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Sexual dimorphism refers to differences between biological sexes that extend beyond
sexual characteristics. In humans, sexual dimorphism in the immune response has been
well demonstrated, with females exhibiting lower infection rates than males for a variety of
bacterial, viral, and parasitic pathogens. There is also a substantially increased incidence
of autoimmune disease in females compared to males. Together, these trends indicate
that females have a heightened immune reactogenicity to both self and non-self-molecular
patterns. However, the molecular mechanisms driving the sexually dimorphic immune
response are not fully understood. The female sex hormones estrogen and progesterone,
as well as the male androgens, such as testosterone, elicit direct effects on the function
and inflammatory capacity of immune cells. Several studies have identified a sex-specific
transcriptome and methylome, independent of the well-described phenomenon of X-
chromosome inactivation, suggesting that sexual dimorphism also occurs at the
epigenetic level. Moreover, distinct alterations to the transcriptome and epigenetic
landscape occur in synchrony with periods of hormonal change, such as puberty,
pregnancy, menopause, and exogenous hormone therapy. These changes are also
mirrored by changes in immune cell function. This review will outline the evidence for
sex hormones and pregnancy-associated hormones as drivers of epigenetic change, and
how this may contribute to the sexual dimorphism. Determining the effects of sex
hormones on innate immune function is important for understanding sexually dimorphic
autoimmune diseases, sex-specific responses to pathogens and vaccines, and how
innate immunity is altered during periods of hormonal change (endogenous
or exogenous).
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INTRODUCTION

The innate immune system is comprised of several physical,
chemical, and cellular mechanisms which serve as the first line of
defense against pathogens (1). Cells of the innate immune system
include monocytes, macrophages, neutrophils, dendritic cells
(DCs), natural killer (NK) cells, eosinophils, and basophils (1).
The innate immune response is influenced by a range of intrinsic
(host) and extrinsic (environmental) factors, which can affect
susceptibility to infection. Twin studies suggest a heritability of
circulating inflammatory markers, such as c-reactive protein,
between 20%–56% (2, 3) and thus attribute a large proportion of
the variation to environmental exposures.

It is well established that a key protective aspect of the
adaptive immune system is the genetically driven capacity to
“remember” specific exposures and mount heightened responses
to subsequent exposures. Interestingly, innate immune cells also
have the capacity to develop a “memory” in response to specific
exogenous exposures via specific metabolic and epigenetic
reprogramming (4), with wide-ranging implications for
complex disease and infection response (5). This phenomenon,
termed Trained Immunity (TRIM), was originally identified in
human monocytes in response to microbe exposures (6, 7), but
has subsequently been associated with certain metabolites and
danger signals (8–10).

Sex is an important influence on the innate immune system.
This influence arises not only due to genetic differences between
males and females but also due to differences in sex hormones
that alter the environmental milieu to which immune cells are
exposed. Consistent with this, sexual dimorphism exists in a
range of immune processes, including an individual’s response to
pathogens and vaccines. For example, a systems immunology
approach of 534 healthy individuals showed that sex and age,
along with season influence the ex vivo inflammatory response of
monocytes to multiple microbial stimuli (11). Females also
demonstrate reduced infection rates for a variety of bacterial,
viral, and parasitic infections, including Helicobacter pylori (12),
Mycobacterium tuberculosis (13), hepatitis B virus (14), and
Aspergillus fumigatus (15), while a recent analysis of COVID-
19-related deaths among 17 million adults demonstrated that
being female was a strong protective factor (hazard ratio of being
male: 1.59) (16). Similarly, females display a stronger immune
response to some vaccines, including the trivalent influenza virus
and hepatitis B virus vaccines [reviewed by Klein et al. (17)]. As
another example, pregnancy induces a broad range of maternal
innate immune adaptations (18), some of which are remembered
beyond parturition (19) and explained at least in part by changes
in the hormonal milieu.

In this review, we will discuss the ability of sex hormones to
alter mammalian innate immune phenotypes through epigenetic
remodeling. This review will discuss the effects of sex hormones
(estrogen, progesterone and androgens) on innate immune
function, the potential role of sex hormones in autoimmunity, and
the transcriptomic or epigenetic changes observed across hormonal
shifts (including puberty, pregnancy, menopause, menopausal
hormone therapy, and gender-affirming hormone therapy).
Frontiers in Immunology | www.frontiersin.org 2
SEX HORMONE ASSOCIATED
MOLECULAR REPROGRAMMING OF
INNATE IMMUNITY

Female sex hormones, such as estrogen and progesterone, and
male sex hormones, such as testosterone and other androgens,
are steroid hormones that modulate a wide range of biological
processes, including various aspects of innate immune system
functioning (20).

Estrogen, progesterone, and testosterone interact with nuclear
hormone receptors (estrogen receptor (ER), progesterone
receptor (PR), and androgen receptor (AR), respectively) in a
wide variety of cell types, including immune cells. Ligand-bound
nuclear hormone receptors have a high affinity for specific
sequences of DNA known as hormone response elements
(HREs) located in promoters of target genes (Figure 1) (21).
Thus, numerous genes are, at least in part, regulated by sex
hormones. Additionally, sex hormones can also influence gene
expression through other mechanisms, including G-protein
coupled receptor signaling, and rapid membrane signaling
(22). Although beyond the scope of this review, it is important
to note that sex hormone receptors may also function through
ligand-independent signaling.

The ER has two major isoforms: the alpha receptor (encoded
by ESR1 on chromosome 6) and the beta receptor (encoded by
ESR2 on chromosome 14). ER-a and ER-b are widely expressed
in human immune cells, including cells of the innate immune
system (23–26). ERs, when bound to their estrogen ligand,
function as transcription factors by directly binding to estrogen
response elements (EREs) in gene promoters, thus inducing or
inhibiting transcription (27, 28). Additionally, ligand-bound ERs
interact with other transcription factors, co-regulators, and co-
repressors, and therefore can also indirectly influence downstream
transcription (27, 28). This is directly relevant to various
inflammatory pathways, with a number genes encoding for
cytokines, chemokines, and cell surface immune markers having
been shown to be regulated by estrogen signaling [reviewed by
Khan & Ahmed (29)]. For example estrogen has been shown to
have a strong influence on NF-kB signaling, which plays a key role
in a variety of inflammatory and autoimmune processes (30–36).

Progesterone is capable of binding to progesterone receptors
(PRs) and glucocorticoid receptors (GRs). Much like the nuclear
ER, the nuclear PR has two isoforms nPR-a and nPR-b.
However, these isoforms are encoded by a single gene (PGR)
on chromosome 11 (37). In addition to nuclear PRs,
progesterone can also signal through membrane PRs (38). A
variety of human and murine immune cells have been shown to
express PRs, including cells of the innate immune system (39,
40). The expression of PRs in immune cells may vary between
sexes, with one study demonstrating that murine female-derived
DCs express higher amounts of PRs compared to male-derived
DCs (41). The GRs are more abundant in immune cells
compared to PRs, and thus progesterone-induced GR signaling
may act as an alternate pathway by which progesterone can
modify immune function (42, 43). Indeed, in murinemacrophages
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and DCs, progesterone attenuated LPS and poly I:C-induced
IL-6 production exclusively through GR signaling, whereas LPS-
induced IL-12p40 production was attenuated by progesterone via
GR signaling or PR signaling (or both) (43, 44).

The actions of testosterone largely occur through androgen
receptor (AR) signaling, with its derivative DHT being a more
potent agonist. The AR is encoded by the AR gene on the X
chromosome. When not bound to an androgen ligand, the AR
resides in the cytoplasm bound by heat shock proteins (HSPs)
and chaperone proteins (45). Upon interaction with an androgen
ligand (such as testosterone or DHT), the AR is released from the
HSPs and chaperone proteins and the ligand-bound AR
translocates to the nucleus (45). In the nucleus, the ligand-
bound AR binds to androgen response elements (AREs) and
modulates gene expression of target genes, facilitated by
coactivators and corepressors (45). The AR has been shown to
be expressed in a number of immune cells in human and murine
models [reviewed by Bupp and Jorgensen (46)], including cells of
the innate immune system.

Androgens
A number of human and murine studies have shown an overall
anti-inflammatory effect of testosterone, which may contribute
to the dampened immune response to infection and vaccination
in males. For example, 5-lipoxygenase (5-LO) is a key enzyme
Frontiers in Immunology | www.frontiersin.org 3
involved in the synthesis of leukotrienes, which are pro-
inflammatory mediators with potent vasoconstricting and
chemoattractant properties (47). Pergola et al. demonstrated
that female-derived human monocytes have a higher (1.8-fold)
5-LO product formation than that of male-derived monocytes,
and then went on to show that in vitro stimulation of female-
derived monocytes with the testosterone metabolite 5-a-
dihydrotestosterone (DHT) (10 nM) suppressed the synthesis
of 5-lipoxygenase (5-LO) products (47). Testosterone also
appears to dampen the cytokine response, with 10 nM of
testosterone attenuating IFN-g-induced (500 U/ml) TNFA
mRNA expression in THP-1 monocytes (48) and 1 x 10-6 M of
testosterone attenuating LPS-induced TNF production in
murine macrophage-like cells (RAW 264.7) (49). Conversely,
one study found that in vitro stimulation of female-derived
human monocytes with physiological levels of testosterone (2 x
10-7 to 2 x 10-9 mol/L) resulted in an elevation of IL-12 and IL-
1b-producing monocytes following lipopolysaccharide (LPS)
stimulation, but had no effect on TNF-a-producing monocytes
(50). In human male-derived monocytes, in vitro exposure to
dihydrotestosterone (DHT), reduced BCG-induced TNF-a
production at a concentration of 100 pmol/ml, and reduced
BCG-induced IL-6 production at concentrations of 10 and 100
pmol/ml (51). This effect was not observed in female derived
human monocytes (51). Toll-like receptor (TLR) 4, a pattern
FIGURE 1 | Steroid hormone signaling. Ligand-bound nuclear hormone receptors bind to hormone response elements (HREs) in the promoters of target genes
(genomic signaling). Coactivators, corepressors, and epigenetic regulatory enzymes interact with ligand-bound nuclear hormone receptors, regulating their effect on
transcription. The activation or repression of target genes (potentially orchestrated by epigenetic changes) can alter the cellular response in a hormone-dependent
manner. Signaling of steroid hormones can occur rapidly via membrane hormone receptor signaling (non-genomic signaling), resulting in activation of PI3K/Akt/MAPK
pathways and downstream TF signaling pathways.
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recognition receptor for LPS, appears to be under regulation by
testosterone, with in vitro testosterone stimulation (1 x 10-6 M
for 24 h) reducing cell surface TLR4 expression in a murine
macrophage cell-line (RAW 264.7) and in macrophages isolated
from orchiectomized mice (49). Congruently, an in vivo murine
approach demonstrated that orchiectomized male mice exhibit
significantly increased cell surface TLR4 expression (compared
to sham orchiectomized male mice and non-orchiectomized
male mice), and show increased susceptibility to LPS-induced
shock (49). Importantly, when orchiectomized male mice were
given exogenous testosterone treatment, the significant increase
in TLR4 surface expression was not observed, and the increased
susceptibility to endotoxin shock was abolished (49). Together,
these in vitro human immune cell studies and murine studies
indicate an immunomodulatory effect of androgens.

Estrogens
By contrast, studies investigating the effects of estrogen on
immune cells show varied results, likely due to the fact these
hormones have been studied more extensively. The overall effect
appears to depend on the form of estrogen, its concentration
(physiological versus supraphysiological and pregnancy-
associated levels), cell type, sex, and the relevant receptor
signaling pathways. Moreover, further complexity arises in
association with the varying female hormonal milieu across the
estrous cycle, with serum estrogen (estradiol) peaking during
the ovulatory phase and serum progesterone peaking during the
luteal phase (52).

In general, low level (physiological) estradiol enhances the
pro-inflammatory capacity of human and murine macrophages
and monocytes, whereas supraphysiological (late-pregnancy-
associated) estradiol levels suppress their pro-inflammatory
capacity [reviewed by (53)]. This is also reflected in the
sustained anti-inflammatory shift observed in maternal
macrophages and monocytes in mid to late pregnancy
(discussed in a later section) (42). Indeed, murine macrophages
exposed in vitro to low level estradiol (4.17 x 10-11 M, 4.17 x 10-10

M and 2.09 x 10-9 M) for 16 h attenuated LPS-induced TNF-a
production, and 4.17 x 10-10 M estradiol suppressed LPS-induced
TNFA, IL1 and IL6 gene expression (54). Consistent with this, in
vitro exposure of male-derived human monocytes to low levels of
estradiol (10-9 to 10-10 M) resulted in maximal IL-1 activity,
whereas higher levels of estradiol (10-7 M) reduced IL-1 activity
(55). Similarly, in vitro exposure of the monocytic cell line THP-
1 [differentiated by 12-O-tetradecanoylphorbol-13-acetate
(TPA) for 48 h] to low level estradiol (10-9 M) in the final 20 h
of differentiation resulted in increased expression of LPS-induced
IL1A and IL1B mRNA (56). In human peripheral blood
mononuclear cells (PBMCs), in vitro estradiol stimulation had
a sex-specific effect. Intriguingly, estradiol (1.25 x 10-10 M to 1.25
x 10-7 M) triggered TNF-a and IL-6 production in male-derived
PBMCs but not female-derived PBMCs (57). Co-stimulation of
PBMCs with estradiol and LPS attenuated the LPS-induced
TNF-a response in PBMCs derived from both sexes at
concentrations of 1.25 x 10-8 M and 1.25 x 10-7 M estradiol
(and also with 1.25 x 10-10 M and 1.25 x 10-9 M estradiol in male-
derived PBMCs) (57). The presence of estradiol also influences
Frontiers in Immunology | www.frontiersin.org 4
the in vitro Bacillus Calmette-Guerin (BCG)-induced cytokine
response in human monocytes. In particular, estradiol reduces
the TNF-a response in monocytes derived from both males and
females, as well as the IL-6 and IL-10 response in male
monocytes, following a 6-h BCG stimulation in the presence of
estradiol (1 x 10-10 M to 1 x 10-8 M) compared to BCG alone (51).

Estrogen has been shown to be implicated in neutrophil
apoptosis, chemotaxis, and the formation of neutrophil
extracellular traps (NETs), which are extracellular chromatin
fibers capable of binding pathogens, resulting in cell death
(NETosis) (58). Reduced spontaneous apoptosis in female-
derived neutrophils compared to male-derived neutrophils has
been observed (59). Moreover, in neutrophils derived from both
sexes, treatment with physiological estrogen (and physiological
progesterone) resulted in a further delay in spontaneous
apoptosis in a cytochrome c-mediated manner (59). Murine in
vivo estrogen treatment attenuated mRNA expression of
inflammatory mediators (adhesion molecules, chemokines, and
cytokines) in a model of acute artery injury, resulting in reduced
neutrophil chemotaxis (60), suggesting a vasoprotective role of
estrogen. In a human neutrophil-like cell line (HL-60), estradiol
increased the formation of neutrophil extracellular traps (NETs)
via the ER and G-protein coupled receptor.

In a murine model, the in vivo removal of endogenous
estrogen has been shown to reduce the inflammatory response.
Rettew et al. demonstrated that ovariectomized mice have
reduced serum TNF-a, IL-6, and IL-10 levels following a
sublethal in vivo LPS challenge, compared to sham
ovariectomized mice (no differences in severity of endotoxin
shock) (61). Moreover, the ovariectomized mice showed reduced
serum lipopolysaccharide binding protein (LBP) levels, and
reduced cell surface TLR4 and LPS-binding activity in isolated
peritoneal monocytes/macrophages. Intriguingly, the exogenous
replacement of estradiol (at supraphysiological levels) in
ovariectomized mice drastically increased the severity of
endotoxin shock, elevated serum LBP and TNF-a, and
increased surface TLR4 and LPS-binding in isolated peritoneal
monocytes/macrophages compared to both ovariectomized mice
and sham ovariectomized mice (61). These findings further
suggest a dual role of estradiol at physiological versus
supraphysiological levels. Understanding the influence of
estradiol on the response to bacterial stimuli is significant in
the context of sepsis, as it may explain why females generally
have a better sepsis outcome compared to males (62, 63).

Progesterone
Several studies have demonstrated an overall suppressive effect of
progesterone on innate immune cells (64). In contrast to
estrogen, progesterone has been shown to have a suppressive
effect on NET formation and NETosis, and can diminish the pro-
NETotic effect of estrogen (65). An in vitro study of murine
macrophages demonstrated that progesterone suppressed the
inflammatory response, with lower arginase and inducible
nitric oxide synthase 2 activity, in a dose-dependent manner,
in response to exposure to LPS (200 ng/ml), IL-4 (100 U/ml), or a
combination of both (66). In agreement, Jones et al.
demonstrated that LPS-induced nitric oxide production is
January 2021 | Volume 11 | Article 604000
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reduced by progesterone (7.8 × 10-6 M to 6.25 × 10-5 M) in male
murine bone-marrow derived macrophages (44). Additionally,
the authors reported a reduction in LPS-induced (12.5 µg/ml,
72 h) IL-12p40 production in murine bone-marrow derived
macrophages exposed to 1 x 10-7 M to 8 x 10-6 M of
progesterone. In a follow-up study, Jones et al. demonstrated
that progesterone was able to inhibit LPS-induced (800 ng/ml,
72 h) IL-6 production at 3.125 × 10-5 M and 6.15 × 10-5 M, and
poly I:C-induced (50 µg/ml, 72 h) IL-6 production in a dose-
dependent manner (5.0 × 10-7 M to 6.25 × 10-5 M) in male
murine bone marrow-derived DCs (43). Similarly, progesterone
had a suppressive effect on LPS-induced and poly I:C-induced
IL-12p40 production in murine DCs (43). In both male- and
female-derived human primary monocytes, 1.0 × 10-6 M
progesterone suppressed the formation of 5-LO products in
response to LPS/N-formyl peptide (67).

Interestingly, like estradiol, the effects of progesterone on
innate immune cells may diverge depending upon its
concentration. Thus, at very low doses (10-9 M), progesterone
(48 h in vitro incubation) enhanced IL-1 activity, whereas at
much higher doses (10-7 to 10-5 M) progesterone reduced IL-1
activity in human male-derived peripheral monocytes (55),
consistent with the studies described above. In this way, the
suppressive effects of progesterone on innate immunity—which
are likely to influence the response to infection—may be more
likely to be observed during particularly physiological states,
including the luteal phase of the menstrual cycle (when
progesterone is the dominant hormone) or pregnancy (when
progesterone (and estradiol) levels greatly exceed those of non-
pregnant individuals).
THE ROLE OF SEX HORMONES
IN AUTOIMMUNITY

Autoimmunity refers to a loss of self-tolerance and state of
immune reactivity towards self-antigens. Autoimmunity can
result in damage to tissue, and a disease state that is caused by
autoimmunity is termed an “autoimmune disease”. Although
self-reactive T and B lymphocytes have traditionally been the
focus in autoimmune disease, there is now a large body of
evidence demonstrating a role for innate immune cells in
autoimmune disease (68). For instance, macrophages have a
multifunctional role in autoimmunity, not only producing
potent inflammatory cytokines and mediators which influence
the local tissue microenvironment, but also presenting antigens
to lymphocytes (thus bridging the innate and adaptive immune
systems) (69).

There is considerable sexual dimorphism in the incidence of
many autoimmune diseases. Females display increased
susceptibility to systemic lupus erythematosus (SLE), Sj̈ ogren’s
syndrome, scleroderma, myasthenia gravis, Grave’s disease,
rheumatoid arthritis and multiple sclerosis [reviewed by
Rubtsova et al. (70)]. Indeed, it is estimated that females
account for more than 78% of all cases of autoimmune
diseases (71). However, the mechanisms that drive sexual
Frontiers in Immunology | www.frontiersin.org 5
dimorphism in autoimmunity are yet to be fully elucidated.
Potential mechanisms include the function and downstream
effects of genes encoded by the X or Y chromosomes, the
effects of sex hormones on immune cell function, and
environmental factors such as differential responses to
infection and gut microbial composition (70). Although
autoimmune diseases can occur at any stage of life, many
autoimmune diseases with a female preponderance more
commonly arise in the reproductive rather than pre-pubertal
years (72, 73). Moreover, the severity of many autoimmune
diseases changes in synchrony with periods of major endocrine
change, such as pregnancy and menopause (72, 74). In this way,
indirect evidence suggests that female sex hormones are likely to
be a key driver for the sex bias seen in autoimmunity.

Consistent with this, numerous studies in both animals and
humans have now directly implicated sex hormones in
autoimmunity. Estrogen signaling can have a protective or
detrimental role in autoimmunity. In a murine model of lupus,
ER-a deficiency resulted in improved disease measures (75).
Signaling through ER-b in a murine model of autoimmune
thyroiditis was shown to have a disease-aggravating effect.
However, ER-a signaling has a beneficial anti-inflammatory
effect in a murine models of arthritis (76) and multiple
sclerosis (77). In this way, murine studies have highlighted an
important role for estrogen signaling in autoimmunity, but
further studies are required to understand the specific
mechanistic pathways.

Testosterone appears to have a protective effect against
autoimmunity, with a substantial body of evidence now having
demonstrated an overall anti-inflammatory effect [reviewed by
Bianchi et al. (78)]. In murine studies, the protective role of
testosterone in autoimmunity has also been demonstrated in
models of lupus (79), type I diabetes (80), and arthritis (81). In
human cells, in vitro testosterone stimulation resulted in a
significant decrease in IgG and IgM production by PBMCs,
and a reduced IL-6 production by monocytes (82). This effect
has also been observed in SLE-derived immune cells, with
testosterone suppressing total IgG and anti-dsDNA IgG in
SLE-derived PBMCs, and suppressing IL-6 production in SLE-
derived monocytes (83). Testosterone deficiency or a reduced
androgen to estrogen ratio has been demonstrated in numerous
(but not all) studies in men diagnosed with female-biased
autoimmune diseases, including rheumatoid arthritis (84–91),
systemic lupus erythematosus (92–101), and multiple sclerosis
(102, 103), as reviewed by Bove (74). However, since testosterone
concentrations vary significantly with the presence of acute or
chronic disease, these lowered testosterone concentrations might
simply be a reflection of illness rather than the driver of immune
dysfunction. Nevertheless, a large-scale longitudinal study
demonstrated that untreated hypogonadism in men increases
the risk of both lupus and rheumatoid arthritis (104). Moreover,
men with autoimmune thyroid disease and diffuse cutaneous
systemic sclerosis have been shown to have higher levels of
circulating estradiol compared to unaffected males (105–107).
Together, these studies indicate a protective role of testosterone
in autoimmunity.
January 2021 | Volume 11 | Article 604000

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shepherd et al. Hormones and Epigenetics
A SEX-SPECIFIC IMMUNE
TRANSCRIPTOME

While studies looking at sex-specific differences in the
transcriptome of innate immune cells specifically are lacking,
several studies have compared female and male transcriptomes
in whole blood (108–111). Jansen et al. (109) measured sex-
specific differences in gene expression via microarray in 5,241
individuals. The authors identified 582 genes that were
influenced by sex in peripheral blood (109), and these genes
were associated with responses to cytokines, type I interferon
signaling and rheumatoid arthritis (109). The sex-specific
differences in gene expression were more pronounced in
women using oral contraceptives and less pronounced in post-
menopausal women, thus supporting a role for estrogen in the
establishment or maintenance of the sexually dimorphic blood
transcriptome (109). In an integrative multi-cohort approach
(3,672 individuals across 28 studies), Bongen et al. identified 144
differentially expressed genes between females and males (aged
18 to 40) in healthy adult blood (108). Importantly, three
quarters of the identified genes were autosomal, indicating that
a sex-specific blood transcriptome extends far beyond the X and
Y chromosomes (108). A number of female-enriched genes
highly expressed in CD4 T-cells indicated an enhanced
adaptive immune response. By contrast, a number of male-
enriched genes highly expressed in myeloid cells (monocytes/
macrophage and neutrophil/basophil clusters), indicated
enhanced aspects of innate immunity, such as phagocytosis
and anti-microbial defenses (108). The pattern of both
differentially expressed autosomal and allosomal genes (X and
Y) reliably and independently distinguished between sexes in
validation cohorts. In mice, a sex-specific transcriptome has been
identified in peritoneal cavity-derived macrophages, splenic
macrophages, and microglia (110). Female-enriched pathways
included the response to interferon, complement, IL-6/JAK/
STAT pathways and coagulation pathways (110). Female-
enriched genes that are associated with immune pathways,
adaptive immunity, and estrogen regulation warrant further
investigation, as they may provide insight into the pathways
driving the sexually dimorphic immune and autoimmune
responses. Moreover, genes related to the response to stimuli
may elucidate the mechanisms behind the heightened infection
and vaccination response in females.
SEX HORMONES AS EPIGENETIC
MODIFIERS IN INNATE IMMUNE CELLS

The underlying mechanisms that drive innate immune gene
expression and phenotypic changes occur at the level of
epigenetic marks (112). The term epigenetics means ‘above
DNA’ and refers to the study of molecular interactions that
influence chromosome structure and gene activity (113). In
monocytes/macrophages, lineage-determining transcription
factors, such as PU.1 and C/EBPs, establish the regulatory
Frontiers in Immunology | www.frontiersin.org 6
landscape within which stimulus-specific transcription factors
can act (114). These regulatory regions are marked by specific
‘active’ posttranslational histone tail modifications, which
influence the transcriptional output of the innate immune cells
in response to microbial ligands (115–117). DNA methylation, a
covalent modification of cytosines in the context of CpG
dinucleotides, is also remodeled in monocytes in response to
stimulation (116, 118).

Ligand-bound nuclear sex hormone receptors interact with a
number of co-regulators (co-activators and co-repressors) which,
as a complex, can alter chromatin structure and histone tail
modifications, thus facilitating transcriptional activation or
repression of target genes (Figure 1) (28, 45). Hormone-
associated changes in gene expression in innate immune cells
are mediated through widespread epigenetic remodeling
downstream of hormone receptor signaling pathways, as
demonstrated via in vitro glucocorticoid receptor signaling
studies in human monocytes and macrophages (119).

In cancer cells, estrogen-induced ER signaling has been shown to
trigger the re-organization of chromatin through histone tail
modifications including methylation, acetylation, and
phosphorylation [reviewed by Mann et al. (120)]. Sex-specific open
chromatin regions have been identified in murine macrophages
(110), suggesting a sexually dimorphic immune epigenome. Indeed,
Mamrut et al. investigated the methylome and transcriptome of
human B cells, CD4+ T cells, CD8+ T cell, and monocytes in adult
males and females (111). Autosomal sex-specific differentially
methylated regions were identified and this epigenetic signature
was robustly expressed across immune cell types (111). Together,
these studies provide nascent evidence for a sex-specific immune
transcriptome and methylome, with a clear extension beyond X- and
Y genes potentially mediated by the hormonal milieu. In vitro
stimulation of human endometrial stromal fibroblasts with estrogen
and progesterone induced changes to the methylome, transcriptome,
and chromatin landscape (121), indicating a direct epigenome-
altering effect of female sex hormones. In the context of sexual
dimorphism in infection and autoimmunity, the epigenetic effects
of estrogen, progesterone, and testosterone in immune cells
warrant investigation.
IMMUNOLOGICAL, TRANSCRIPTOME,
AND EPIGENOME DIFFERENCES DURING
PERIODS OF HORMONAL CHANGE

There are distinct temporal changes in hormonal levels
throughout the male and female lifespan, some longer term
and some cyclical. In females, these include puberty,
menopause, pregnancy, and the menstrual cycle. In males,
these include puberty as well as a decline in circulating
androgen levels with age that occurs at a more gradual rate
than menopausal-associated hormonal shifts in females. These
periods of hormonal change also coincide with significant
transcriptional, epigenetic, and immunological variation in a
range of cell types and tissues (Figure 2).
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Puberty
At the onset of puberty, profound and distinct hormonal changes
occur in males and females. Puberty marks the initiation of
increased testosterone production in males, and increased
estrogen and progesterone production in females. Immunological
changes also occur during puberty, with adolescents showing an
increased percentage of NK cells compared to pre-pubertal
children in both sexes (130), with another increase observed in
the elderly. Moreover, sex-specific differences among adolescents
have been observed, with adolescent females having a lower
percentage of monocytes (130) and CD19+ B-cells (131) and a
higher percentage of T-cells (CD3+) and CD4+ T-cells (132)
compared to males. In almost all of these examples, puberty as a
group shows an intermediate profile between infancy and older age,
suggesting these changes are not transient, but progressive.

There is an absence of longitudinal studies investigating a sex-
specific transcriptome across puberty and adolescence, but DNA
methylation studies (122, 123) indicate the formation of a sex-
specific methylome during puberty, with sex hormone signaling
(particularly estrogen signaling) playing a central role.
Thompson et al. reported sex-specific DNA methylation
changes in human PBMCs between pre-puberty and post-
puberty (8 and 14 years old, respectively) (122). The female
Frontiers in Immunology | www.frontiersin.org 7
differentially methylated probes (DMPs) between pre-puberty
and post-puberty were over-represented for estrogen response
elements (ERE) (122), suggesting an interplay between
epigenetic, transcriptional, and hormonal regulation. Genes
located near the 347 female DMPs were enriched for hormone
receptor signaling and immune pathways, whereas genes near
the 50 male DMPs were enriched for adrenaline and
noradrenaline synthesis (122). In a similar longitudinal study,
Almstrup et al. investigated DNA methylation changes in
peripheral blood across puberty, with males and females
analyzed together (123). Of the identified DMPs, a subset (94
DMPs) separated nearly all samples into pre-pubertal and post-
pubertal states, and a second subset (133 DMPs) was associated
with three or more hormones in males, suggesting that the
methylation signature in blood reflects both hormone levels
and pubertal age. Testosterone level were specifically associated
with 999 DMPs, which was higher than for other circulating
hormones tested. There was substantial overlap between the
puberty-predictive (29 percent) and hormone-predictive CpGs
(27 percent) identified by Almstrup et al. (123) and the female
DMPs identified by Thompson et al. (122).

Testosterone Through Life and Epigenetics/RNA
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5075254/
FIGURE 2 | Hormone fluctuations in human females during aging and pregnancy. These hormone fluctuations are associated with immune function and
susceptibility to certain inflammatory diseases. Several studies have performed epigenetic and transcriptional profiling at different stages of life: i) (122), ii) (123), iii)
(124), iv) (125), v) (126), vi) (127), vii) (128), and viii) (129).
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https://www.nature.com/articles/s41598-018-25694-0.pdf?
origin=ppub (immunocompetence hypothesis)
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5109279/
https://files.sld.cu/inmunologia/files/2014/01/2014-01-13-

testosterone.pdf
https://www.jimmunol.org/content/198/5/1782
It remains unclear whether puberty-associated hormonal changes

drive DNA methylation changes, or alternatively, whether puberty-
associated methylation changes influence hormone levels. An
integrative, longitudinal approach to analyzing the hormonal milieu
alongside the immune transcriptome, epigenome and proteome
across puberty will provide further understanding of sex-specific
immunological differences.

Pregnancy
Profound hormonal, immunological, transcriptomic, and epigenetic
changes occur during pregnancy. Human chorionic gonadotropin
(hCG), typically undetectable in non-pregnant individuals, is
initially produced by the implanted conceptus and later by the
placenta (133). Serum hCG peaks in the first trimester of pregnancy
and hCG plays a pivotal role in implantation, placentation, and the
establishment of feto-maternal tolerance (133–135). Progesterone
and estradiol, normally produced by the corpus luteum of the ovary
in non-pregnant females, are produced in high levels by the placenta
in the second and third trimesters of pregnancy (133). Estriol, a type
of estrogen produced only in pregnancy, is synthesized by the
fetoplacental unit (42).

Immunological changes occur throughout pregnancy, both in
the periphery and at the feto-maternal interface, orchestrated by
the maternal hormonal milieu. Tolerance towards the semi-
allogeneic fetus is required to prevent spontaneous rejection,
and thus it is advantageous for the maternal immune system to
shift towards an anti-inflammatory state (42). This anti-
inflammatory shift is observed in T-helper cells, with an
overall Th2 bias observed in pregnancy (136–138). The Th2
skew may be regulated by progesterone-receptor signaling, as
progesterone triggers the production of progesterone-induced
blocking factor (PIBF), which promotes the development of Th2
cells (139). A shift towards a type 2 cytokine environment and a
reduction in type 1 cytokines has been shown to be important for
a successful pregnancy (140–143). Additionally, pregnancy
results in an increased proportion of regulatory T cells (T-
regs), promoting implantation and tolerance towards the fetus
(144–146). Studies have demonstrated that hCG promotes the
development of T-regs (147, 148), and that T-regs are attracted
to hCG-producing trophoblasts (149). Moreover, recent
evidence shows that hCG can act as an epigenetic modifier
(150). Indeed, hCG inhibits CXCL10 expression in decidual
stromal cells through histone methylation (H3K27me3) (150).
This downregulation of CXCL10 is thought to be important for
establishing feto-maternal tolerance by reducing CD8+ T cell
attraction (150).

A progressive tolerogenic shift throughout pregnancy has also
been observed in maternal innate immune cells. At the feto-
maternal interface, decidual macrophages take on an M2-like
Frontiers in Immunology | www.frontiersin.org 8
phenotype (151, 152). In a longitudinal study of maternal
PBMCs, Pflitsch et al. demonstrated that the percentage of
classical monocytes (CD14highCD16neg) decreases as pregnancy
progresses, while the percentage of intermediate monocytes
(CD14highCD16pos-) increases (153). Within monocyte subsets,
maternal serum hCG level was associated with specific surface
markers (CD116, CD11b, CCR2). Ex vivo studies indicate that
maternal monocytes and macrophages have a reduced capacity
to produce pro-inflammatory cytokines in response to LPS as
pregnancy progresses (153–155). One ex vivo study
demonstrated that the reduction in LPS-induced TNF-a-
positive maternal monocytes was associated with increasing
plasma progesterone and estradiol levels (154). This effect may
be driven by the ability of estradiol to downregulate NF-kB
signaling in myeloid cells (30–32, 54). Conversely, one study
found no significant changes in the percentage of TNF-a, IL-1b,
or IL-6-positive monocytes between pregnant and non-pregnant
individuals following in vitro whole blood LPS stimulation (156).
They did, however, observe an increased percentage of IL-12-
positive monocytes (in LPS-induced and unstimulated
conditions) in pregnant women (156). Pregnancy-derived
serum can alter the cytokine profile of non-pregnancy-derived
cells, with increased IL-10 production and decreased the IL-1b
production in human macrophages incubated with pregnancy-
derived serum compared to non-pregnancy-derived serum (157).
Overall, evidence thus suggests that the maternal immune system
increases anti-inflammatory factors and attenuates pro-
inflammatory factors as pregnancy progresses (42). Uterine NK
cells play a key role in the vascular remodeling of endometrial
tissue in the first trimester of pregnancy, and are thought to be
under regulation of estrogen. Indeed, Gibson et al. reported that
primary uterine NK cells derived from first trimester decidua
demonstrate increased migration when treated ex vivo with
estrone or estradiol (measured by Transwell migration assay
and time-lapse microscopy) (158). This effect was abrogated by
the estrogen receptor antagonist ICI, further supporting the role
of estrogen in uterine NK cell migration. Moreover, expression of
CXCR4 and CCL2 was upregulated by estradiol, proposing a
mechanism for the migration-enhancing and pro-angiogenic
effects of estrogen (158). Despite the absence of progesterone
receptors, progesterone may regulate uterine NK cells indirectly.
For example, in vitro treatment of human endometrial stromal
cells triggers the secretion of IL-15 in a dose-dependent manner
(10-8 to 10-6 M), which is a known mediator of uterine NK
development and survival (159, 160). Together, these findings
suggest that estradiol and progesterone regulate the migration,
development, and function of uterine NK cells in pregnancy.

Pregnancy-associated immunological adaptations consequently
affect maternal immunity and autoimmunity. Pregnant females are
more susceptible to severe infection from several pathogens,
including the influenza virus, Toxoplasma gondii, and malarial
Plasmodium parasites [reviewed by Robinson et al. (42)]. Patterns
in autoimmune disease severity in pregnancy are congruent with the
pregnancy-associated Th2 bias. Th1-type autoimmune diseases
including rheumatoid arthritis (161), multiple sclerosis (162), and
Grave’s disease (163) have been reported to ameliorate during
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pregnancy and worsen in the post-partum period. By contrast,
systemic lupus erythematosus, which is classically regarded as Th2-
type autoimmune disease, can increase in severity during pregnancy
(164–166).

In light of the phenotypic and functional changes to maternal
immune cells, several studies have also investigated the blood
transcriptome (125, 126, 167), epigenome (124, 127) and
proteome (168) across pregnancy. Longitudinal transcriptome
analysis of whole blood in healthy pregnancy revealed sustained
downregulation of interferon response and plasma cell
signatures, and sustained upregulation of neutrophil and
erythropoiesis signatures, with changes observable at less than
16 weeks’ gestation (126). In agreement, Gomez-Lopez et al.
observed progressive downregulation of a number of
immunoglobulin genes and a reduced B-cell-specific mRNA
signature throughout pregnancy, along with an increased
erythroid-cell-specific mRNA signature (125). Additionally, the
authors observed a decreased T-cell-specific mRNA signature in
early to mid-pregnancy, followed by an increase towards
parturition (125). Multiple immune-related and inflammatory
pathways were also modulated across pregnancy, suggesting
transcriptional reprogramming of the immune system to
promote fetal tolerance (125). In an in vivo porcine model, the
endometrial transcriptomic changes observed on day 12 of
pregnancy were similar to those induced by an estradiol
infusion (167). Overlapping differentially-expressed genes
corresponded to biological processes involved in implantation
and embryo-maternal crosstalk, suggesting that estradiol may be
an underlying trigger for multiple pregnancy-associated changes
(167). Changes to the maternal blood epigenome occur as
pregnancy progresses, with a DNA methylation study revealing
196 CpGs showing longitudinal intra-individual changes in
methylation across pregnancy, with several genes containing
multiple differentially methylated CpGs (124). The vast
majority of these CpGs (91 percent) demonstrate decreasing
methylation across pregnancy, and these CpGs were
overrepresented for biological pathways involving metabolism,
insulin signaling, and growth of adipose and mammary gland
tissue (124), suggesting that epigenetic remodeling is implicated
in pregnancy-associated adaptations. Another study showed that
pregnancy (and the early postpartum period) induce dynamic
and reversible changes in histone methylation of maternal white
blood cells (H3K4, H3K9, H3K27, H3K36 and H3K79) (127).

Together these studies indicate that the stages of pregnancy
dynamically remodel the immune transcriptome and methylome,
and these changes are mirrored by altered immune cell function. It
has been suggested that the internal hormonal milieu regulates these
epigenetic changes, but lifestyle changes during pregnancy or feto-
maternal microchimerism may also contribute to maternal
pregnancy-associated epigenetic changes (124).
Menopause and Aging
Menopause marks the permanent cessation of the menstrual
cycle, and thus the end of the reproductive stage. The
menopausal transition (staged as pre-menopause, peri-
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menopause, menopause, post-menopause) results in profound
alterations to the hormonal landscape, with a significant
reduction in serum estradiol and progesterone levels and an
elevation in serum follicle stimulating hormone (FSH) and
luteinizing hormone (LH) (169, 170). Menopause alters the
gene expression of peripheral monocytes, with differentially
expressed genes linked to ontological categories of cell
proliferation, metabolism, immune responses, and transport,
among others (128). There is a paucity of longitudinal studies
investigating the evolving transcriptome and methylome across
menopause, and if conducted, particularly in immune cells, such
studies would contribute to improved understanding of how sex
hormone deprivation in menopause affects immunity.
Menopause has also been associated with epigenetic changes,
particularly changes in DNA methylation. Menopausal hormone
therapy (MHT) is widely used to prevent post-menopausal
osteoporosis (171). Studies have shown that MHT can induce
changes in the transcriptome of skeletal muscle cells (172) and
the methylome of white blood cells (129). In a monozygotic twin
study discordant for the use of MHT, 7855 DMRs were detected
in white blood cells (129). These DMRs were linked to 4,044
genes, with five genes (all related to bone density or adiposity)
showing differential gene expression (ACBA1, CCL5, FASLG,
PPP2R2B, and UHRF1) (129). Congruently, the expression levels
of these five genes were associated with clinical measures of bone
and adiposity in the participants (129). There is an intimate
crosstalk between cells of the immune system and skeletal
system, with numerous cytokines and transcription factors
shared between the two systems (129). It is thus tempting to
speculate that detrimental changes to bone density as a result of
menopause (i.e. osteoporosis) may be detected in the blood
methylome signature. Indeed, a 2018 study by Cheishvilli et al.
identified 77 significant differentially methylated CpG sites in the
blood of post-menopausal women with osteoporosis (compared
to age-matched healthy post-menopausal women) (173). A
subset of the associated genes correlated with bone density
measures, and their expression was able to predict osteoporosis
(173). Moreover, Reppe et al. identified that a substantial
proportion of significantly differentially methylated CpGs in
the bone of osteoporotic post-menopausal women (compared
to healthy post-menopausal women) were also differentially
methylated in the blood (174).

It remains unclear whether the DNA methylation changes
observed in the menopausal transition are caused by, or an effect
of menopause-associated hormonal changes. The transcriptional
and epigenetic changes observed before and after menopause may
be driven by changes to the hormone milieu, however, it is
important to highlight that they may also be driven by senescence.

Aging in males is associated with a slow decrease in
testosterone levels, which is more gradual compared to the
faster drop in estrogen in women. Loss of testosterone with age
is associated higher levels of inflammatory markers, such as IL6
(175), indicating a potential role in inflammaging—the chronic
low-grade inflammation with age (176). Further, testosterone
was shown to attenuate influenza vaccine response, with older
males responding more strongly than younger males (177).
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Coupled with the association between DNA methylation and
testosterone levels in puberty, it would be interesting to explore
the potential role for epigenetic mechanisms in mediating the
effects of decreased testosterone in aging and immune function.

Hormone Therapy in Transgender
Individuals
Gender-affirming hormone therapy (GAHT), sometimes
referred to as cross-sex hormone therapy, is commonly used
among transgender individuals undergoing a medical transition,
and also results in profound changes within the internal
hormonal environment (178). With GAHT, people assigned
male at birth who seek feminization receive exogenous
estradiol, often alongside drugs with anti-androgenic effects. By
contrast , people assigned female at birth who seek
masculinization receive exogenous testosterone. While the
initiation of GAHT is a period of profound hormonal and
physical change (179), the immunological and epigenetic
effects of GAHT have not been well defined. In the context of
the sexual dimorphism observed in cisgender (i.e. non-
transgender) males and females, it would be useful to
understand whether transgender individuals undergoing
GAHT immunologically resemble their sex assigned at birth or
Frontiers in Immunology | www.frontiersin.org 10
their transitioned gender. Transgender individuals undergoing
GAHT are a unique population, as the proposed chromosomal
influences (X and Y) of sexual dimorphism remain unchanged,
whereas the proposed hormonal influences of sexual
dimorphism are introduced at the commencement of GAHT.
The question thus remains: do transgender individuals retain
susceptibility to autoimmune disorders, malignancies, and
infection from their sex assigned at birth? Or do they adopt
the disease susceptibility of their transitioned gender through
hormonal influences? Alternatively, might there be a “middle
ground”, where some disease risks remain unchanged and others
are increased or decreased upon transitioning? Therefore,
transgender individuals present an opportunity to explore the
influence of genetics vs hormones on sexual dimorphism in
immunity. These questions can also be addressed with the Four
Core Genotypes mouse model (180, 181) of four different
combinations of gonads and sex chromosomes. This model has
been successfully used to identify sex chromosome influences on
physical traits, such as obesity and food intake (182, 183), and it
should be readily possible to study muscle function in the
same way.

In humans there have been cases of amelioration of subacute
cutaneous lupus in transgender males receiving exogenous
FIGURE 3 | Summary of selected pregnancy-associated and sex hormone effects on innate immune cells. Findings in four cell types, Mo, monocytes/macrophages;
Neu, Neutrophils; DC, Dendritic cells; NK, Natural Killer cells; are shown. Shapes correspond to hormone: yellow circle—hCG, pink rectangle—estrogen, orange
chevron—progesterone, blue triangle—testosterone, and arrows indicate if the hormone attenuated or increased a response/phenotype.
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testosterone (184), and development of SLE and lupus nephritis
in transgender females receiving exogenous estrogen (185–187),
suggesting that the sexual dimorphism in lupus may be
dependent on female sex hormones (or the suppression of
testosterone). However, literature in this area is sparse, and
there are currently no longitudinal studies on the long-term
effects of GAHT on the immune cell populations, epigenome, or
immune-related disease risks. One study has shown changes in
methylation levels at the promoters of hormone receptor genes
during GAHT, with increased methylation of the AR in
transgender people on feminizing hormones (at 12 months of
hormone therapy) and increased methylation of ESR1 in
transgender people on masculinizing hormones (at 6 and 12
months of hormone therapy) (188). Additionally, gene
expression of AR was significantly reduced in transgender
people on masculinizing hormone therapy (188). Methylation
of hormone receptor genes was correlated with a variety of
metabolic, anthropometric, inflammatory, and hormonal
measures, including white blood cell counts, C-reactive protein,
and cholesterol levels (188). Changes in the transcriptome have
also been observed, with one small cross-sectional study
reporting a unique transcriptome of rectal mucosal cells in
transgender women compared to cis-males (189). Gene set
enrichment analysis revealed enriched immunological pathway
signatures which may have an impact on anally transmitted HIV
infection (189).
IMPORTANCE OF SEXUAL DIMORPHISM
IN INNATE IMMUNITY—OUTSTANDING
QUESTIONS

Emerging evidence indicates that periods of profound hormonal
shifts (including puberty, pregnancy, menopause, MHT, and
GAHT) elicit a broad range of immunological, transcriptional,
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or epigenetic adaptations in blood or immune cells (Figure 3). In
addition, there is evidence for a sex-specific transcriptome and
methylome in circulating immune cells of adult males and
females. The effects of sex hormones on immune cells, whether
it be via classical nuclear hormone receptor signaling, non-
classical hormone signaling, or via downstream epigenetic
remodeling, are potential drivers of the sexually dimorphic
aspects of immunity. In the era of personalized medicine, sex
and gender are important factors to consider to ensure safe and
effective treatment. This is of particular importance in the
context of drugs targeting the immune system, as sex-specific
differences in immune function and immune-reactogenicity have
been well-demonstrated (190, 191).

Looking ahead, we propose that in vitro studies of human
innate immune cells be performed to better understand the
effects of particular hormones on their transcriptome,
methylome, chromatin landscape, and immune function, and
that these be done in conjunction with longitudinal, multi-
epigenomic studies of human innate immune cells across
puberty, pregnancy, menopause, MHT, and GAHT, since
doing so will ultimately contribute to our understanding of
infection risk and autoimmunity.
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