamb
isotope library was larger than the global lamb isotope library. The mean reflected the
overall average and the degree of data concentration, while the standard deviation reflected
the degree of data dispersion. This meant that the local lamb isotope library was more
centralized and more dispersed, and was the ideal training set. The histogram (Figure 3)
also supported this conclusion. Through the histogram, we could see the data distribution
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of the local and global lamb isotope libraries more intuitively. The distribution of the global
lamb isotope libraries was not uniform, and some data were abrupt in the histogram, which
had a great influence on the main characteristics of the whole data set. The local lamb
isotope libraries weakened the influence of prominent data and better reflected the main
characteristics of the overall data.

Table 2. (a) Descriptive statistics of the isotope attributes of samples in the lamb isotope libraries.
(b) δ13C, δ15N, δ2H, and δ18O values of the local and global lamb isotopes libraries from two groups.

(a)

Parameter Mean Standard Deviation Minimum Maximum

Global lamb isotope library (Training set, n = 93)

δ13C −19.87 2.10 −24.69 −17.16
δ15N 7.10 0.95 5.58 8.88
δ2H −103.90 11.14 −131.87 −93.77
δ18O 12.55 3.08 4.92 17.98

Local lamb isotope library (Training subset by AKS, n = 40)

δ13C −21.24 2.21 −24.69 −17.26
δ15N 7.16 1.01 5.58 8.88
δ2H −110.85 14.11 −131.87 −95.44
δ18O 11.15 3.90 4.92 16.56

(b)

Parameter δ13C δ15N δ2H δ18O

Global lamb isotope library (Training set, n = 93)

PGI Sunite lamb −19.31 ± 1.52 a 7.28 ± 0.94 a −99.48 ± 5.44 a 13.65 ± 1.90 a

non-PGI lamb −21.92 ± 2.65 b 6.45 ± 0.70 b −120.02 ± 11.84 b 8.53 ± 3.28 b

Local lamb isotope library (Training subset by AKS, n = 40)

PGI Sunite lamb −20.57 ± 1.44 a 7.88 ± 0.73 a −101.68 ± 9.58 a 13.78 ± 2.43 a

non-PGI lamb −21.92 ± 2.65 b 6.45 ± 0.70 b −120.02 ± 11.84 b 8.53 ± 3.28 b

Note: The values are given as mean ± SD; the small letters represent significant differences (p < 0.05); the sample
sizes of Sunite Right Banner, Sunite Left Banner, Siziwang Banner, and Abaga Banner in the global lamb isotope
and local lamb isotope libraries were 68, 5, 15, and 5, and 15, 5, 15, and 5, respectively.

In this work, we paid more attention to the influence of screening on the two categories,
rather than the overall data. The significance of isotopes has an impact on the accuracy of
geographical origin discrimination and traceability feasibility [34], so we compared the
significance of the δ13C, δ15N, δ2H, and δ18O values between PGI Sunite lamb and non-PGI
lamb in the local and global lamb isotope libraries. The result of the T-test showed that
there were both significant differences (p < 0.05) in the δ13C, δ15N, δ2H, and δ18O values
between PGI Sunite lamb and non-PGI lamb before and after sample screening. This meant
that PGI Sunite lamb and non-PGI lamb always had a characteristic stable isotope ratio
profile. Figure 4a,b show the corresponding boxplots, and consistent conclusions could be
drawn. In the local and global lamb isotope libraries, PGI Sunite lamb samples exhibited
the highest δ13C, δ15N, δ2H, and δ18O values. The regional disparity of the δ13C and δ15N
of lamb samples was a consequence of the feeding systems [35]. The δ13C value in animal
products was based on C3 and C4 plants in the animal diet. One study showed that the
δ13C value of C3 plants ranged from −20‰ to −35‰, and that the δ13C value of C4 plants
ranged between −9‰ and −17‰ [36]. In this work, the lamb samples were grazing sheep.
We could predict that the proportion of C3 and C4 plants fed to PGI Sunite lamb was
higher than that fed to non-PGI lamb. In another aspect, the value of δ15N reflects the
nitrogen cycle in soil. Compared with other C3 plants, leguminous plants can directly
utilize atmospheric nitrogen, resulting in a lower δ15N value [37]. Generally, leguminous
plants, such as alfalfa hay, are abundant at high altitudes, which could be the cause of lower
δ15N value of lambs (non-PGI lamb) from high-altitude regions, such Siziwang Banner
(Table S2). The values of δ2H and δ18O reflect the geographical information of lamb, such
as altitude. In the atmospheric circulation process, the higher the altitude, the lower the
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enrichment degree of 2H2O, and the δ2H and δ18O values in the high-altitude region are
lower than those in the low-altitude region [38]. The best examples are Sunite Left Banner
and Siziwang Banner in Table S2. The altitude of Sunite Left Banner is higher than that of
the four sons king flag (Table 2), and the δ2H and δ18O in the lamb of Sunite Left Banner
are significantly lower than those in the lamb of Siziwang Banner. In addition, the values
of δ13C, δ15N, δ2H, and δ18O are affected by objective factors, such as rainfall, temperature,
and geology.
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We carried out descriptive analysis and independent-samples T-tests on the local and
global lamb isotope libraries above, and concluded that sample screening can optimize
the sample data. Now, we can more intuitively determine the data spatial distribution
and whether the data are representative through the 3D–score plot. Additionally, we
can also determine the contribution of the δ13C, δ15N, δ2H, and δ18O values to PC1 and
PC2 (Figure S4). In the 3D–score plot of the global lamb isotope library (Figure 4c), PGI
Sunite lamb and non-PGI lamb samples overlapped and were difficult to distinguish. From
Figure S2a, the lamb samples from Abaga Banner adjacent to the PGI area had a serious
overlap with PGI Sunite lamb. However, in the 3D–score plot of the local lamb isotope
library (Figure 4d), PGI Sunite lamb samples were entirely separated from the non-PGI
lamb samples. Additionally, the samples from the four regions were completely separated
(Figure S2b). After sample screening, the spatial distribution was uniform and the samples
were representative. These results provide strong evidence that the local lamb isotope
libraries were superior to the global lamb isotope libraries.
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5.3. Predictive Performance

According to the above data feature analysis, the local lamb isotope libraries were
better than the global lamb isotope libraries. The significance analysis and 3D–score plot
showed that it was feasible to use isotopes to discriminate PGI Sunite lamb from non-PGI
lamb. To further compare the local and global lamb isotope libraries, machine learning was
used for modeling, and some indicators of predictive performance were used to evaluate
the effect of the model. For the same library, five machine learning methods were used to
ensure model stability.

The origin classification results of applying the five models to the testing set lambs are
shown in Table 3, together with the evaluation of prediction performance. The evaluation
of each binary discriminant model was built from the confusion matrix, the records of
which correctly and incorrectly recognized samples from different geographical origins.
True positives were samples of PGI Sunite lamb correctly predicted, false negatives were
samples of PGI Sunite lamb incorrectly predicted to be from non-PGI lamb, true negatives
were samples of non-PGI lamb correctly predicted to be from non-PGI lamb, and false
positives were samples of non-PGI lamb incorrectly predicted to be from PGI Sunite lamb.
The evaluation of the whole model was calculated as a two-class overall classification.
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Table 3. Origin classification results of applying the 5 models to the testing set lambs according to (a)
the global lamb isotopes libraries, (b) the local lamb isotopes libraries screened by AKS, and (c) the
local lamb isotopes libraries screened by the approach of PCA–FD based on DD–SIMCA.

(a) Binary Discrimination Classes

LDA RF SVM BPNN KNN

Confusion matrix (No. of testing set samples)
True positive

17 17 17 18 17(tpi)
False negative

1 1 1 0 1(fni)
True negative

4 4 4 5 4(tni)
False positive

1 1 1 0 1(fpi)
Performance evaluation

Sensitivity 0.9444 0.9444 0.9444 1.0000 0.9444
Specificity 0.8000 0.8000 0.8000 1.0000 0.8000

Kappa 0.7444 0.7444 0.7444 1.0000 0.7444
Accuracy 0.9130 0.9130 0.9130 1.0000 0.9130

(b) Binary Discrimination Classes

LDA RF SVM BPNN KNN

Confusion matrix (No. of testing set samples)
True positive

17 17 17 18 17(tpi)
False negative

1 1 1 0 1(fni)
True negative

4 5 4 5 4(tni)
False positive

1 0 1 0 1(fpi)
Performance evaluation

Sensitivity 0.9444 0.9444 0.9444 1.0000 0.9444
Specificity 0.8000 1.0000 0.8000 1.0000 0.8000

Kappa 0.7444 0.8808 0.7444 1.0000 0.7444
Accuracy 0.9130 0.9565 0.9130 1.0000 0.9130

(c) Binary Discrimination Classes

LDA RF SVM BPNN KNN

Confusion matrix (No. of testing set samples)
True positive

17 17 17 18 17(tpi)
False negative

1 1 1 0 1(fni)
True negative

4 4 4 5 5(tni)
False positive

1 1 1 0 0(fpi)
Performance evaluation

Sensitivity 0.9444 0.9444 0.9444 1.0000 0.9444
Specificity 0.8000 0.8000 0.8000 1.0000 1.0000

Kappa 0.7444 0.7444 0.7444 1.0000 0.8808
Accuracy 0.9130 0.9130 0.9130 1.0000 0.9565

As shown in Table 3, in the global lamb isotope libraries, the five models established
by machine learning achieved a good discrimination effect. Among them, the confusion
matrix of models established by LDA, RF, SVM, and KNN was all one false negative and
one false positive; that is to say, a sample of PGI Sunite lamb was incorrectly predicted
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to be from non-PGI lamb, and a sample of non-PGI lamb was incorrectly predicted to be
from PGI Sunite lamb. The sensitivity and specificity of the above models were 94.44% and
80.00%, respectively. Additionally, the accuracy of the model was 91.30%, a satisfactory
result for the overall classification. The Kappa coefficient was 0.7444 (0.40 < Kappa ≤ 0.75),
a good consistency of actual classification and predict classification. On the other hand, the
confusion matrix of the BPNN model was true positives and true negatives, and all the
classes were correctly discriminated. This indicates that the five origin models established
based on global lamb isotope libraries were stable, and the BPNN model had the best
predictive performance.

In Table 3, using local lamb isotope libraries screened by AKS, the five models es-
tablished by machine learning had a better discriminating effect, in which the order of
predictive performance was LDA, SVM, and KNN < RF < BPNN. It was the same as
the predictive performance of four models (LDA, SVM, BPNN, and KNN) based on the
local and global lamb isotope libraries. Compared to global modeling, locally modeled
RF models are superior to globally modeled RF models. In the RF model, only one PGI
Sunite lamb was incorrectly predicted to be from non-PGI lamb, and all of the non-PGI
lamb samples were identified as non-PGI lamb (specificity = 100.00%). The accuracy of
the RF model was 95.65%, a very satisfactory overall classification result. Additionally,
the Kappa coefficient was 0.8808 (Kappa > 0.75), indicating excellent consistency of actual
classification and prediction classification. In other words, the local lamb isotope libraries
obtained by AKS were better than the global lamb isotope libraries. The KS algorithm has
also been applied to Protected Designation of Origin (PDO) cheeses recently, and good
results were obtained. In 2021, Coppa et al. found that mid-infrared spectroscopy (MIR)
enables the authentication of the cow feeding restrictions included in the specification of
two PDO cheeses (Cantal and Laguiole). The classification result of the testing sample
showed that the accuracy, sensitivity, and specificity of Cantal PDO cheeses were 90.3%,
91.1%, and 89.2% respectively; and the predictive performances of the model for Laguiole
PDO cheeses were 99.5%, 100%, and 99.4%, which all outperformed the AKS modeling
effect in this paper [27]. However, it must be said that Coppa et al. used the KS algorithm
to select training sets and testing sets. We consider it inappropriate to select the testing sets,
because it changes the true distribution of the sample, which may be the reason for the
over-good classification results.

There was a better discrimination effect of five models using local lamb isotope
libraries screened by the approach of PCA–FD based on DD–SIMCA (Table 3), in which the
order of predictive performance was LDA, RF, and SVM < KNN < BPNN. It was the same
as the predictive performance of four models (LDA, RF, SVM, and BPNN) based on local
and global lamb isotope libraries. Compared to global modeling, locally modeled KNN
models were superior to globally modeled RF models. In the KNN model, only one PGI
Sunite lamb was incorrectly predicted to be from non-PGI lamb, and all of the non-PGI
lamb samples were identified as non-PGI lamb (specificity = 100.00%). The accuracy of
the KNN model was 95.65%, a very satisfactory result overall classification. Additionally,
the Kappa coefficient was 0.8808 (Kappa > 0.75), indicating excellent consistency of actual
classification and prediction classification. In other words, the local lamb isotope libraries
obtained by the approach of PCA–FD based on DD–SIMCA were better than the global
lamb isotope libraries.

The differences in the isotope profiles of the lamb’s geographical origins allowed
satisfactory discrimination between them, but were not sufficiently wide and systematic
to be validated by adding an external set sample to the classification model. As shown in
Figure 2, the lamb samples collected were PGI Sunite lambs and non-PGI lambs in their
adjacent origins; that is, lambs at municipal geographical distance from the PGI Sunite
lamb and lambs at banner geographical distance from the PGI Sunite lamb. This is because
the geographical information difference of lambs at the provincial level and above is large
and easy to distinguish [5]. Thus, this study pays more attention to the identification of
lambs at municipal/banner/county geographical distances. After that, lambs from other
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provinces and countries would be added to enrich the sample library so that the sample
library could cover as large sample differences as possible, such as geographical origin,
feeding type, breed, age, and gender differences, and the external samples were verified.

To sum up, the local lamb isotope libraries obtained by AKS and the approach of
PCA–FD based on DD–SIMCA were better than the global lamb isotope libraries.

6. Conclusions

In this work, stable isotope ratio (δ13C, δ15N, δ2H, and δ18O values) analysis combined
with local modeling was used to discriminate PGI Sunite lamb from other origins, and
the accuracy rate reached 100%, which could be used as an effective indicator system for
protecting PGI Sunite lamb. A good traceability model requires that the sample set should
cover as wide a range as possible and avoid the appearance of samples with basically the
same chemical information as much as possible. Therefore, local modeling is very necessary
for the traceability of agricultural products, but it has not been reported. In this paper, two
local modeling approaches were first proposed for the protection of PGI Sunite lamb, and
the identification effect of models was better than that of global modeling, which could be
used for the optimization of the training set and the traceability of agricultural products.
We found that the sample set with less than or equal to half of the original sample size
in this study could achieve a better predictive effect. However, the ratio of the screened
sample size to the original sample size will not always be 1:2, and the screened sample
size is related to the information contained. The information (geographical origin, feeding
system, age, and gender) of the lamb samples collected in this paper was similar. This
may account for the small changes in the data characteristics before and after screening.
In the future, while increasing the sample size, we will try our best to make the sample
set cover a wide range of differences, such as geographical origin, feeding system, breed,
age, and gender. At that time, there will be a more obvious nonlinear relationship between
the classification response and the isotope ratio, and the application of a local modeling
method is more necessary.
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(b) local lamb isotope library according to geographical origin, Figure S3: Line chart of the relationship
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(a) global lamb isotope library and (b) local lamb isotope library according to geographical origin,
Table S1: Region information of lamb samples, Table S2: δ13C, δ15N, δ2H and δ18O values of all lambs
(n = 116) from four regions.
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