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INTRODUCTION 
 
Aging is the greatest risk factor for the majority of 
chronic diseases. The world’s population is rapidly 
aging with the number of individuals over 65 estimated 
to double by 2050 [1]. More than 90% of adults over 65 
have at least one chronic disease, and over two-thirds 
have two or more, accounting for >70% of deaths in 
America and 95% of all healthcare costs for the elderly 
[2]. Recently, efforts were initiated to begin thera-
peutically targeting aging with the goal of simulta-
neously delaying the onset of multiple chronic diseases 
[3, 4]. The development of new treatments for aging 
will depend greatly on the  identification  of  biomarkers 

 

that act as surrogates for measuring lifespan and 
healthspan, which are costly and lengthy to measure in 
pre-clinical models, let alone in humans [5].  
 
Several hurdles complicate the discovery and 
development of molecular biomarkers of aging.  This 
includes the time required to age animals, the need to 
test large numbers of candidate markers, and the trans-
lation of tests between models and species.  Proteomic 
approaches offer attractive solutions to these challenges 
and hold great potential for identifying protein profiles 
that can serve as surrogate markers of “biological age”.  
First, mass-spectrometry based measures can examine 
thousands of candidate proteins from archived tissues 
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ABSTRACT 
 
Aging  is an  ill‐defined process that  increases the risk of morbidity and mortality. Aging  is also heterogeneous
meaning  that  biological  and  chronological  age  can  differ.    Here,  we  used  unbiased  differential  mass
spectrometry to quantify thousands of proteins in mouse liver and select those that that consistently change in
expression as mice age. A panel of 14 proteins from inbred C57BL/6 mice was used to equate chronological and
biological age  in this reference population, against which other mice could be compared. This “biological age
calculator” identified two strains of f1 hybrid mice as biologically younger than inbred mice and progeroid mice
as being biologically older. In an independent validation experiment, the calculator identified mice treated with
rapamycin, known to extend lifespan of mice, as 18% younger than mice fed a placebo diet. This demonstrates
that it is possible to measure subtle changes in biologic age in mammals using a proteomics approach. 
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and bio-fluids, thus economically enabling discovery of 
new biomarkers. Second, proteomic measures facilitate 
analysis of numerous strains of mice, genetic models of 
aging and treatment groups relative to a reference 
population, to accelerate testing and validation of 
biomarkers. Finally, mass spectrometry assays are based 
on the chemical measurement of specific amino acid 
sequences, not biological antibody recognition, thus 
allowing proteins to be tested across species with 
absolute molecular specificity.   
 
Aging in most species is tremendously heterogeneous at 
both the organismal and molecular level [6, 7].  As a 
result, precise measurements and sufficiently large 
sample sizes are needed to detect subtle, yet 
reproducible, changes in protein expression that occur 
as organisms age. In fact, a previous study using 
unbiased proteomics to detect global protein expression 
changes in mouse tissues that occur with aging yielded 
only 5 proteins, using a cut-off of 2-fold change in 
expression [8]. In a similar study on rat heart, the 
greatest differential in age-related protein expression 
changes was 2-fold [9]. Hence approaches are needed 
that enable detection of more subtle changes in protein 
expression. 
 
Here, we took an unbiased proteomics approach to 
measure differences in protein expression in the livers 
of mice with aging. We chose to focus on liver because 
of the technical challenges associated with the large 
dynamic range (~1010) of protein concentrations in 
plasma [10]. One unique feature of our approach was 
that rather than a binary design (old vs. young), we 
analyzed at least 4 age groups over the lifespan of mice 
to identify changes in protein expression that occur with 
aging. A second unique feature of our approach was the 
analysis of a large number of samples (n=7-8 mice per 
age, sex, strain), which is only possible when using a 
label-free method of protein detection. The third unique 
feature was to utilize a differential mass spectrometry 
(dMS) workflow that prioritizes global protein 
quantification over identification (see [11-13] and 
Supplementary Figure 1 for details). This yields a mole-
cular profile with hundreds of thousands of signals per 
liver that can be analyzed for age-related signatures and 
readily identified by amino acid sequence in follow-up 
analyses. The large sample size, multifactorial expe-
rimental design and emphasis on precise quantification 
greatly enhanced our ability to identify robust molecular 
features that exhibit a statistically significant yet subtle 
difference in expression between age groups. Finally, in 
a separate experiment performed nine months after the 
initial discovery study and utilizing liver samples 
obtained from an independent investigator/institution, 
we confirmed that the aging protein expression profile 
could be reproduced and used to detect a reduction in 

biological age induced by a drug intervention known to 
extend the lifespan of mice. 
 
RESULTS 
 
The experimental design is illustrated in Figure 1. Male 
C57BL/6Jnia (inbred) mice were used as the reference 
population and compared to male mice in an f1 hybrid 
background (C57BL/6Jnia:Balb/cBy; called f1a) and 
female mice in a second f1 background (C57BL/6J:FVB/ 
NJ; called f1b) (Figure 1A).  The identities of the liver 
samples were blinded and a balanced incomplete block 
design (see methods for details) was used to minimize 
the impact of order bias that can be introduced during 
sample processing and analysis. Error introduced during 
sample processing and analysis was determined from 
the analysis of technical replicate samples from a 
pooled control.   Sample preparation was carried out in 
parallel using a block size of 48 samples and then 
individual samples were analyzed sequentially by nano-
flow liquid chromatography high-resolution mass 
spectrometry (nLC-MS). This label-free dMS workflow 
supports the unbiased quantification of proteomic 
features over the large number of samples required for 
this multilevel analysis (Figure 1B).  Supplementary 
Table 1 lists all samples processed simultaneously in the 
initial discovery experiment (n=140 liver samples).  
 
A cloud-computing dMS analysis pipeline (Infoclinika, 
Bellevue, WA) that enables the analysis of large nLC-
MS data sets was used to detect and quantify levels 
upwards of a hundred thousand high resolution features 
per liver lysate.  A data-cube structure was used to store 
the full dataset and enhance computationally intensive 
feature alignment and quantification calculations.  Each 
feature is defined by its mass-to-charge ratio (m/z) and 
retention time (rt). The feature intensity (i) provided a 
relative measure of protein expression that can be 
compared across samples. Features that exhibited large 
fluctuations in intensity were removed from the dataset 
using occupancy filtering (features that appeared in <4 
mice per strain/sex/age group) and outlier removal 
criteria (features that were greater than one order of 
magnitude outside the group median intensity level). 
Volcano plots of statistically significant features 
showed a similar number of features with increased or 
decreased expression with age (Figure 1C). Features 
linked to a common protein sequence were combined to 
yield protein-level expression data. More details on data 
analysis are provided in Supplementary Figure 1. It is 
important to note that differences in protein expression 
(x-axis, Figure 1C) were subtle (<1-fold increase) for 
the majority of proteins, illustrating why previous 
proteomic studies that used fewer numbers of samples 
failed to detect these differences as statistically 
significant [8, 14]. 
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Figure 1. Unbiased detection of age‐related changes in protein expression in mouse liver.  (A) Details of input tissue samples
(age in months and n per group) and methods of bias mitigation for sample preparation and analysis, including the creation of a balanced
incomplete block design for all processing and analysis steps and sample blinding. For the Ercc1‐/Δ mouse liver the n refers to mutant mice
/  littermate  controls.  (B)  Sample  processing  block  size  and  representative mass  chromatograms  generated  from  each  sample.  See
methods  section  for more detail.    (C) Alignment, extraction, and  storage of mass  spectral  feature data  from  raw mass  spectrometer
output based on  retention  time and accurate mass, allowing  for quantification of each proteomic  signal across all  samples,  results of
which are  shown  in example  feature  level volcano plots. The y‐axis  is  the negative  log of p‐value;  the x‐axis  is  the  log  fold‐change  in
protein  abundance.  All  features  associated with  a  protein  are  combined  to  calculate  protein  expression  as  shown  in  volcano  plots
indicating proteins (individual dots) that were significantly increased or decreased in expression in old vs. young mice and the extent of
that change in expression. (D) Plots of the relative abundance of all proteins (individual blue lines) that change significantly with aging as
identified by one‐way ANOVA. Protein expression was measured cross‐sectionally throughout the  lifespan of  inbred male C57BL/6Jnia,
male f1a (C57BL6/Jnia:Balb/cBy), female f1b (C57BL/6J:FVB/NJ), male f1b (C57BL/6J:FVB/NJ) Ercc1‐/Δ , and female f1b (C57BL/6J:FVB/NJ)
Ercc1‐/Δ mouse  livers.   The graphs are  separated  into proteins  that  increased  in expression with  chronological age  (top) or decreased
(bottom). The red line represents the mean protein abundance for significantly altered proteins in that group. m= the slope between time
points.  Significance cutoffs as delineated in Supplementary Table 2. 
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In inbred male mice, 64,657 features passed occupancy 
and outlier filtering, which led to a total of 34,817 
features quantified and identified with high precision. 
Tandem mass spectrometry data was used to link these 
features to 7,962 peptides that are uniquely found in 
1,298 protein sequences. Detailed numbers of features 
and proteins quantified for each strain of mice is 
provided in Supplementary Table 2. Supplementary 
Tables 3-5 list the proteins for each of the strains of WT 
mice that met the minimum significance cutoff of <5% 
false discovery based on iterative random sampling 
strategy [15]. Differences in protein expression between 
age groups of mice was small (<20%) for the majority 
of proteins. 
 
Line plots of relative protein abundance as a function of 
chronological age are shown for proteins that exhibited 
a significant increase or decrease with age (Figure 1D). 
Interestingly, the age when the most dramatic inflection 
in expression levels occurred is identical for over- and 
under-expressed proteins for a given mouse strain. But 
the age at greatest inflection in protein expression 
differed substantially between strains of mice. For 
example, in inbred male mice, protein expression is 
stable from 8-16 months of age then changes more 
dramatically between 16-24 and 24-32 months of age. 
In the longer-lived f1a male and f1b female mice, 
protein expression was stable into the third age group 
(24 months of age). After that (from 24 to 32 months), 
changes in protein abundance were more dramatic. This 
was particularly true in female mice, which is consistent 
with data indicating that several measures of health 
(body weight, percent fat mass and grip strength) drop 
more precipitously in female mice towards the end of 
life, whereas male mice experience a more steady 
decline in the last 12-16 months of life [16]. By 
analogy, women have a longer lifespan than men yet 
have greater disability and poorer health in old age [17].  
 
Although not the main focus of this work, pathway 
enrichment mining was performed using the proteomic 
data from the oldest and youngest age groups for the 
three strains of wild-type mice (Supplementary Table 
6). There was remarkable consistency in age-related 
protein expression levels between the three strains 
(inbred, f1a and f1b) of WT mice, even at the level of 
individual proteins. The pathways most significantly 
altered were oxidative damage/antioxidant response, 
fatty acid oxidation, nuclear receptors and clathrin-
mediated endocytosis. Expression of proteins required 
for fatty acid oxidation was significantly reduced in 
liver of older mice compared to the younger age groups 
(Supplementary Figures 2 and 3) consistent with prior 
studies [18] and evidence that aged WT mice have fatty 
liver compared to younger adult animals (Supplemen-
tary Figure 2B). In contrast, expression of proteins 

related to endocytosis and phagocytosis were 
significantly increased with aging (Supplementary 
Figures 4 and 5).  
 
To determine if it is possible to define a signature of 
age-related changes from the unbiased data set, a subset 
of the 1,298 proteins quantified in inbred male mice 
were selected based on high sample occupancy, strong 
statistical significance, and low intra-individual 
variance (Figure 2A). The Jonckeere-Terstra ordinal 
trend test and the Kruskal-Wallis test were used to 
evaluate protein expression trends between samples 
(Supplementary Table 15) [19, 20].  This yielded a 
panel of 14 proteins that were used to “set a biological 
clock” by which to gauge the aging of other mouse 
strains relative to C57BL/6Jnia inbred mice.  A rudi-
mentary linear model that weighted each of the 14 
proteins equally was used to define the protein 
expression profile at 16, 24, and 32 months of age in a 
reference population of inbred mice (Supplementary 
Table 14). Thereby in C57BL/6 mice, chronological age 
was equated with biological age to create a frame of 
reference.  
 
Expression of 11 of the 14 panel proteins differed 
between male f1a and male C57BL/6 mice, often at 
multiple time points, i.e., multiple ages (Figure 2B). 
Notably, in all cases where there were differences 
between strains, if the expression declined with aging in 
inbred mice, this effect was blunted in the f1a mice, 
consistent with slower biological aging (Figure 2B). For 
example, the expression of carbonic anhydrase 3 (CA3) 
was observed to decrease dramatically with aging in 
C57BL/6 mice, but less dramatically in f1a mice 
(Figure 2B and Supplementary Table 3). Immunoblot 
detection of CA3 confirmed decreased expression in 
liver of 24 month-old inbred mice compared to age-
matched f1a mice, consistent with the dMS data (Figure 
2C). 
 
Summation of the differences in expression of the 14 
selected proteins enabled calculation of the biological 
age of f1a male mice relative to the inbred males 
(Figure 2D; see methods for details). We anticipated 
that the f1a male mice, which are known to be healthier 
and longer-lived [21-23] would have a younger 
“biological age” than chronologically age-matched 
inbred mice. Indeed, 24 month-old f1a mice appeared 
16 months-old on the reference scale (p<0.001). 32 
month-old f1a mice appeared 24 months-old 
(p<0.0001). Thus, by comparison to inbred mice, the f1 
hybrid mice were calculated to be significantly younger 
biologically than their chronologic age. 
 
These proteomic results were supported by pre-mortem 
functional data and  post-mortem  histopathologic analy- 
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Figure 2. Selection of the biological age calculator protein panel and its application to other strains of wild‐type mice.  (A)
Illustration of how  the  14 protein panel was  selected  from  the  1,298 proteins  that were quantified  in  liver  of C57BL/6Jnia mice.  65
proteins had a one‐way ANOVA p<0.001, providing high statistical significance in age‐related changes in expression. 45 of those proteins
had a fold‐change difference of ≥30% and 33 of those had abundance above the median, facilitating detection of expression changes. 14
of those 33 proteins had a maximal intragroup variance of 15%, supporting reproducibility. (B) Expression of the 14 proteins selected for the
biological age calculator in male C57BL/6J mouse liver (black) and male f1a mouse liver (red) at multiple ages. (C) Immunoblot detection of
carbonic anhydrase 3 expression in liver from three 24 month‐old inbred and three f1a mice. The tissue lysates used were the same as those
used in the MS experiments, providing intra‐experimental validation. (D) The combined expression data from the panel of 14 proteins sets
the biological (estimated) age to the chronological age for the reference group of mice, C57BL/6Jnia (i.e., the black bars define 16, 24 and 32
months according to the biological age calculator; see methods for more details).  Red bars represent the summation of the data on the same
14 proteins in male f1a mice estimating their biological age at the chronological ages of 8, 16, 24, and 32 months relative to the reference
strain. (E) Representative images of liver sections from male inbred (C57BL/6Jnia) and f1a (C57BL6/Jnia:Balb/cBy) mice at two ages. The older
mice show numerous age‐related lesions consisting of portal inflammation (green arrows), portal duct hyperplasia (yellow), microgranulomas
(black)  and mild  intermittent hepatic degeneration.  The  inbred mice had more  extensive  age‐related  lesions  than  the  f1a mice.  (F)  The
composite lesion score reflects the incidence and severity of a specific panel of age‐related liver lesions and was used as a separate calculator
of biological age, in the same C57BL/6Jnia (black) and f1a (red) male mice used for proteomic analysis. (G) Same as (D) but for female mice of
a different f1b strain (blue). The female mice were analyzed at 14 rather than 16 months of age and 30 vs. 32 months of age (x‐axis). (H)
Estimated biological age of f1b female (blue) vs. f1a male mice (red).  Significance testing for all panels using Student’s unpaired, equal
variance t‐test, error bars show SEM.  *p<0.05, **p<0.01, ***p<0.001, ****p< 0.0001; N/A, not applicable.  
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sis from the exact same mice as those used in the 
proteomics analysis. The f1a mice had significantly 
greater mean distance traveled in a voluntary running 
wheel at all ages, than did the inbred mice [24]. The f1a 
mice also maintained VO2 or energy expenditure into 
old age, unlike the inbred mice, which displayed a 
significant drop in VO2 in the eldest age group (Sup-
plementary Table 7). These data are consistent with the 
f1a male mice being biologically younger than the 
inbred mice. 
 
Post-mortem histopathologic analysis of liver revealed 
increased age-related histopathological lesions in the 
C57BL/6Jnia mice compared to that of age-matched f1a 
mice (Figure 2E). The composite lesion score (CLS) for 
a defined set of age-related liver lesions [25] was 
significantly lower in 24 and 32 month-old f1a mice 
compared to the inbred mice (Figure 2F). Analogous to 
the protein expression data (Figures 1D and 2B), the 
CLS for male C57BL/6Jnia mice was unchanged 
between 8 and 16 months, before increasing linearly 
between 16 and 32 months.  In contrast, CLS for the 
male f1a mice was unchanged until 24 months of age. 
At 32 months, the f1a CLS was equal to that of the 24 
month-old inbred mice. Thus, histopathologic analysis 
of liver is consistent with the proteomics data.  
 
The total CLS derived from histopathologic analysis of 
four organs (heart, lung, kidney and liver) of the mice 
used for proteomics analysis was significantly lower in 
24 and 32-month-old f1a mice compared to inbred mice 
(Supplementary Table 8), as were the organ-specific 
CLS for 3 of the 4 organs examined (Supplementary 
Table 9) supporting the conclusion that the two strains 
of mice age at different rates. This independent method 
of determining biological age was entirely consistent 
with the proteomics-based biological age calculator. 
Thus, both pre-mortem and post-mortem analysis of the 
mice used in the initial proteomics analysis indicate that 
the f1a mice are biologically younger than chrono-
logically age-matched inbred mice, as the dMS pro-
teomics analysis predicted. 
 
Based on the 14 signature proteins (Supplementary 
Figure 6), female mice in a distinct genetic background 
(called f1b) also were significantly biologically younger 
than the reference inbred male mice throughout the first 
two years of life (Figure 2G). At 14 and 24 months of 
age, the females were predicted to be 10 and 13 months-
old, respectively. But by 30 months of age, their 
predicted biological age was roughly equivalent to their 
chronological age, consistent with the slopes of the 
trend plots shown in Figure 1D. This was recapitulated 
by comparing the female f1b and male f1a mice (Figure 
2H), where female mice were calculated to be sig-
nificantly younger than male mice through the first two 

years of life. But the sex-specific differences were 
absent by 30-32 months of age. This sex-specific 
differences in pace of aging is supported by the 
observation that expression of two markers of cellular 
senescence (p16Ink4a and p21Cip1), a well-recognized 
driver of aging [26, 27], was significantly greater in 
liver tissue of male f1b than female f1b mice at 24 
months of age, but the sex differences were all but lost 
by 32 months of age (Supplementary Figure 7).  
 
The liver proteomics data from mice of both sexes and 
two genetic backgrounds compared to the reference 
inbred C57BL/6Jnia mice provides two examples where 
the profile of liver protein expression obtained by dMS 
predicted differences in the biological age between the 
groups of mice. This prediction was supported by our 
functional and histopathological data as well as prior 
studies indicating that f1 mice have a longer lifespan 
than inbred animals [21, 22]. 
 
To further challenge the utility of the biological age 
calculator, we used genetic and pharmacologic 
approaches to accelerate and decelerate aging. Ercc1-/Δ 
mice model a human progeroid syndrome [28], aging 
rapidly between 2-6 months of life [29]. Liver from 2, 
3, and 4 month-old Ercc1-/Δ mice was compared to age-
matched WT mice, both in an f1b genetic background, 
using dMS. This yielded >1,000 proteins that were 
differentially expressed between the progeroid and WT 
mice (Supplementary Tables 1, 2, 10 and 11). Plotting 
the expression of all of the proteins that were altered 
with aging in the Ercc1-/Δ mouse liver revealed an 
inflection point at 3 months of age for both male and 
female mice (Figure 1D). The differences in protein 
expression between progeroid and WT mice rose more 
quickly between 2-3 months of age than between 3-4 
months.   
 
The expression level of 11 of the 14 panel proteins was 
significantly different between male Ercc1-/Δ mice and 
age-matched WT congenic male mice (Figure 3A). For 
8 of these 11 proteins, the differences in expression 
between Ercc1-/Δ mice and age-matched WT mice was 
in the same direction as aging-related changes in WT 
mice, i.e., if protein expression went down with aging in 
WT mice, it was lower in Ercc1-/Δ mice compared to 
age-matched WT controls. Across the lifespan of the 
Ercc1-/Δ mice, protein expression tended to trend in the 
same direction as what occurred with normal aging for 
all 14 proteins (at least from 2-3 months of age). 
Furthermore, as the mutant mice aged from 2-4 months, 
protein expression differed significantly from that in 
age-matched WT mice (p<0.001 for both sexes). 
Immunoblot detection confirmed decreased levels of 
CA3 in progeroid Ercc1-/Δ mice compared to age-
matched WT mice (Figure 3B).   
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the youngest inbred mice used for dMS analysis were 8 
months-old (Figure 1A). Furthermore, there were no 
significant differences in protein expression between 8 
and 16 months of age in C57BL/6Jnia mouse liver 
(Figure 1D, Supplementary Table 3, Figure 2B). Thus, 
the lowest age that the biological age calculator can 
register is 8-16 months.   

Figure  3. Using  the  age  calculator  to determine  the biological  age of progeroid  Ercc1‐/Δ mice.    (A)  Expression  of  the  14
proteins selected for the biological age calculator in male f1 Ercc1‐/Δ mouse liver (hatched bars) compared to age‐matched f1 male mice
(solid red) at 3 ages.   The proteins with blue titles decreased significantly  in expression with chronological age of wild‐type mice, while
those with  red  titles  increased  significantly with  aging  in WT mice  (Figure  2).  Error bars  show  SEM.  *p<0.05,  **p<0.01,  ***p<0.001,
****p<  0.0001.  (B)  Immunoblot  validation  of  reduced  expression  of  carbonic  anhydrase  3  in  liver  of  progeroid  Ercc1‐/Δ mouse  liver
compared  to wild‐type  littermates.  Tissue  samples were  from mice  distinct  from  the MS  experiment,  providing  inter‐experimental
validation.  (C) Estimated biological age of male f1 WT (red bars) and Ercc1‐/Δ (hatched bars) mice at three ages (x‐axis) compared to the
age of male inbred mice (y‐axis). (D) Estimated biological age of female f1 WT (blue bars) and Ercc1‐/Δ (hatched bars) mice at three ages
(x‐axis) compared to the age of male inbred mice (y‐axis).  Significance testing for all panels using Student’s unpaired, equal variance t‐
test, error bars show SEM, ****p< 0.0001.  
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Figure  4.  Using  the  age  calculator  to  determine  the  biological  age  of WT mice  treated with  the  anti‐geronic  factor
rapamycin.  (A) Expression of the 14 proteins selected for the biological age calculator  in  livers of C57BL/6NJ male mice put on a diet
containing 42 ppm rapamycin starting at 24 months  for 8 weeks  (26 month data, red checked bars) or 16 weeks  (28 month data, red
checked bars) or mice fed a control diet (black bars). The proteins with blue titles above the graph decreased significantly in expression
with age in C57BL/6NJ mice, while those with red titles increased significantly (Figure 2). (B) Estimated biological age for male C57BL/6NJ
mice fed the rapamycin diet (red checked bars, 26 and 28 months represent 8 and 16 week treatment, respectively) relative to isogenic
male mice fed a control diet (black bars).  (C) Estimated biological age for female C57BL/6NJ mice fed the rapamycin diet (14 ppm; blue
checked bars) relative to isogenic female mice fed a control diet (black bars) using C57BL/6NJ male mice as the reference (y‐axis scale).
(D) Representative  images of  liver sections from male C57BL/6NJ mice ± treatment with rapamycin. There was a  lack of progression of
age‐related  lesions  (arrows)  in  the  rapamycin‐treated mice  compared  to mice on  the  control diet.  Lesions  consist of microgranuloma
(green arrow) and mild  intermittent hepatic degeneration.    (E)   The composite  lesion score,  reflecting  the  incidence and severity of a
specific panel of age‐related liver lesions in the rapamycin‐treated male mice compared to isogenic mice on a control diet.  Significance
testing for all panels using Student’s unpaired, equal variance t‐test, error bars show SEM.  *p<0.05, **p<0.01, ***p<0.001, ****p< 0.0001. 
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At 2 months of age, the Ercc1-/Δ mice did not differ 
significantly in their calculated biological age from WT 
mice. However, the 3 month-old Ercc1-/Δ mice were 
estimated to be significantly older than their WT 
counterparts having an estimated biological age of 23 
months (p<0.0001).  The 4 month-old Ercc1-/Δ mice had 
an estimated biological age of 26 months. Similar trends 
were observed for female Ercc1-/Δ mice (Supplementary 
Figure 8 and 3D). The dramatic rise in the biological 
age of the progeroid mice between 2-3 months of age, 
with a subsequent flattening out in the rise from 3-4 
months of age (Figure 3C-D) matches the trends in 
protein expression differences between age groups 
plotted in Figure 1D.  
 
Rapamycin extends the lifespan and healthspan of 
mice, slowing biological aging [30]. Since our goal 
was to define a molecular signature that predicts 
biological age as a surrogate marker of lifespan and 
age-related pathology that could be applied to 
interventional testing, we asked if the biological age 
calculator could detect the effects of rapamycin 
treatment. In addition, we wanted to confirm that the 
biological calculator would work on MS data collected 
in an independent experiment performed 9 months after 
the discovery experiment using biological specimens 
from an independent source. Analysis of 56 liver 
samples from C57BL/6NJ mice of both sexes fed a diet 
supplemented with rapamycin or a control diet (Sup-
plementary Table 12) identified 1,641 that differed in 
expression between the groups (Supplementary Table 
13). Measuring expression of the 14 proteins in the 
biological calculator revealed significant differences in 
expression of 8 proteins between treatment groups 
(Figure 4A).  
 
In all cases, the rapamycin treatment reversed the aging 
trend (i.e., increased the expression of proteins 
identified as declining in expression with aging). The 
biological age calculator was used to estimate the effect 
of rapamycin treatment on biological age of male and 
female mice (Figure 4B and 4C).  Treating male mice 
for 8 weeks with rapamycin reduced their biological age 
from 26 to 20 months (p<0.01).  Treating male mice 
with rapamycin for 16 weeks reduced their biological 
age from 28 months to 19 months. Treating female mice 
with rapamycin for 8 weeks slowed aging by ~2.5 
months (Figure 4C). A 16 week treatment slowed 
female aging by ~5 months. The relative youthfulness 
of the liver from rapamycin-treated mice was confirmed 
by histopathological analysis (Figure 4D-E). These 
results validate the utility of our approach for measuring 
biological age in an independent experiment and 
demonstrates that the approach can be used to measure 
the effects of anti-aging interventions. 

DISCUSSION 
 
There are remarkably few studies employing proteomics 
to identify age-related changes in protein expression. 
Nevertheless, such studies are desperately needed for 
discovery of novel biomarkers that correlate with aging 
and ideally frailty or biologic age. In addition, novel 
approaches are needed to establish that protein 
expression changes are reproducible between strains of 
mice, between experiments and between laboratories. 
To date, the majority of proteomics studies investigating 
aging have used a single strain of animal [8, 31-33], 
with only one apparent exception [34]. The majority 
employed a binary comparison using just two age 
groups [8, 31, 32, 34-36]. Most studies used four or less 
individuals per group [8, 32, 34-36] and many have 
yielded only a handful of proteins that are significantly 
differentially expressed in aged organisms compared to 
young [31, 32, 35]. None of the previous work that we 
are aware of reported two independent experiments in a 
single study to establish reproducibility of their 
analytical and statistical approaches.  
 
Here, we addressed the need for novel proteomics 
analyses in the field of aging by taking a dramatically 
different approach, employing 3 genetic backgrounds of 
mice, 4-5 age groups, both sexes, and a larger number 
of mice per group. We report analysis of liver 
proteomics from 140 mice in the first experiment and 
56 mice in the second. Analysis emphasized accurate 
quantitation of peptide levels in individuals, leading to 
the quantification of approximately 1,500 identified 
proteins across all samples, hundreds of which were 
significantly differentially expressed in each group (3 
genetic backgrounds and both sexes) with aging. The 
expression level of fourteen of the most significantly 
and robustly altered proteins were used to create a 
composite measure of age using inbred C57BL/6Jnia 
mice as the reference strain. Use of this 14 protein panel 
identified two strains of f1 hybrid mice as being 
biologically younger than age-matched inbred mice. 
When biological age was altered genetically or 
pharmacologically, this was identified using the 14 
protein composite expression analysis. Thus, our novel 
approach yielded a panel of proteins, not related to a 
single pathway or metabolic change that consistently 
change with aging across strains of mice and is 
responsive to a therapeutic intervention known to 
extend lifespan.  
 
In conclusion, by using label-free dMS to analyze liver 
from a large cohort of mice, we discovered small 
reproducible differences in expression of a set of 
proteins that consistently predict the rate of aging, 
whether between different strains of mice, or if aging is 
accelerated or decelerated via genetic mutations or drug 
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intervention. This establishes proof of principle that 
proteomic measurements are useful for defining 
markers of aging and that a small number of protein 
measurements can be used to define biological age. 
These molecular endpoints hold promise as surrogate 
biomarkers of longevity that could be used to assess the 
accuracy of genetically modified models of aging, but 
more importantly the efficacy of interventions that 
extend healthy aging. By translating our 14-proteins to a 
simple, targeted MS assay, it will be possible to develop 
a high-throughput molecular screen for the discovery 
and characterization of novel compounds that alter 
biological age. Importantly, this work further demons-
trates unbiased dMS proteomics as a reliable method for 
the discovery of protein biomarkers and supports the 
extension of this work to additional tissues and bio-
logically accessible fluids, including urine and plasma. 
 
MATERIALS AND METHODS 
 
Mice 
 
Wild-type and Ercc1−/Δ mice in an f1 hybrid 
C57Bl/6J:FVB/NJ background were produced by 
crossing two inbred mice. These animals were 
generated and maintained at The Scripps Research 
Institute, Florida. Genomic DNA was isolated from ear 
tissue and the genotypes of the Ercc1−/Δ mice were 
determined by Transnetyx (Cordova, TN). Male 
C57BL/6Jnia and male f1 mice (C57BL/6Jnia:Balb/cBy) 
were obtained from the NIA Aged Rodent Resource and 
maintained at the University of Washington. These mice 
originated from The Jackson Laboratory. For the rapa-
mycin study, which was conducted at the University of 
Washington, C57BL/6Jnia mice were obtained from the 
NIA Aged Rodent Resource. All mice were bred at 
Charles River Laboratory. The IACUC of The Scripps 
Research Institute, or the University of Washington at 
Seattle, approved all mouse studies.  
 
Proteomics analysis 
 
The dMS analysis pipeline (Infoclinika, Bellevue WA) 
accepts multiple raw high-resolution mass spectrometry 
data files as an input and creates a datacube that holds 
mass spectral features that have been aligned and 
grouped over the entire dataset.  These features are 
defined by their accurate mass/charge, retention time, 
and intensity and can be verified by manual comparison 
with the raw data using the instrument manufactures 
data analysis tools (QualBrowser).  Feature intensity 
provides a relative measure of abundance and serves as 
the basis for quantification of protein expression.  
Quantification is performed by comparing the intensity 
of a feature across multiple samples and is carried out 
on hundreds of thousands of features per experiment.  

Noisy features were removed using occupancy and 
outlier filtering.  Occupancy filtering removed features 
from the experiment appearing in less than half of all 
samples by group.  Outlier filtering removed features 
per sample that were outside of a one order of 
magnitude range around the median intensity level.  
Stringency filtering removed noisy features from the 
analysis, improving quantification.  Feature level quan-
tifications were combined by protein to yield relative 
protein expression data. 
 
A label-free differential mass spectrometry workflow 
was used to analyze high resolution LC-MS data for 
livers from 140 wild-type and progeroid mice from 
three genetic backgrounds and both genders (listed in 
Supplementary Table 1).  Noise filtering was applied to 
each strain, gender and genotype separately to ensure 
that no data that was unique to a particular strain was 
removed.  In addition, 56 samples of rapamycin-treated 
C57BL/6NJ mice of both genders and two lengths of 
treatment were analyzed in a separate experiment (listed 
in Supplementary Table 9). 
 
Sample preparation 
 
In order to minimize bias in sample preparation and 
mass spectrometric analysis, samples were arranged in a 
balanced incomplete block design taking into account 
age, gender, strain, and genotype.  The identities of the 
mouse liver samples were blinded until statistical 
analysis.  Blinded samples were processed in batches of 
48 samples.  Approximately 100 mg portions of liver 
were dissected on ice and placed in 1 ml of 125 mM 
Tris-HCl, pH 7.6, and 100 mM dithiothreitol. Samples 
were lysed in a FastPrep-24 parallel homogenizer (MP 
Biomedicals, Santa Ana, CA) using lysing matrix D 
(MP Biomedicals, Santa Ana, CA) for 60 seconds at the 
6.5 m/s setting  10% SDS was added in a 1:4 ratio for a 
final lysis buffer of 100 mM Tris-HCl, pH 7.6, 80 mM 
dithiothreitol, and 2% SDS.  Samples were lysed at 99 
°C for 5 minutes in a Thermomixer (Fisher Scientific, 
Waltham, MA) at 300 RPM.  Samples were cooled to 
room temperature and insoluble materials removed by 
centrifugation at 22,500 RPM for 10 minutes. 
 
Protein concentration was determined using a 660 nM 
Protein Assay with Ionic Detergent Compatibility 
Reagent (Fisher Scientific, Waltham, MA).  100 μg of 
protein was digested per sample using the filter-aided 
sample preparation (FASP) method as described by 
Wiṥniewski et al., with minor modifications [37]. 
Samples were added to 200 μl of 100 mM Tris-HCl, pH 
8.0, 8M urea in an YM30 Microcon microcentrifuge 
filter (Millipore, Darmstadt, DEU).  Samples were 
centrifuged for 15 minutes at 14,000 g before an 
additional 200 μl of urea buffer was added and 
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centrifugation repeated.  100 μl of 100 mM Tris-HCl, 
pH 8.0, 20 mM iodoacetamide, 8M urea was added and 
samples incubated in the dark at room temperature for 
20 minutes before centrifugation at settings above.  
Three 100 μl volumes of urea buffer were added and 
centrifuged between additions at 14,000 g for 14, 13, 
and 12 minutes, respectively.  Three 100 μl volumes of 
50 mM ammonium bicarbonate were added and 
centrifuged between additions for 12, 12, and 10 
minutes, respectively.  100 μl of 50 mM ammonium 
bicarbonate with Sequence Grade TPCK-Treated 
Trypsin (Promega, Fitchburg, WI) were added to the 
samples in a ratio of 50 to 1 protein to trypsin by mass 
and the samples digested overnight in a humidified 37 
°C incubator.  Peptides were recovered into a new tube 
using two elutions of 100 μl of 50 mM ammonium 
bicarbonate and recovered via centrifugation at 14,000 x 
g for 10 and 15 minutes, respectively. 
 
Samples were desalted on a vacuum manifold using 50 
mg bed reversed-phase C18 solid phase columns 
(Supelco, Bellefonte, PA) as described previously [38]. 
Briefly, columns were activated with 0.1% formic acid 
in acetonitrile, followed by equilibration with 0.1% 
formic acid in water.  Following loading, samples were 
washed with 0.1% formic acid in water.  Samples were 
eluted in 90% acetonitrile, 1% water 0.1% formic acid.  
Samples were dried down in a Centrivap Concentrator 
with in-line cold trap (Labconco, Kansas City, MO) 
prior to resuspension in 0.1% formic acid in water at a 
concentration of 3 μg/μl.   
 
LC separation and mass spectrometric analysis 
 
Samples were loaded in a NanoAcquity UPLC auto-
sampler (Waters, Milford, MA) maintained at 4° C. A 1 
μL aliquot of sample was directly injected using a flow 
rate of 300 nl/min onto a modular Picochip XL 
electrospray ionization chip (New Objective, Cam-
bridge, MA) heated to 50 °C equipped with a 25 cm, 75 
micron ID fused silica column filled with 1.9 μm 
reversed phased C-18 REPROSIL with 300 angstrom 
pore size (Dr. Maisch, DEU).  Loaded samples were 
washed for 8 minutes in 3% acetonitrile in water and 
0.1% formic acid prior to a 60 minute gradient to 32%.  
Flow was increased to 80% acetonitrile in 2 minutes 
and held for 8 minutes before a fifteen minute wash at 
3% acetonitrile. 
 
High resolution mass spectrometry data was acquired 
with a hybrid orbital ion trap mass spectrometer 
ORBItrap XL (Thermo Fischer Scientific, Waltham, 
MA).  Full scan mass spectra were acquired with a 
resolution setting of 60,000.  Tandem mass spectra were 
acquired using a data dependent acquisition method that 
collects 4 MS/MS spectra in the instruments linear ion 

trap mass analyzer. Automatic Gain Control target 
settings of 106 and 5 x 103 ions were used for full and 
dependent spectra, respectively, with a maximum fill 
time of 150 ms for dependent spectra.  An exclusion list 
setting of 500 items was employed with a delay of 60 
seconds.  Data-dependent acquisitions settings were 
adjusted to exclude singly charged species and ions 
without an assigned charge state. 
  
Feature quantification and identification 
 
All mass spectrometry data was uploaded to the 
publicly available data analysis suite Chorus 
(www.chorusproject.org). All proteomics data used in 
this manuscript will be deposited in a public project on 
the Chorus website upon publication of our manuscript. 
 
A label-free differential mass spectrometry workflow 
was used for analysis and quantification of the high 
resolution LC-MS data.  Native instrument files were 
translated from the vendor specific format (*.RAW) and 
converted to a vendor neutral format prior to analysis.  
Quantitative analysis aligned and quantified mass 
spectrometric signals, referred to here as “features”, as 
defined by their accurate mass/charge ratio, retention 
time, and relative intensity.  Translated files are first 
processed as a two dimensional image with axes of 
accurate mass/charge and retention time, with the point 
size defined by relative intensity.  Features are then 
clustered into isotope groups.  A datacube is created by 
aligning isotope groups by retention time across all 
sample images.  MS/MS data was matched to the high 
resolution full scan precursor masses and searched 
using Comet against the Uniprot reference set for Mus 
musculus.  Full scan mass tolerance was set to 20 ppm 
and 0.8 Daltons for MS/MS scans, and two missed 
cleavages were allowed. 
 
Sample identities, but not protein or peptide identities, 
were unblinded following Chorus quantification.  
Filtering was employed to remove noisy data.  Samples 
were filtered using an occupancy filter requiring signal 
in at least half of all samples in a group, defined by age, 
strain and gender.  Outlier filtering removed signals that 
were outside of an order of magnitude range from the 
median for a given group (age, strain and genotype of 
mice).  Occupancy filtering was reapplied post outlier 
filtering. 
 
Targeted identification was used to sequence significant 
features that were not selected for MS/MS spectra 
during the initial analysis.  A Student’s unpaired, equal 
variance t-test was employed between the oldest and 
youngest age groups by strain and gender to detect 
significant unsequenced features.  Unidentified features 
found to be significant in more than one gender or strain 
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were selected for identification during additional scans 
over a two minute period around the signals retention 
time using a maximum fill time of 300 ms.  Targeted 
identifications were added to the initial identification, 
and median normalized feature intensity by sample was 
assigned as protein intensity, using a minimum of 5 
features from 2 peptides per protein.  
 
dMS analysis of the naturally aged and progeroid mice, 
prior to occupancy and outlier filtering, identified 1,489 
proteins deriving from 9,849 peptides and 585,332 mass 
spectrometric signals, or features during the initial 
identification stage.  Analysis of the 28 liver samples 
from rapamycin treated mice and their age- and gender-
matched controls (n=28) identified 1,641 proteins from 
10,569 peptides and 522,259 features.  3,103 proteins 
and 14,083 peptides were identified across all 
experiments.   
 
For the C57BL/6Jnia male mouse livers, across the ages 
of 8, 16, 24, and 32 months, 64,657 features passed 
occupancy and outlier filtering.  Noise filtering have a 
pronounced effect on signals of lower intensity 
compared to those of higher intensity.  In addition, high 
abundance signals have a greater chance of being 
selected for MS/MS analysis and result in the 
identification of an amino acid sequence.  1,146 
unsequenced features, defined as features that were not 
selected for MS/MS analysis by data dependent 
acquisition, were found to be significant between the 8 
month and 32 month groups (p<0.01). Targeted data 
acquisition was used to acquire MS/MS spectra for  408 
of the un-sequenced features resulting in the 
identification of high confidence peptide identifications 
for 158 of the features not linked to a protein iden-
tification were successfully identified.  In total, 34,817 
features were quantified with high precision by 
differential mass spectrometry and matched to 7,962 
peptide sequences that are unique to 1,298 proteins.    
 
For the male C57BL/6Jnia:Balb/cBy mouse livers, 
60,653 features passed filtering; 34,301 features were 
identified from 7,931 peptides and 1,268 proteins 
(Supplementary Tables 2 and 4).  dMS analysis of the 
female f1 livers, yielded 76,683 features, 35,434 of 
which were identified from 7,088 peptides and 1,196 
proteins.  Noise filtering of mass spectrometric analyses 
of male Ercc1-/Δ mouse livers aged 2, 3, and 4 months 
led to 46,292 features, 28,647 of which were identified 
from 6,924 peptides and 1,181 proteins.  Noise filtering 
of female Ercc1-/Δ mouse livers aged 2, 3, and 4 months 
resulted in 49,004 features, 30,290 of which were 
identified from 7,362 peptides and 1,238 proteins.   
 
To determine the significance of the differences in 
expression of individual proteins across the various 

ages, a one way ANOVA was employed following an 
occupancy screen at the protein level allowing a single 
missing value per age group.  For the 8, 16, 24, and 32 
month C57BL/6Jnia male mouse livers, 316 proteins 
were found to have a p<0.05, 127 proteins with a p <.01 
(see Supplementary Table 3 for a list), 55 proteins with 
a p<0.001, and 23 proteins with a p<0.0001.  For the 8, 
16, 24, 32, and 36 month C57BL/6Jnia:Balb/cBy male 
mouse livers, 436 proteins were found to have a p<0.05, 
222 proteins with a p<0.01, 92 proteins with a p<0.001 
(see Supplementary Table 4 for a list), and 44 proteins 
with a p<0.0001.  For the 7, 14, 24, and 30 month 
C57Bl/6N:FVB/NJ female mice livers, 562 proteins 
were found to have a p<0.05, 362 proteins with a 
p<0.01, 167 proteins with a p<0.001, and 74 proteins 
with a p<0.0001.  For the 2, 3, and 4 month male Ercc1-

/Δ mouse livers, 266 proteins were found to have a 
p<0.05, 138 proteins with a p<0.01, 46 proteins with a 
p<0.001, and 19 proteins with a p<0.0001.  In the 2, 3, 
and 4 month female Ercc1-/Δ mouse livers, 173 proteins 
were found to have a p<0.05, 69 proteins with a p<0.01, 
14 proteins with a p<0.001, and 3 proteins with a 
p<0.0001. 
 
In order to correct for false positive errors, due to 
multiple hypothesis testing, an empirical iterative 
random resampling strategy was employed (see 
reference 15, Tusher VG, Tibshirani R. and Chu G.).  
False positives are incorrect assignment of statistical 
significance due to the number of statistical analyses 
attempted.  False discovery of randomly significant 
ANOVA analysis per protein was limited to less than 
5% of true discovery in the male C57BL/6NJnia, male 
f1, female f1, male Ercc1-/Δ f1, and female f1 Ercc1-/Δ 
mice at an ANOVA value of p<0.01, p<0.001, 
p<0.0001, p<0.001, and p<0.01, respectively.  Groups 
with the fewest number of samples have a greater 
likelihood of false positives due to random chance, as 
well as groups with the least linear differences between 
age groups.   
 
To find if trends were similar between and within the 
sample groups, analysis of the linear relationship 
between ages was performed.  Trends between age 
groups were evaluated by taking the square of the 
Pearson product moment coefficient of the median 
expression level per age.  Of the 127 significant proteins 
for the male C57BL/6NJnia livers, 39 proteins showed 
an R2 value of >0.95 for the entire age range of 8 to 32 
months, 49 proteins had an R2 value of >0.95 between 8 
and 24 months, and 56 demonstrated significance across 
the age range of 16 – 32 months.  Analysis of the 
significant proteins for C57BL/6Jnia:Balb/cBy mouse 
livers across the expanded age range of 8 to 36 months 
showed only a single protein with an R2 value >0.95, 7 
proteins from 16 vs. 36 months, 9 proteins from 8 vs. 32 
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months, but 26 proteins between 24 and 36 months. 
Significant expression level differences for the male f1 
livers appeared to occur later in life than for the inbred 
male mice.   
 
For the female f1 mouse livers, trend analysis showed 
greater concurrence between the 7, 14, and 24 month 
old groups than the 14, 24, and 30 month groups.  For 
the proteins determined significant by ANOVA 
analysis, only 13 proteins had a Pearson product 
moment coefficient of >0.95 for the entire age range.  
15 proteins had an R2 >0.95 between 14 and 30 months.  
50 significant proteins, however, had an R2 of >0.95 for 
the age range from 6–24 months.  24 out of 74 
significant proteins from the female f1 wild-type data 
set demonstrated a significant reversal in direction 
between 6 and 24 months compared to 14 to 30 months.  
In addition, the median rate of change for significant 
proteins is 500% greater between the 14 and 30 month 
old mice than between the 6 and 24 month-old mouse 
expression levels. In comparison, for the male 
C57BL/6Jnia:Balb/cBy mouse liver proteins, only 5 of 
the 127 significant proteins showed a significant 
reversal of trend across the various ages, and the median 
rate of change was 80% greater between the oldest three 
age groups compared to the youngest three age groups.   
 
The female Ercc1-/Δ mouse livers were from subjects of 
2, 3, and 4 months of age.  Trends for select significant 
proteins are shown in Supplementary Figure 6.  Of the 
69 proteins found significant via ANOVA analysis, 8 
were highly significant, p<0.001, in the female f1 data 
set between the 6 and 30 month age groups and 7 out of 
8 trended in the same direction in both data sets.  
  
Biological aging calculator 
 
The proteins used for the biological age calculator were 
selected using data from the inbred C57BL/6Jnia male 
mice as a reference population.  The following selection 
criteria were used: 1) one-way ANOVA analysis 
p<0.001 to provide rigor, 2) an average protein expres-
sion difference of ≥30% between the youngest and 
oldest age groups to address sensitivity issues in other 
detection formats, 3) protein abundance greater than the 
median abundance for the entire dataset to enhance 
detectability, 4) intragroup (by age) coefficient of 
variation no greater than 15%, to enhance repro-
ducibility.  14 proteins passed the criteria to form the 
panel used as the biological age calculator.  For each of 
the 14 proteins, the average protein expression was 
plotted (y-axis) vs. chronological age (x-axis) for 
C57BL/6Jnia male mice at each chronological age (8, 
16, 24 and 32 months). Linear regression analysis was 
used to create a best-fit trend line to illustrate how the 
expression of each individual protein changed with 

chronological age in the reference population.  The 
slope and intercept of the linear regression was 
calculated for each protein for 16 to 32 months. This 
created a reference by which to compare other sexes, 
strains and interventions to calculate their biological age 
relative to the reference population. 
 
To apply the aging calculator to the other strains of 
wild-type and progeroid Ercc1-/Δ mice (both male and 
female), the protein expression level for each of the 
panel proteins was entered into the linear regression 
model (y-value) and was used to predict a biological 
age (x-value) for each individual animal.  The median 
biological age across all 14 proteins was calculated to 
create the biological age for that animal.  All animals in 
that group (same sex, strain, genotype or intervention 
group) were then averaged to create a predicted 
biological age relative to the reference population. In 
the case of the rapamycin intervention study, analysis 
was performed as a separate experiment. Thus, it was 
necessary to first normalize protein expression measur-
ed between the first experiment containing the reference 
samples and the rapamycin experiment. This was done 
by adjusting the mean protein expression for each of the 
14 panel proteins in the control group (mice in the 
second experiment that got the control diet with no 
rapamycin) to the mean protein expression in the 
reference population of the first experiment. This was 
deemed appropriate because the mice were of the exact 
same strain, sex and chronological age.  This enabled 
determination of the effect of rapamycin on the bio-
logical age of mice.   
 
Pathway analysis   
 
Pathway enrichment mining was performed using the 
proteomic data for the oldest and youngest age groups 
for each of the strains of wild-type mice 
(Supplementary Tables 3-5).  Protein expression ratios 
(old vs. young) were input into the Ingenuity Pathway 
Analysis suite e (IPA; Qiagen, Valencia, CA) to identify 
overrepresented pathways.  For all three wild-type 
strains of mice (both sexes), proteins involved in fatty 
acid β-oxidation decreased in expression with aging in 
liver.  Downregulation of proteins with a gene ontology 
term for fatty acid β-oxidation have a p<0.001 (male 
inbred C57BL/6Jnia mice), p<0.01 (male f1 
C57BL/6Jnia:Balb/cBy mice), and p<0.01 (female f1 
C57BL/6J;FVB/NJ mice), respectively, calculated with 
a Student’s two-tailed, equal variance t-test (Sup-
plementary Table 6, Supplementary Figures 2 and 3).  
Proteins involved in glutathione production also became 
significantly less abundant with aging in all three wild-
type strains of mice with p<0.05  (male  inbred  C57BL/ 
6Jnia mice), p<0.01 (male f1 C57BL/6Jnia:Balb/cBy 
mice), and p<0.05 (female f1 C57BL/6J;FVB/NJ mice), 
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respectively (Supplementary Table 6).  The rate limiting 
step of glutathione production, however, is governed by 
GCLC, the glutathione cysteine ligase catalytic subunit, 
which is downregulated in all three wild type strains, 
significantly so in inbred male and f1 female mice.  
Additionally, significant alterations were observed in 
protein expression levels s involved in immune 
responsive clathrin-mediated endocytosis (Supplemen-
tary Table 6, Supplementary Figures 4 and 5).  
Expression of proteins involved in clathrin-mediated 
endocytosis were significantly increased in all three 
strains of wild-type mice (p<0.0001 for all three 
strains).  
  
Rapamycin study 
 
Two year-old WT C57BL/6NJ mice were obtained from 
the National Institute of Aging Charles River colony. 
Mice were housed at 20°C in an AAALAC accredited 
facility under Institutional Animal Care and Use 
Committee (IACUC) supervision. After a brief 
acclimation period, the mice were randomly assigned to 
groups and fed a diet with microencapsulated rapa-
mycin (Rapamycin Holdings, San Antonio TX) at 2.24 
mg/kg/day (or 14 ppm in diet for female mice) or 6.72 
mg/kg/day (42 ppm in diet for male mice) or a control 
diet of the same composition (including the encap-
sulation material). The animals were fed the diets for 8 
or 16 weeks. All treatment groups are summarized in 
Supplementary Table 9. 
 
Male C57BL/6NJ mice were treated with rapamycin for 
8 or 16 week time courses starting at 24 months of age.  
Proteomic analysis of these samples yielded 34,730 
features following noise filtering, resulting in data for 
1,641 proteins.  Statistical analysis performed consisted 
of a Student’s unpaired equal variance two tailed t-test 
between control and treatment for each treatment 
length.  For the 8 week treatment versus age-matched 
control, 7 proteins were significant with p<0.001.  For 
the 16 week treatment versus age matched control, 18 
proteins were significant with p<0.001 (Supplementary 
Table 10).   
 
Female C57BL/6NJ mice were treated with rapamycin 
for 8 or 16 weeks starting at 22 months of age.  
Statistical analysis performed consisted of a Student’s 
unpaired equal variance two tailed t-test between 
control and treatment for each treatment length. 14 and 
2 proteins were significant with a p<0.001 from the 8 
week and 16 week treatment groups, respectively.   
 
Histological staining 
 
Animals were euthanized by CO2 asphyxiation at the 
indicated ages. Tissues were excised and fixed over-

night in 4% paraformaldehyde. Following progressive 
tissue dehydration with ethanol and xylene, the tissues 
were embedded in paraffin. Sections (4  μm thickness) 
were subjected to H&E staining. Alternatively, tissues 
were fixed frozen by placing them in 2% para-
formaldehyde for 2-3 hrs followed by submersion in 
30% sucrose for 24 hrs with several changes of solution. 
The fixed tissues were then embedded in OCT for cryo-
sectioning (6 μm thickness) and staining with LipidTox 
(ThermoFisher) to detect fatty infiltration.  
 
Histopathological scoring 
 
Lesion scoring used the Geropathology Grading 
Platform (GGP) developed by the Geropathology 
Grading Committee [25]. The GGP is based on a 
standard set of guidelines designed to 1) detect the 
histological presence or absence of low impact lesions 
in multiple organs; and 2) measure the level of severity 
of high impact lesions related to aging in mice. The 
platform generates a numerical score for each lesion in a 
specific organ, so that a total lesion score is obtained by 
adding each lesion score for that organ for one mouse. 
Total lesion scores are averaged between all mice in a 
specific cohort to obtain a composite lesion score (CLS) 
for that organ. The CLS can then be used to compare 
response to drug treatment over time, determine effect 
of alterations in gene expression, or investigate the 
impact of environmental challenges in a variety of 
preclinical aging studies. 
 
Immunoblotting 
 
Livers were homogenized in RIPA buffer using a 
FastPrep-24 homogenizer and incubated on ice for 30 
min. Samples were centrifuged at 17,000 x g for 15 min 
at 4 oC. Supernatants were resuspended in 2X SDS 
loading buffer and 25 or 100 µg of total protein was run 
on a 4-15% SDS-PAGE gel before being transferred to 
nitrocellulose membrane. Membranes were blocked for 
1 hr in 10% milk TBS-T solution at room temperature 
before overnight incubation in anti-CA3 (Abcam, 
Cambridge, MA, catalog# ab181358, 1:500-1000) and 
anti-GAPDH (Abcam, catalog# ab8425, 1:5000) 
antibody in TBS-T at 4 oC. After washing, samples were 
incubated in goat anti-rabbit HRP secondary antibody 
(Thermo-Fisher,  catalog # 656120, 1:2000) in 5% milk 
TBS-T solution for 3 hr before washing and 
visualization with ECL (Thermo-Fisher). 
 
Abbreviations 
 
CA3: carbonic anhydrase 3 protein; CLS: composite 
lesion score; dMS: differential mass spectrometry;  
GGP: Geropathology Grading Platform; MS: mass 
spectrometry; nLC-MS: nanoflow liquid chroma-
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tography high-resolution mass spectrometry; m/z: mass-
to-charge ratio (of a mass-spectrometry feature); rt: 
retention time (of a mass-spectrometry feature); i: 
intensity (of a mass-spectrometry feature); WT: wild-
type.    
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