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Abstract: (1) Background: Virtual screening campaigns require target structures in which the pockets
are properly arranged for binding. Without these, MD simulations can be used to relax the available
target structures, optimizing the fine architecture of their binding sites. Among the generated frames,
the best structures can be selected based on available experimental data. Without experimental
templates, the MD trajectories can be filtered by energy-based criteria or sampled by systematic
analyses. (2) Methods: A blind and methodical analysis was performed on the already reported MD
run of the hTRPM8 tetrameric structures; a total of 50 frames underwent docking simulations by
using a set of 1000 ligands including 20 known hTRPM8 modulators. Docking runs were performed
by LiGen program and involved the frames as they are and after optimization by SCRWL4.0. For each
frame, all four monomers were considered. Predictive models were developed by the EFO algorithm
based on the sole primary LiGen scores. (3) Results: On average, the MD simulation progressively
enhances the performance of the extracted frames, and the optimized structures perform better than
the non-optimized frames (EF1% mean: 21.38 vs. 23.29). There is an overall correlation between
performances and volumes of the explored pockets and the combination of the best performing
frames allows to develop highly performing consensus models (EF1% = 49.83). (4) Conclusions: The
systematic sampling of the entire MD run provides performances roughly comparable with those
previously reached by using rationally selected frames. The proposed strategy appears to be helpful
when the lack of experimental data does not allow an easy selection of the optimal structures for
docking simulations. Overall, the reported docking results confirm the relevance of simulating all the
monomers of an oligomer structure and emphasize the efficacy of the SCRWL4.0 method to optimize
the protein structures for docking calculations.

Keywords: virtual screening; systematic sampling; MD simulations; consensus models; LiGen
software; EFO algorithm; hTRPM8

1. Introduction

Structure-based virtual screening (VS) simulations comprise a set of well-established in
silico approaches which proved successful in hit identification and drug repurposing [1,2].
While involving various computational protocols, they are unified by the common pivotal
role played by docking simulations [3]. Consequently, the availability of reliable protein
structures is a mandatory prerequisite to perform successful analyses [4]. Such a require-
ment might be fulfilled when protein structures in complex with suitable ligands have been
experimentally resolved. Indeed, these structures should assure both a satisfactory struc-
tural reliability and a properly arranged binding site [5]. In contrast, the resolved structures
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in their unbound state as well as almost all theoretical models, even when assuring the
necessary structural quality, pose the problem regarding the correct arrangement of their
binding pockets [6,7].

A strategy usually adopted in these cases involves rather long preliminary MD simula-
tions by which the protein structures should be reasonably optimized with beneficial effects
on the architecture of their binding sites [8]. Even after discarding redundant frames, the
performed MD runs generate a high number of representative protein conformations and
the selection of the optimal structure(s) for the following docking simulations represents a
crucial step to maximize the predictive performance of the resulting VS campaigns [9].

Therefore, one may imagine two typical situations. In the first case, useful information
concerning the precise architecture of the binding pocket can be derived by resolved
homologous proteins or by literature data. In this fortunate condition, docking simulations
can be focused on those MD frames in which at least the binding pocket is in best agreement
with the experimental references [10]. In the second unfortunate situation, experimental
data regarding the arrangement of the binding pocket are not available and consequently
the selection of few optimal frames must be replaced by a rational analysis of the entire
MD trajectory [11]. To this end, different approaches have been proposed ranging from a
simple sampling of the entire trajectory to a rational selection of the most representative
frames based on essential dynamics or other energy-based criteria [12].

In a previous study, we experienced the first situation to develop targeted protocols
for optimized VS campaigns on the hTRPM8 structure [13]. Along with its physiological
role and medicinal interest [14], the TRPM8 ion-channel was selected due to the availability
of resolved structures (from ficedula albicollis and parvus major) both in the apo state and
in complex with known modulators [15]. Due to the high conservation degree, these
experimental structures can be conveniently used to build reliable homology models for
the hTRPM8 structure in its homotetrameric state. Hence, a hTRPM8 homology model was
generated by using the corresponding apo state from ficedula albicollis as the template [16]
and the obtained structure underwent a reasonably long MD run (1.25 µs). This simulation
had the objective to equilibrate the hTRPM8 theoretical model as well as to provide a set
of representative conformations to be used in the following docking simulations. In this
fortunate case, the other available co-crystallized TRPM8 structures can be utilized as the
templates to identify the best frames for docking simulations. By combining structural
comparison and re-docking experiments, a representative set of few satisfactory hTRPM8
structures were selected. The resulting VS campaigns proved successful in reaching very
remarkable predictive performance and emphasized the relevance of repeating docking
calculations on all four monomers of the selected hTRPM8 conformations.

In the present study, we put ourselves in the second unfortunate situation by pretend-
ing not to have information about the architecture of the hTRPM8 binding cavity. Stated
differently and instead of focusing the VS campaigns on few properly selected suitable
frames, we performed an extended set of docking simulations by systematically sampling
the entire MD trajectory. Thus, the primary objective of this study is to assess whether
such a blind and methodical strategy can be effective by comparing the here obtained
performances with those reached in the previous study [13]. Clearly, this comparative
study is targeted for the hTRPM8 protein, but the proposed computational procedure could
be fruitfully applied in all docking studies when experimental data on the binding site(s)
are not yet available.

2. Results
2.1. Docking Simulations

As mentioned in the Introduction, the study involved an extended set of VS sim-
ulations performed by exploiting the already published MD simulation (1.25 µs) of the
hTRPM8 homology model in its homotetrameric assembly and in its apo state [13]. In
detail, such a systematic study comprised 50 docking runs by simulating a memorized
frame every 25 ns. To speed up such an extensive set of docking simulations, a subset of
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the database utilized in the previous study was collected. Such a subset was composed by
1000 molecules comprising 20 known TRPM8 inhibitors and 980 inactive decoys. For the
same reason, the docking simulations were carried out using only the LiGen program [17]
which reached the best performance in the previous study (compared to PLANTS and
GOLD). Similarly, the performed predictive analyses involved only the primary scores
computed by the LiGen program without rescoring calculations.

Notwithstanding the above, the docking simulations involved all the four monomers
of all the 50 considered frames since this exhaustive exploration played a noteworthy
enhancing role in the previous study [13]. Furthermore, the previous docking experiments
were unable to provide convincing results about the beneficial effect of energy minimization
of the selected protein structures; therefore, a completely new approach was tested here.
This is based on the SCWRL4 software [18] which adds the side-chains to a protein structure
by an algorithm which selects them from a rotamer library by a backbone-dependent
approach. Such a selection also accounts for the interaction potential elicited by each side-
chain to find the rotamer that best fits its protein micro-environment. Hence, all docking
simulations were repeated by considering the frames as extracted from MD trajectory and
after the side-chain optimization performed by SCWRL4. Finally, and to better explore
the role of multiple binding modes, 10 poses were generated for each ligand and the
corresponding best and average score values were used during the predictive analyses
according to the concept of the binding space [19].

The so computed docking scores were utilized to develop consensus models by using
the Enrichment Factor Optimization (EFO) algorithm [20,21]. This linearly combines
docking scores by maximizing a quality function primarily based on the resulting EF 1%
values. For each analysis, the consensus equations were generated by including at most
three variables by using a recently proposed EFO release which implements an incremental
method and stops the search if the inclusion of an additional variable does not improve the
resulting EF1% values [22].

2.2. VS Campaigns by Using the Non-Optimized Frames

As a preamble, it should be noted that here and in the following analyses (see
Section 2.3), the docking results of a given monomer were discarded when LiGen was
unable to properly accommodate more than three active molecules. A frame was entirely
discarded when more than two monomers showed unsuitable docking results.

Table 1 compiles the best consensus linear equations with the corresponding EF1%
values for the frames which fulfilled the above-described criteria. Interestingly, the first
three frames (t = 25, 50, and 75 ns) were discarded while all the following 47 frames were
accepted. This finding suggests that the first relevant effect induced by the MD simulation
is the optimization of the overall arrangement of four binding cavities. They may be slightly
constrained in the starting structures and become increasingly more relaxed during the
simulation and in particular after about 100 ns. The beneficial effect exerted by the MD
run is further evidenced by considering that in all the first 13 frames (until 275 ns) at least
1 monomer does not fulfill the defined criterion and overall 21 monomers out of 52 were
discarded (data not shown). In contrast, only 8 monomers (out of 148) were discarded in
the following 37 frames (925 ns). In more detail, the monomer D is the most frequently
discarded one (17 out of 29), followed by monomer A (9 cases), while monomers B (3 cases)
and C (0 cases) were virtually never removed.
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Table 1. Best predictive consensus models and relative EF1% values as obtained by the non-
optimized frames.

Time (ns) EF1% Consensus Equation

25 nd The frame was fully discarded
50 nd The frame was fully discarded
75 nd The frame was fully discarded

100 17.51 1.00 PSmeanB
125 5.84 1.00 CSbestC
150 22.42 −1.00 CSbestC − 0.36 CsoptbestB
175 14.95 1.00 CsoptmeanC + 2.96 CSbestB
200 19.93 1.00 CSmeanB − 1.10 CSbestB − 1.38 CsoptmeanA
225 11.67 1.00 PSmeanA
250 9.96 −1.00 CSmeanC − 2.44 CSmeanB
275 8.54 −1.00 CSmeanC + 0.46 CSbestB
300 11.67 1.00 CSbestC
325 17.81 1.00 CSbestD − 1.11 CSbestC
350 29.90 −1.00 CsoptbestB + 2.15 CsoptbestA
375 29.18 1.00 CSbestD
400 23.12 −1.00 CSmeanD − 8.80 CsoptbestC
425 19.93 1.00 CsoptmeanB − 3.53 CSmeanA
450 23.92 −1.00 CSmeanD − 0.41 CsoptbestB − 0.11 CSmeanA
475 14.95 −1.00 CSmeanD − 9.86 CsoptbestC + 3.87 CsoptbestA
500 19.93 1.00 CSmeanD − 12.42 CsoptbestA
525 12.81 1.00 PSmeanD − 71.23 CSmeanD − 58.51 CsoptbestC
550 23.35 1.00 CSbestA
575 35.88 −1.00 CsoptmeanC + 1.30 CSbestA
600 29.90 −1.00 CsoptbestC − 0.39 CSmeanA
625 29.90 −1.00 CsoptmeanD − 0.082 CSmeanB + 1.26 CsoptmeanA
650 35.88 −1.00 CSbestD − 1.71 CSmeanC + 1.16 CsoptbestB
675 22.42 −1.00 CsoptmeanC + 0.24 CSbestA
700 12.82 −1.00 CSbestB + 0.82 CSmeanA
725 22.42 −1.00 CSmeanB + 0.36 CSbestB
750 19.93 −1.00 CSmeanC − 6.04 CsoptmeanB − 1.51 CsoptmeanA
775 29.90 −1.00 CSmeanC + 0.67 CsoptbestB
800 18.69 −1.00 CsoptmeanB + 0.24 CSbestA
825 17.51 1.00 CSBestA
850 13.29 1.00 CSbestD + 44.18 CsoptbestC
875 12.82 −1.00 CSoptmeanB + 7.20 CSmeanB − 29.71 CSbestA
900 21.36 −1.00 CSbestC + 0.95 CSbestA
925 19.93 1.00 CsoptmeanD + 4.31 CSmeanC + 0.90 CSbestC
950 17.51 1.00 CSbestC
975 22.42 −1.00 CSmeanD + 0.94 CSbestC

1000 17.94 −1.00 CsoptmeanC + 0.42 CSmeanB − 0.15 CSmeanA
1025 37.38 1.00 CSoptmeanD − 1.27 CsoptbestC
1050 35.88 1.00 CsoptmeanD + 1.69 CSmeanC − 9.10 CsoptmeanB
1075 29.90 1.00 CSbestC − 1.86 CsoptmeanB
1100 35.88 −1.00 CSmeanB − 4.56 CsoptbestB − 3.70 CSmeanA
1125 23.35 1.00 CSbestA
1150 14.95 −1.00 CsoptmeanD − 0.67 CsoptmeanC + 0.34 CSbestB
1175 19.93 −1.00 CSbestB + 0.32 CsoptmeanA
1200 25.63 −1.00 CsoptmeanC − 1.85 CsoptbestB + 0.95 CsoptmeanA
1225 21.35 −1.00 CsoptmeanD + 0.27 CSbestC
1250 23.26 1.00 CsoptmeanC − 10.07 CsoptmeanB + 1.90 CsoptmeanA

The beneficial effect exerted by the MD simulation on the architecture of the binding
cavities is also confirmed by the overall increase in the corresponding EF1% values during
the MD run as seen in Table 1 and Figure 1. The trend of the EF1% values and the
comparison with that derived by using the optimized frames will be further discussed
in Section 2.4. While evidencing an overall increasing trend, Table 1 reveals that the
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EF1% values retain a marked variability with a persistent up and down profile with EF1%
values which ranges from 5.84 to 37.38. On one hand, such a variability emphasizes
the key role of the performed MD run on the hTRPM8 tetramer to reach convenient
arrangements of its binding sites. On the other hand, this underlines the marked flexibility
of the explored cavities and suggests that even the fluctuations of few side chains can
influence the reliability of the docking simulations. As discussed in the previous study,
such a flexibility can also be amplified by the dynamic cross-talk between the interacting
monomers [13]. This can explain why the involvement of all four monomers in these VS
campaigns exerts a beneficial effect on the resulting predictive models.
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While avoiding a detailed analysis of the compiled consensus models, Table 2 reports
the relevance of the four monomers in the best equations and reveals a significant difference
compared to the previous study [13]. Indeed, when using few rationally selected protein
conformations, docking results unraveled a well-defined trend with the monomer A playing
a prevailing role in determining the predictive performance. By contrast, when repeating
the docking simulations on an extended set of frames, a different behavior is observed. The
monomers B and C are the most frequent ones, the monomer A plays an in-between role,
while the monomer D is rarely included in the selected models. The monomer D is also the
most frequently discarded subunit (see above) and this suggests that its binding cavity has
an intrinsic difficulty in assuming arrangements suitable for binding.

Table 2. Frequency of the scores from the four simulated non-optimized monomers in the selected
consensus equations. The table also includes the mean volumes of the four binding sites in the
50 selected frames (in Å3).

Score Monomer
A

Monomer
B

Monomer
C

Monomer
D Total

Best 11 14 16 4 45
Mean 13 15 14 13 55
Total 24 29 30 17 100
Mean

volume 365.4 582.2 492.7 439.8 470.0
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Table 2 highlights that best and mean score values show a similar incidence. Neverthe-
less, Table 1 reveals that the frequency of mean scores increases during the MD simulation.
Indeed, the number of mean scores in the second half of the MD run (0.625 to 1.25 µs)
is markedly higher compared to the first half (34 vs. 21). This confirms that the binding
cavities are characterized by a rather constrained arrangement at the beginning of the
simulation. These constraints hamper the mobility of the docked ligands and minimizes the
enhancing effect of accounting for different poses. In contrast and during the MD run, the
binding pockets show increasingly relaxed and wider arrangements. This permits a greater
mobility of the bound ligands which can assume different binding modes and explains
the increasing role of the mean scores. Finally, the analysis of the frequency of the three
LiGen primary scores reveals that CS and CSopt scores have similar relevance (55 and
42 occurrences for CS and CSopt, respectively), while PS score is virtually never included
(3 occurrences).

2.3. VS Campaigns by Using the SCRWL4 Optimized Frames

Similarly to Table 1, Table 3 includes the best models and the relative EF1% value for
the 50 optimized frames. Table 3 shows that there is not a clear match between the frames
discarded in the two sets of simulations, although the criteria for discarding monomers
and entire frames are the same as described above. In detail, Table 3 highlights that there
are three discarded frames as seen in Table 1, even though they are not focused on the
beginning of the MD simulation (as seen before) but are distributed throughout the entire
simulation. The analysis of the discarded monomers (data not reported) showed that the
total number of discarded monomers is here lower than that seen with non-optimized
frames (21 vs. 29). Moreover, they are less focused on the first part of the MD run (11 in the
first 275 ns and 10 in the following 925 ns) and this can explain the different distribution
of the discarded frames. The frequency with which the four monomers are discarded
is similar to that previously seen with monomers A and D being frequently removed
(with 11 and 8 cases, respectively), while monomers B and C are almost never discarded
(with 0 and 2 cases, respectively). Taken together, the analysis of the discarded monomers
suggests that the optimization by SCRWL4 is unable to completely upset the reliability of
the simulated frames (especially because this does not alter the protein backbone) even
though this approach is able to induce an overall structural enhancement which appears
particularly relevant for the first part of the MD run.

Even though the detailed comparison of the two sets of docking simulations will be
discussed in the next section, a rapid analysis of Table 3 confirms that the EF1% values also
increase here during the MD run. More importantly, the VS campaigns performed by using
the optimized frames perform better than those carried out by non-optimized structures.
The better performance of the optimized frames is witnessed by both the average EF1%
values (21.38 vs. 23.29) and the number of frames which show noteworthy EF1% values
(i.e., >30, 7 vs. 5). As previously seen, the best models collected by Table 3 show a persistent
up and down profile in their performances (EF1% values from 5.84 to 37.88) and include a
variable number of parameters.

Table 4 compiles the frequency with which the monomers appear in the best equations
collected by Table 3 and reveals some key differences compared to the non-optimized
frames (see Table 2). In detail, the monomer B is the most involved one followed by the
monomer C, while the monomers A and D play more limited roles. The mean scores
are here almost double the best values, a ratio already seen for the last non-minimized
frames (see Table 1). These results indicate that the optimization by SCRWL4.0 is able to
reduce the constraints of all the simulated frames. This increases the wideness of their
binding sites; thus, promoting the ligand capacity to assume multiple binding modes as
encoded by the average scores. This finding is clearly confirmed by the volume averages
reported in Tables 2 and 4: the optimized binding sites show a volume increase of 39%
(from 407 to 654 Å3). Regarding the frequency of the various primary LiGen scores, Table 3
shows results superimposable to those of Table 1 since the CS and CSopt scores reveal
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prevailing and comparable roles (41 and 52 occurrences, respectively) while the PS score
appears only 5 times.

Table 3. Best predictive consensus models and relative EF1% values as obtained by the selected
optimized frames.

Frame EF1% Consensus Equation

25 29.18 1.00 PSmeanC
50 11.67 1.00 CSbestB
75 25.63 −1.00 CsoptbestB − 1.27 CsoptmeanA

100 29.90 −1.00 CSbestC + 1.22 CSmeanB − 0.21 CSbestA
125 14.95 −1.00 CsoptmeanD + 0.89 CSmeanD
150 4.27 1.00 CsoptbestC − 1.42 CsoptmeanB
175 8.31 −1.00 CSmeanD + 0.55 CSmeanC + 0.27 CSmeanB
200 19.93 −1.00 CsoptmeanD − 5.44 CSbestA
225 17.51 1.00 CSbestA
250 9.96 −1.00 CSmeanC − 2.44 CSmeanB
275 nd The frame was fully discarded
300 19.33 1.00 CSmeanD + 2.91 CSbestC − 7.81 CsoptbestB
325 5.84 1.00 CSmeanD
350 14.95 −1.00 CSbestC − 0.70 CsoptbestB
375 14.95 −1.00 CsoptbestC − 1.14 PSmeanA
400 19.33 −1.00 CSmeanC − 4.23 PSmeanB + 18.23 PSbestB
425 29.90 −1.00 CsoptmeanC − 10.07 CSmeanB + 1.95 CsoptbestA
450 24.92 1.00 CsoptmeanD − 3.48 CSmeanA
475 22.42 −1.00 CSmeanD − 21.50 CSmeanC
500 37.38 −1.00 CsoptmeanC + 1.73 CSmeanA
525 29.18 1.00 PSmeanD
550 29.90 −1.00 CsoptmeanC − 8.69 CsoptbestC + 0.27 CSmeanB
575 nd The frame was fully discarded
600 5.84 1.00 CbestA
625 24.92 1.00 CSbestD − 14.04 CsoptmeanA
650 29.90 1.00 CsoptbestB − 1.66 CSmeanA − 0.94 CsoptbestA
675 18.69 1.00 CsoptbestC − 1.09 CsoptmeanB
700 37.38 1.00 CsoptmeanC − 4.44 CsoptmeanB
725 12.82 −1.00 CSmeanD − 1.38 CsoptbestB
750 29.90 1.00 CSmeanD − 0.12 CsoptbestD − 1.14 CsoptmeanA
775 26.58 1.00 CsoptmeanD − 1.25 CSoptbestC
800 14.95 1.00 CsoptmeanD − 2.89 CsoptmeanA − 9.20 CSbestA
825 35.88 1.00 CsoptmeanD − 1.05 CsoptmeanB
850 21.35 1.00 CsoptmeanC − 3.50 CsoptmeanB
875 33.22 −1.00 CsoptbestD − 0.49 CsoptmeanA
900 29.18 1.00 CSbestA
925 19.93 −1.00 CSbestD − 1.34 CSmeanC − 2.32 CSmeanB
950 17.94 1.00 CsoptbestC − 12.25 CSbestA
975 35.88 −1.00 CsoptmeanD − 0.68 CsoptmeanB

1000 19.93 −1.00 CsoptmeanC − 0.48 CSmeanB − 4.85 CsoptbestB
1025 29.90 −1.00 CsoptmeanB + 0.060 CsoptbestA
1050 Nd The frame was fully discarded
1075 24.92 −1.00 CsoptbestD − 3.30 CSmeanB
1100 29.90 −1.00 CSmeanC − 0.59 CsoptmeanA
1125 35.88 −1.00 CSmeanC − 4.84 CSbestB
1150 19.93 1.00 CSmeanD − 15.28 CSmeanB
1175 37.38 1.00 CsoptbestB − 1.66 CsoptmeanA
1200 21.35 1.00 CsoptmeanD − 1.73 CsoptmeanB
1225 29.90 −1.00 CsoptmeanC + 0.50 CsoptbestB
1250 28.47 1.00 CsoptmeanD − 0.21 CsoptbestC − 0.98 CSmeanB
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Table 4. Frequency of the scores from the four simulated optimized monomers in the selected
consensus equations. The table also includes the mean volumes of the four binding sites in the
50 selected frames (in Å3).

Score Monomer
A

Monomer
B

Monomer
C

Monomer
D Total

Best 10 11 10 5 36
Mean 11 19 15 18 63
Total 21 30 25 23 99
Mean

volume 491.2 884.8 648.2 591.0 653.8

2.4. Comparison of the Two Sets of Simulations

Figure 1 compares the performances of the two sets of docking simulations as de-
scribed by the best EF1% values and by the EF1% cumulative means. Except for the high
EF1% value reached by the optimized frame at 100 ns, both sets of calculations reveal an
increasing trend in their EF1% values which can be better evidenced when considering
the cumulative EF1% means. The cumulative trends also offer a clear confirmation of the
better performance reached by the optimized frames and reveal that such a superiority is
already evident at the beginning of the MD run and remains roughly constant throughout
the simulation with differences in cumulative EF1% means around 2.0. A more detailed
analysis of Figure 1 highlights that the two trends show a similar behavior and in both
cases the largest EF1% enhancements are seen between 400 and 800 ns. This observation
suggests that the MD run can be subdivided into three segments.

The first equilibration part, which roughly involves the first 400 ns, is characterized
by the optimization of the overall folding of the simulated homotetramer. As previously
reported, this process is driven by a reinforcement of inter-monomeric interactions [13].
This process has a limited impact on the fine architecture of the binding pockets which
retain the constraints characterizing the starting structures. Hence, the VS performances
of the corresponding frames do not significantly increase during this first phase. This
first part shows marked differences in the performances reached by optimized and non-
optimized frames. This confirms that the largest enhancing effect played by the SCRWL
method is focused on these first frames. The second relaxation phase, which comprises the
frames between 400 and 800 ns, involves a further enhancement of the overall quaternary
hTRPM8 structure but also a beneficial relaxing of the explored binding sites which increase
their flexibility; thus, promoting the ligand recognition. This is reflected in the increase
in the resulting performances as encoded by their EF1% values. The third stabilization
phase, which roughly corresponds to the last 400 ns, is characterized by the tetrameric
hTRPM8 structure which has reached a reasonable equilibrium and shows, at most, minor
conformational fluctuations with limited effects on the predictive performances.

Such a subdivision scheme is partly confirmed by Table 5 which reports the intermedi-
ate EF1% means values for both sets of VS campaigns as computed for segments of 250 ns.
The optimized frames exhibit a clear increasing trend in the EF1% values during the MD
run, while the non-optimized structures retain a more marked up-and-down profile as
evidenced by the drop in EF1% mean between 775 and 1000 ns. When focusing on the
first 750 ns, the largest difference between optimized and non-optimized frames is seen
in the first 250 ns. This finding confirms that the here applied optimization procedure is
able to reduce the constraints that affect the starting structures with positive effects on the
interaction capacity of their binding pockets (as discussed above). The beneficial effects of
the above-described relaxation phase is here documented by considering that the significant
EF1% increases in both VS sets are seen between the 275–500 and 500–750 periods. In the
second and third segments, the EF1% means between the two sets are similar (∆EF1% less
than 1.0). This indicates that the optimization process by SCRWL4.0 cannot further improve
the frames already relaxed by the MD simulation. The last part of the MD run highlights
less coherent performances due to the already mentioned drop for the non-optimized
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frames. As already noticed in Figure 1, Table 5 confirms that the overall EF1% difference
between the two sets of docking simulations is around 2.0.

Table 5. Average values for the EF1% metrics and volumes of the binding pockets for optimized and
non-optimized frames as computed by subdividing the MD run into five segments of 250 ns (the
volume averages are expressed in Å3).

Time (ns)
Non-Optimized Frames Optimized Frames

EF1% Volume Average EF1% Volume Average

25–250 14.61 380.6 17.13 556.1
275–500 19.90 428.1 20.40 630.4
525–750 24.48 503.1 23.79 655.2

775–1000 19.14 525.8 25.48 711.8
1025–1250 26.75 512.52 29.70 715.5
Averages 21.38 470.0 23.29 653.8

2.5. Multiple Frames Consensus Strategy

While avoiding time-demanding rescoring calculations, the last analyses of the study
involved a consensus strategy in which the primary scores of some selected highly per-
forming frames were combined. This strategy was applied to both non-optimized and
optimized structures by focusing on the frames with EF1% > 30 (5 and 7 for non-optimized
and optimized frames, respectively). Table 6 compiles the results obtained by these analyses
and reveals that the consensus approach based on multiple frames proved successful in
enhancing the performances for both non-optimized and optimized structures. In detail,
the best performances are reached by combining the optimized frames which yield the best
EF1% values as well as the highest EF1% means (as derived by averaging the EF1% of the
best 20 generated models). The difference between non-optimized and optimized frames
is in agreement with what was already observed for the single frames (around 2.0) and
the same difference is also seen in mean values. Concerning the specific role of the four
monomers, Table 6 indicates that monomers C and D play key roles for all frames, while
monomers A and B reveal less constant roles. Finally, Table 6 confirms the major role of
mean scores in both analyses. The obtained models were further assessed by y-scrambling
and the obtained average EF1% values were equal to 18.93 and 10.86 with all monomers
for non-optimized and optimized frames, respectively. Such a decrease in performance
indicates that these models are unlikely to be biased by chance.

Table 6. Best performances as derived from consensus analysis of multiple non-optimized and
optimized frames (in parenthesis the EF1% means as obtained by averaging the 20 generated models).

EF1% All Monomers Monomer A Monomer B Monomer C Monomer D Best Scores Mean Scores

Non-
optimized

47.84
(37.07)

29.90
(24.17)

41.86
(29.00)

44.85
(36.36)

44.85
(30.65)

35.88
(13.85)

44.84
(26.54)

Optimized 49.83
(38.62)

44.85
(36.13)

29.90
(26.48)

41.86
(26.61)

44.85
(36.63)

35.88
(25.12)

38.94
(29.90)

The analysis of the occurrence of the selected frames in the best 20 models as generated
by considering all monomers reveals that some frames have a very high frequency (data
not shown). Specifically, optimized frames 1125 and 1175 have a predominant role and
similarly non-optimized frames 650 and 1025 are highly frequent in the corresponding
models. This finding suggests that productive models might be developed even combining
a more limited number of frames compared to what was reported in Table 6.

2.6. Structural Analysis of the Sampled Frames

Based on the obtained results, the already reported MD trajectory was re-analyzed
to highlight structural features of the selected frames which can be related to their pre-
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dictive performance. Since the main effect exerted by the MD run is a general relax-
ation/equilibration of the overall hTRPM8 tetramer which reduces the structural con-
straints also affecting the binding cavities, this analysis was primarily focused on the
volume of the binding sites as computed by POVME [23].

Figure 2 shows how the volume of the binding pockets varies during the MD run
by considering the four subunits of the sampled frames without and after SCRWL-based
optimization. The corresponding volume values can be found in Table S1, while the
average values are compiled in Table 5. The mean volumes for the four monomers are
compiled in Tables 2 and 4. The first consideration involves the average values which
are significantly greater in the optimized frames for all four subunits. This confirms that
the SCRWL procedure is able to relax and to expand the binding cavities even without
affecting the backbone conformation. While showing persistent up and down trends, the
four monomers reveal similar profiles in the two plots which allow two different behaviors
to be identified. Indeed, monomers A and D show increasing volumes during the MD
simulation and this is more evident in the non-optimized frames where a sharp increase
is observed around 400 ns. In contrast, monomers B and C reveal rather constant volume
values for their binding pockets without significant differences between optimized and
non-optimized structures.
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There is no correlation between the trends of the four subunits nor between the volume
profiles of the optimized and non-optimized frames. The only weak correlation (r2 = 0.43)
can be seen in the trends of the volumes averages of the four cavities, which confirm that
(1) the binding pockets experience an overall widening during the MD run and (2) the
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overall cavities of the optimized frames are constantly and significantly greater than those
of the non-optimized structures.

To further investigate the role of the computed volumes in determining the reached
performances, the correlations between volumes of the binding sites and predictive perfor-
mances were analyzed. While there are no significant relations between EF1% and volume
values by considering all the analyzed frames, significant correlations can be found between
volume and EF1% averages as reported in Table 5 with the optimized frames which afford a
better relationship than the non-optimized ones (r = 0.94 vs. 0.73). Furthermore, contrasting
results are derived when correlating the volume averages with the frequencies with which
the four monomers are involved in the predictive models (as reported in Tables 2 and 4).
There is indeed a very remarkable correlation for the optimized frames (r = 0.99) while
the non-optimized ones provide a poor relation (r = 0.55) mostly ascribable to the outlier
behavior of monomer A.

Taken together, the analysis of the volumes of the binding pocket emphasizes the key
role of the pocket size in determining the performance of each frame. Such a role can find
two different explanations. On one hand, one may figure out that the wider the pocket,
the easier the ligand finds a convenient pose. On the other hand, one may hypothesize
that a wide binding pocket is also suggestive of a well-relaxed structure which reached an
optimal arrangement for the ligand recognition.

3. Discussion

As stated in the Introduction, the primary objective of the study was to assess if
a methodical sampling of the frames generated by MD runs can be effective in virtual
screening campaigns when experimental data to guide the selection of few optimal struc-
tures for docking are not available. Such an analysis can be performed by comparing the
here reached performances with the previously published results involving few optimal
hTRPM8 structures chosen based on the available experimental data and structures [13].
Even though the different composition of the two screened datasets and in particular the
different abundance of active molecules (here 2%, namely 20/1000 vs. 1% in the previous
study, namely 53/5300) prevents an easy comparison of the reached performances, the
metrics reported in Table 6 allow for some insightful considerations.

The EF1% values are clearly affected by the above-mentioned differences in the dataset
composition. Nevertheless, Table 7 reveals that the EF1% value reached by the here
developed best models correspond to a high percentage of active molecules within the
top 1%. This means that these models proved satisfactory at least in the early recognition
feature. Regarding the overall metrics, Table 7 shows that the previous best model performs
slightly better than those presented here with the optimized frames which yield better
performances. Based on these results, the consensus approach based on multiple frames
appears a very promising strategy since it does not require additional calculations and
allows a precise evaluation of the role of the best performing frames. Thus, it can guide the
rational selection of the frames on which the following docking calculations can be focused.

Table 7. Comparison of the here reached performances with that obtained by the best model of the
previous study [13].

Metric Best Model from Previous Study [13] Multiple Non-Optimized Frames Multiple Optimized Frames

EF1% 67.11 47.84 49.83
% active in top 1% 67.11% 80% 90%

MCC 0.66 0.49 0.64
Sensitivity 0.66 0.50 0.65
Accuracy 0.99 0.99 0.99

Clearly, the richness of structural information generated by a rather extended MD
simulation can be exploited by various computational strategies. Thus, one may imagine
more systematic and combinatorial approaches which are based on the consideration that
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each ligand should prefer a specific frame or more compact approaches in which all the
generated frames are reduced to few representative structures as derived by clustering
and averaging methods or different energy-based prioritization. This study was designed
by assuming that a reliable target structure for docking simulations cannot be optimal for
all simulated ligands (this cannot happen even using resolved structures) but it should
represent a good compromise able to afford reliable complexes for most ligands. In order to
find these reliable structures, this study was designed to reach an optimal balance between
exhaustiveness and speed of the calculations. The here obtained results indicate that the
systematic sampling of a given MD trajectory can provide VS performance in substantial
agreement with that reached by using few rationally selected structures.

4. Methods and Materials
4.1. Frame Selection and Optimization

As mentioned above, the frames were extracted from the MD run of 1.25 µs involving
the hTRPM8 in its tetrameric assembly and already reported in a previous study [13]. In
detail, the present study considered 50 frames as obtained by systematically sampling
the MD trajectory and extracting a frame every 25 ns. For each sampled frame, the fol-
lowing docking simulations involved the entire homotetramer by considering all four
binding pockets. In more detail, docking simulations were performed by considering the
frames as directly extracted from the MD trajectory as well as after optimization by using
SCRWL4.0 [18]. Notice that this software was primarily developed to add the optimal
side-chain rotamers during the generation of theoretical models. Here, a different appli-
cation for SCRWL4.0 is proposed that is the optimization of the frames extracted from a
MD simulation by enhancing the conformational profiles of the sole side-chains. Stated
differently, such an optimization procedure does not perturb the backbone folding but
improves the arrangement of the side-chains in order to optimize the fine architecture of
the binding pockets. Hence, the SCRWL4.0 tools was used to optimize all the 50 extracted
frames by applying the default parameters. Finally, the volume of the binding cavities of
the simulated frames was calculated by using POVME [23].

4.2. Virtual Screening by Using LiGen

Docking simulations involved a randomly extracted subset of the dataset already
utilized in previous studies, which was composed of 5300 molecules, 53 of which are
known hTRPM8 modulators and 5247 are experimentally proven as non-binders [24]. In
detail, the here utilized subset comprises 1000 molecules among which 20 are active ligands.
Each ligand was prepared by considering the predominant form at physiological pH as
previously described [24]. Docking simulations were performed using LiGen and were
focused on 10 Å radius sphere around the center of mass described by the residues Tyr745,
Asn799, Asp802, and Tyr1005 which play a well-known role in ligand recognition [25]. The
geometrical docking procedure implemented in LiGen, which follows a specific workflow
to compute three docking scores, was used for the docking simulations. First, the Pacman
Score (PS) estimates a geometric fitting score to evaluate the interaction between a ligand
conformation and the pocket, basing on shape and volume information; then, the Chemical
Score (CS), representing the ligand binding energy, is calculated by using an in-house
developed scoring function. Lastly, a minimization algorithm that treats the docket ligand
as a rigid body inside the binding site, called the Optimized Chemical Score (Csopt) is
evaluated [17].

4.3. Rescoring and Consensus Analyses

For all the sampled frames (both optimized and non-optimized) and for all the four
simulated monomers, the primary scores as generated by LiGen were utilized to develop
consensus equations by using the EFO algorithm [20,21]. This linearly combines the input
scores by optimizing a search function based on both the resulting EF1% value for early
recognition and a skewness function which accounts for the distribution of the active
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compounds in the entire ranking. In detail, these analyses involved the generation of
consensus models including at most three variables by applying an incremental version
of the EFO algorithm which stops the model generation if the inclusion of an additional
variable does not enhance the resulting performances [22]. For each ligand and each
scoring function, the input variables comprise the best and the mean values as obtained by
averaging the 10 generated poses using the VEGA suite of programs [26]. The predictive
power of the developed models was assessed by subdividing the considered dataset in
training (70%) and test (30%) sets and this validation was repeated 5 times to minimize the
randomness. The validation phase was utilized to prioritize the generated models and to
compute the reported EF1% values. The consensus models from multiple frames were also
assessed by y-scrambling as implemented by the EFO tool.

5. Conclusions

Although the reported results should be confirmed by additional studies involving
different targets and/or various sampling procedures, the present study emphasizes the
efficacy to combine MD simulations with docking calculations to improve the predictive
power of the obtained results and reveals how a systematic sampling can be a suitable
strategy when experimental data does not permit a precise selection of the optimal target
structures. Finally, the obtained results confirm the efficacy to simultaneously consider all
the subunits of an oligomeric target for docking simulations and reveal the beneficial role
of the SCRWL4 method to optimize the fine arrangement of the explored binding sites.
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